1. P- Groups and Related Concepts.

<u>Definition(2-1):</u> (p- Group)

A finite group (G,*) is said to be p-group if and only if the order of each element of G is a power of fixed prime p.

<u>Definition(2-2):</u> (p- Group)

A finite group (G,*) is said to be p-group if and only if $|G| = p^k$, $k \in \mathbb{Z}$, where p is a prime number.

Example(2-3):

Show that $(Z_4, +_4)$ is a p-group.

Solution: $Z_4 = \{0,1,2,3\}$ and $|Z_4| = 4 = 2^2$

 \Rightarrow Z₄ is a 2- group, with

$$o(0) = 1 = 2^0,$$

$$o(1) = 4 = 2^2,$$

$$o(2) = 2 = 2^1$$
,

$$o(3) = 4 = 2^2$$
.

Example(2-4):

Determine whether $(Z_6, +_6)$ is a p-group.

Solution: $Z_6 = \{0,1,2,3,4,5\}$ and $|Z_6| = 6 \neq P^k$

 \Rightarrow Z₆ is not p- group.

Example(2-5): (Homework)

Determine whether (G_s, \circ) is a p- group.

Examples(2-6):

- $(Z_8, +_8)$ is a 2-group, since $|Z_8| = 8 = 2^3$,
- $(Z_9, +_9)$ is a 3- group, since $|Z_9| = 9 = 3^2$,
- $(Z_{25}, +_{25})$ is a 5- group, since $|Z_{25}| = 25 = 5^2$.

Theorem(2-7):

Let $H\Delta G$, then G is a p- group if and only if H and G/H are p- groups.

Proof: (\Rightarrow) Assume that G is a p- group, to prove that H and $^{G}/_{H}$ are p- groups.

Since G is a p-group \Rightarrow o(a) = p^x, for some x \in Z⁺, $\forall a \in$ G.

Since $H \subseteq G \implies \forall a \in H \text{ group} \implies o(a) = p^x$, for some $x \in Z^+$.

So, H is a p- group.

To prove G/H is a p-group.

Let $a * H \in {}^{G}/_{H}$, to prove o(a * H) is a power of p.

$$(a*H)^{p^x} = a^{p^x} * H = e * H = H$$
, $(a^{p^x} = e \text{ since G is a})$
p-group \Longrightarrow o(a) = p^x

(\Leftarrow) Suppose that H and $^{G}/_{H}$ are p- groups, to prove G is a p- group.

Let $a \in H$, to prove o(a) is a power of p.

$$(a * H)^{p^x} = H \dots (1) \ (^{G}/_{H} \text{ is a p- group})$$

$$(a * H)^{p^x} = a^{p^x} * H \dots (2)$$

From (1) and (2), we have $a^{p^x} * H = H \Longrightarrow a^{p^x} \in H$ and H is a p- group,

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

$$\Rightarrow o(a^{p^x}) = p^r, r \in Z^+$$

$$\Rightarrow (a^{p^x})^{p^r} = e \Rightarrow a^{p^{x+r}} = e, \ x + r \in \mathbb{Z}^+,$$

$$\implies o(a) = p^{x+r}$$

Therefore, G is a p- group ■