FORECASTING -LAB (THIRD GRADE)

LUCTURERS

HADEEL JALIL- ZAHRA SALAH-SHIEMAA AODA

Experiment No. 5

Experiment Name:

calculate relative vorticity by using finite-difference method

The aim of the experiment:

Calculating Vorticity at pressure level 850 hpa by finite difference method.

Theory:

The Vorticity (ζ) physically represents a microscopic measure of the rotation in a fluid. The vorticity is a vector quantity defined as the curl (cross-product) of the velocity vector. The absolute vorticity, therefore, is given by $U_{-} a=\nabla \times V_{-} a$ while the relative vorticity is given by equation:

$$
\begin{equation*}
\zeta \cong \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{1}
\end{equation*}
$$

So, it can be calculated for any point from the components (u, v) of wind speed analysis. The derivatives $\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ calculated by using grid point,

$$
\begin{align*}
& \frac{\partial u}{\partial y} \cong \frac{\Delta u}{\Delta y}=\frac{\mathrm{u} 2-\mathrm{u} 4}{\Delta y} \\
& \frac{\partial v}{\partial x} \cong \frac{\Delta v}{\Delta x}=\frac{v 1-v 3}{\Delta x} \tag{2}
\end{align*}
$$

By substation equation (2) in (1) we find (note $\Delta x=\Delta y=H$):

$$
\begin{equation*}
\zeta=\frac{(\mathbf{v} 1-\mathbf{v} \mathbf{3})-(\mathbf{u} \mathbf{2}-\mathbf{u} \mathbf{4})}{H} \tag{3}
\end{equation*}
$$

the positive values of vorticity $(+\zeta)$ indicate low pressure and the negative values of vorticity $(-\zeta)$ indicate high pressure.

Tools: Pressure map at 850 hpa level, grid point used in the previous experiment.

Methodology:

1-Prepare (A4) of the grid point used in divergence wind experiment, which contain of wind speed components u, v at level 850 hpa .

2- Calculate the difference Δu along the axis (y) around the same points in divergence wind experiment.

3- Calculate the difference Δv along the axis (x) around the same points in the previous step and write the results in the table below.

4 -Calculate ζ by using equation (3).
Table (1): Values of horizontal and vertical speed differences and divergence.

8	7	6	5	4	3	2	1	0	Point number
									$\Delta \mathrm{u}(\mathrm{m} / \mathrm{s})$
									$\Delta \mathrm{v}(\mathrm{m} / \mathrm{s})$
									$\zeta\left(\mathrm{s}^{-1}\right)$

Discussion:

1-What is the indication of positive vorticity $+\zeta$?
2 - specify where is the maximum and minimum value of ζ ?

