LAB. METEOROLOGICAL DATA ANALYSIS FOURTH STAGE

(The second Semester)

Department of Atmospheric Sciences

$$
2022-2023
$$

Lecturers :

Assist. Prof. Zahra salah , L. Ruaa mazin
L. Farah Haseeb , L. Luma Mahdi
\qquad

((The First Lecture))

correlation coefficient

It is the relationship between two variables representing each of the two variables or phenomena (linear relationship).

If one of the two phenomena changes in a certain direction, the second changes in the direction of the first or in an opposite direction to the first,
*If the two changes appear in the same direction, meaning an increase in the first, corresponding to an increase in the second, or a decrease in the first, corresponding to a decrease in the second, then the relationship is direct increasing (positive).

* If the increase in the first is offset by a decrease in the second, or vice versa, the correlation is inverse or decreasing (negative).
* acrrelation of zero means there is no relationship(dis corrrlation) between the two variables.

Correlation scale :

1-pearson correlation (r) :is astatisical formula that measures linear correlation between two variables Xand Y.

The strength of the correlation between two variables (r) is measured and denoted by the correlation coefficient, It is a numerical measure that measures the strength of the correlation between two variables, where its value ranges between (+1 and -1).

$$
\mathrm{r}=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left.\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right)\right]}}
$$

where :

r = Pearson Coefficient
$\mathrm{n}=$ Data number
$\Sigma \mathrm{xy}=$ sum of products of the paired stocks
$\Sigma \mathrm{x}=$ sum of the x scores
$\Sigma y=$ sum of the y scores
$\Sigma \mathrm{x} 2=$ sum of the squared x scores
$\Sigma \mathrm{y} 2=$ sum of the squared y scores

- To calculate the correlation , the excel program is done using a function
= correl
the following table shows the types of correlation and the direction of the relationship for each type:

Type of correlation and relationship	positive value
dis correlation	$\mathbf{0}$
Weak direct correlation	$>+\mathbf{0 . 5}$
Direct correlation is acceptable	$\mathbf{+ 0 . 5}$
Medium direct correlation	$\mathbf{+ 0 . 6}$
good direct correlation	$\mathbf{+ 0 . 7}$
Very good correlation	$\mathbf{+ 0 . 8}$
Excellent or strong direct correlation	$\mathbf{+ 0 . 9}$
perfect connection	$\mathbf{+ 1}$

Type of correlation and relationship	Negative value
Weak reverse correlation	$\mathbf{> - 0 . 5}$
Acceptable reverse correlation	$\mathbf{- 0 . 5}$
Medium reverse correlation	$\mathbf{- 0 . 6}$
Good reverse correlation	$\mathbf{- 0 . 7}$
Very good reverse correlation	$\mathbf{- 0 . 8}$
strong reverse correlation	$\mathbf{- 0 . 9} \mathbf{- 1}$

Example (1) // The following data represents temperature and relative humidity, Find is the pearson coefficient (low, function).

\mathbf{T}	$\mathbf{3 3}$	$\mathbf{3 5}$	$\mathbf{3 4}$	$\mathbf{3 3}$	$\mathbf{3 3 . 5}$	$\mathbf{3 6}$
RH	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{6 0}$	$\mathbf{5 4}$	$\mathbf{5 0}$	$\mathbf{4 5}$

Solue\

$$
\mathrm{r}=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left.\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right)\right]}} \quad \mathrm{n}=6
$$

NO	\mathbf{X}	\mathbf{Y}	$\mathbf{X Y}$	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$
$\mathbf{1}$	$\mathbf{3 3}$	$\mathbf{5 5}$	$\mathbf{1 8 1 5}$	$\mathbf{1 0 8 9}$	$\mathbf{3 0 2 5}$
$\mathbf{2}$	$\mathbf{3 5}$	$\mathbf{5 6}$	$\mathbf{1 9 6 0}$	$\mathbf{1 2 2 5}$	$\mathbf{3 1 3 6}$
$\mathbf{3}$	$\mathbf{3 4}$	$\mathbf{6 0}$	$\mathbf{2 0 4 0}$	$\mathbf{1 1 5 6}$	$\mathbf{3 6 0 0}$
$\mathbf{4}$	$\mathbf{3 3}$	$\mathbf{5 4}$	$\mathbf{1 7 8 2}$	$\mathbf{1 0 8 9}$	$\mathbf{2 9 1 6}$
$\mathbf{5}$	$\mathbf{3 3 . 5}$	$\mathbf{5 0}$	$\mathbf{1 6 7 5}$	$\mathbf{1 1 2 2 . 2 5}$	$\mathbf{2 5 0 0}$
$\mathbf{6}$	$\mathbf{3 6}$	$\mathbf{4 5}$	$\mathbf{1 6 2 0}$	$\mathbf{1 2 9 6}$	$\mathbf{2 0 2 5}$
$\mathbf{n}=\mathbf{6}$	$\sum \mathbf{x}=\mathbf{2 0 4 . 5}$ $\sum \mathbf{x}^{2}=\mathbf{4 1 8 2 0 . 2 5}$	$\sum \mathbf{y}=\mathbf{3 2 0}$ $\sum \mathbf{y}^{\mathbf{2}}=\mathbf{1 0 2 4 0 0}$	$\sum=\mathbf{1 0 8 9 2}$	$\sum=\mathbf{6 9 7 7 . 2 5}$	$\sum=\mathbf{1 7 2 0 2}$

$\mathbf{r}=\frac{6(10892)-(204.5)(320)}{\sqrt{[6(6977.25)-(41820.25)][6(17202)-(102400)]}} \rightarrow \mathbf{r}=\quad \rightarrow \mathbf{r}=$
relationship is
Example (2) // Find is the pearson coefficient (low, function) for the following table:

NO	X	Y
1	40	78
2	21	70
3	25	60
4	31	55
5	38	$\mathbf{8 0}$
$\mathbf{6}$	$\mathbf{4 7}$	$\mathbf{6 6}$

Multiple correlation coefficient:
This coefficient, which is symbolized by the symbol R, also measures the strength of the relationship between more than two variables, which are continuous random variables (multivariate distribution), and calculating the value of R is an extension of the value of the simple correlation coefficient (r) with the replacement of X, Y with $X 1-X k, Y$ and taking three variables $X 1, X 2$, $X 3$ we get the following formulas:

$$
\begin{aligned}
& \mathrm{Y}, \mathrm{X}_{1}, \mathrm{X}_{2} \\
& r_{Y X_{1}}=\frac{n \sum Y X_{1}-\sum Y \sum X_{1}}{\sqrt{N \sum Y_{I}^{2}-\left(\sum Y_{I}\right)^{2}} \sqrt{n \sum X_{1}^{2}-\left(\sum X_{1}\right)^{2}}} \\
& r_{Y X_{2}}=\frac{n \sum Y X_{2}-\sum Y \sum X_{2}}{\sqrt{n \sum Y_{1}^{2}-\left(\sum Y_{1}\right)^{2}} \sqrt{n \sum X_{2}^{2}-\left(\sum X_{2}\right)^{2}}} \\
& r_{X_{1} X_{2}}=\frac{n \sum X_{1} X_{2}-\sum X_{1} \sum X_{2}}{\sqrt{n \sum X_{1}^{2}-\left(\sum X_{1}\right)^{2}} \sqrt{n \sum X_{2}^{2}-\left(\sum X_{2}\right)^{2}}} \\
& R_{Y X_{1} X_{2}}=\sqrt{\frac{r^{2}{ }_{Y X_{1}+r^{2}{ }_{Y X_{2}}}-2 r_{Y X_{1}} r_{Y X_{2}} r_{X_{1} X_{2}}}{1-r^{2} X_{1} X_{2}}}
\end{aligned}
$$

