Lecture 4

Balanced Motion Part 2

4.1 The Gradient Wind

The gradient wind is defined as the wind existing if the trajectory of a particle (or air parcel) is circular and we have a balance among the pressure gradient force, the Coriolis force and the centrifugal force.

A. Cyclonic flow (low pressure)

In this case, a Coriolis force and the centrifugal force act in the same direction. In order to have a balance, the pressure gradient force must act in the opposite direction and we have a low pressure in the center (see case a in Figure 4.1). If we take the effect of curvature into account, we have to expand the horizontal momentum equation to include the centrifugal term:

$$
\begin{align*}
& P G F=C F+C e F \tag{4.1}\\
& -\frac{1}{\rho} \frac{\partial p}{\partial n}=\mathrm{f}_{\mathrm{G}}+\frac{\mathrm{V}_{\mathrm{G}}^{2}}{\mathrm{R}} \tag{4.2}
\end{align*}
$$

and by using geostrophic balance $f V_{g}=-\frac{1}{\rho} \frac{\partial p}{\partial n}$, we substitute the left side in (4.2) by $f V_{g}$:

$$
\begin{equation*}
\mathrm{f} \mathrm{~V}_{\mathrm{g}}=\mathrm{f} \mathrm{~V}_{\mathrm{G}}+\frac{\mathrm{V}_{\mathrm{G}}^{2}}{\mathrm{R}} \tag{4.3}
\end{equation*}
$$

Here V_{g} is the geostrophic wind, V_{G} is the gradient wind, and R is the radius of curvature.

The gradient wind speed is obtained by solving equation (4.3) for V_{G} to yield:

$$
f V_{g}=f V_{G}+\frac{V_{G}^{2}}{R}
$$

Dividing by V_{G}^{2},

$$
\begin{gathered}
f \frac{V_{g}}{V_{G}^{2}}=\frac{f}{V_{G}}+\frac{1}{R} \\
f V_{g}\left(\frac{1}{V_{G}}\right)^{2}-f\left(\frac{1}{V_{G}}\right)-\frac{1}{R}=0
\end{gathered}
$$

By using quadratic formula to solve,

$$
x=\frac{-b \mp \sqrt{b^{2}-4 a c}}{2 a}
$$

we get,

$$
\begin{aligned}
a=f V_{g} \quad b & =-f \quad c=-\frac{1}{R} \quad x=\frac{1}{V_{G}} \\
\frac{1}{V_{G}} & =\frac{f \mp \sqrt{f^{2}+4 \frac{f V_{g}}{R}}}{2 f V_{g}}
\end{aligned}
$$

Dividing the numerator and the denominator of the right side on $(2 f)$ we get,

$$
\begin{aligned}
\frac{1}{V_{G}} & =\frac{\frac{1}{2} \mp \sqrt{\frac{1}{4}+\frac{V_{g}}{R f}}}{V_{g}} \\
\therefore \quad V_{G} & =\frac{V_{g}}{\frac{1}{2} \mp \sqrt{\frac{1}{4}+\frac{V_{g}}{R f}}}
\end{aligned}
$$

This equation tells us that $V_{G}<V_{g}$ in all cases because the denominator is larger than one. The difference between $V_{G} \& V_{g}$ becomes larger at smaller R , and at smaller latitude angle. To illustrate this difference we consider:
At $V_{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ and latitude $=45^{\circ}$
if $R=1000 \mathrm{~km}$, we find $V_{G}=9.18 \mathrm{~m} / \mathrm{s}$ and the difference between $V_{G} \& V_{g}$ is small.

When R becomes much smaller the difference between $V_{G} \& V_{g}$ will be large (for example at $\left.R=10 \mathrm{~km}, V_{G}=2.73 \mathrm{~m} / \mathrm{s}\right)$.
If we assume that latitude $=45^{\circ}$ and $V_{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ we may calculate the value of R necessary to make $V_{G}=\frac{1}{2} V_{g}$, we find from the equation that the radius of $R=50 \mathrm{~km}$.
See Table (4.1) for more details.
Table (4.1) The gradient wind speed at latitude 45° and $V_{g}=10 \mathrm{~m} / \mathrm{s}$ at different R values for law pressure

No.	$R(m)$	denominator only at $(+)$ case	square root only	V_{G} at $(+)$ case	V_{G} at $(-)$ case	V_{G} at $(+)$ case at latitude 30°
1	1000	10.36003100	9.860031	0.965	-106.84	0.818250086
2	10000	3.653889842	3.153890	2.737	-3768.05	2.360273054
3	50000	1.979663552	1.479664	5.051	-51037.93	4.484402714
4	100000	1.604401247	1.104401	6.233	-165453.00	5.639112600
5	500000	1.166288543	0.666289	8.574	-3006821.70	8.169486737
6	1000000	1.089041774	$\mathbf{0 . 5 8 9 0 4 2}$	$\mathbf{9 . 1 8 2}$	-11230683.72	8.911043629
7	2000000	1.046337904	0.546338	9.557	-43161209.60	9.394800613
8	4000000	1.023681729	0.523682	9.769	-168906589.24	9.678827156

B. Anticyclonic flow (high pressure)

In this case, a pressure gradient force and the centrifugal force are in the same direction. In order to have a balance the Coriolis force must act in the opposite direction, we have a high pressure in the center (case c and din Fig. 4.1).

$$
\begin{gathered}
P G F+C e F-C F=0 \\
f V_{g}+\frac{V_{G}^{2}}{R}-f V_{G}=0
\end{gathered}
$$

In the same previous manner,

$$
\therefore \quad V_{G}=\frac{V_{g}}{\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{V_{g}}{R f}}}
$$

We see that $V_{G}>V_{g}$ in all cases.
In the special case where $\frac{V_{g}}{R f}=\frac{1}{4}, V_{G}=2 V_{g}$, the maximum wind in the anticyclonic case is therefore twice the geostrophic wind and hence if we assume that, $f=$ $10^{-4} \mathrm{~s}^{-1}$ and $V_{g}=10 \mathrm{~m} / \mathrm{s}$, the radius of curvature is equal to about 400 km , which is quite small.

Table (4.2) The gradient wind speed at latitude 45° and $V_{g}=10 \mathrm{~m} / \mathrm{s}$ at different R values for high pressure

No.	$R(m)$	V_{G}
1	1000	-
2	10000	-
3	50000	-
4	100000	-
5	387881	19.98738189
6	500000	13.57277449
7	1000000	11.22094898
8	2000000	10.53847271
9	4000000	10.25494409

4.2 The Cyclostrophic Flow

Cyclostrophic balance occurs when the pressure gradient force and centrifugal force are equal and in opposite direction. This is the situation near the equator
$G F=C e F$
$f V_{g}=\frac{V_{G}^{2}}{R}$
$V_{G}^{2}=f V_{g} R$
$\therefore \quad V_{G}=\sqrt{f V_{g} R}$

4.3The Inertial Flow

In inertial flow, there is no pressure gradient force, there are two forces only,
Coriolis and centrifugal that may balance each other.

$$
\begin{aligned}
& C F=C e F \\
& f V_{G}=\frac{V_{G}^{2}}{R} \\
& V_{G}=R f
\end{aligned}
$$

