Lecture 4

Balanced Motion Part 2

4.1 The Gradient Wind

The gradient wind is defined as the wind existing if the trajectory of a particle (or air parcel) is circular and we have a balance among the pressure gradient force, the Coriolis force and the centrifugal force.

A. Cyclonic flow (low pressure)

In this case, a Coriolis force and the centrifugal force act in the same direction. In order to have a balance, the pressure gradient force must act in the opposite direction and we have a low pressure in the center (see case a in Figure 4.1). If we take the effect of curvature into account, we have to expand the horizontal momentum equation to include the centrifugal term:

$$PGF = CF + CeF \qquad (4.1)$$
$$-\frac{1}{\rho}\frac{\partial p}{\partial n} = f V_{G} + \frac{V_{G}^{2}}{R} \qquad (4.2)$$

and by using geostrophic balance $f V_g = -\frac{1}{\rho} \frac{\partial p}{\partial n}$, we substitute the left side in (4.2) by $f V_g$:

$$f V_g = f V_G + \frac{V_G^2}{R}$$
 (4.3)

Here V_g is the geostrophic wind, V_G is the gradient wind, and R is the radius of curvature.

Fig. 4.1 Four balances for the four types of gradient flow. The gradient wind speed is obtained by solving equation (4.3) for V_G to yield:

$$f V_g = f V_G + \frac{V_G^2}{R}$$

$$f \frac{V_g}{V_G^2} = \frac{f}{V_G} + \frac{1}{R}$$

$$f V_g (\frac{1}{V_G})^2 - f\left(\frac{1}{V_G}\right) - \frac{1}{R} = 0$$

By using quadratic formula to solve,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

we get,

Dividing by V_G^2 ,

$$a = f V_g \qquad b = -f \qquad c = -\frac{1}{R} \qquad x = \frac{1}{V_G}$$
$$\frac{1}{V_G} = \frac{f \mp \sqrt{f^2 + 4 \frac{f V_g}{R}}}{2 f V_g}$$

Dividing the numerator and the denominator of the right side on (2 f) we get,

$$\frac{1}{V_G} = \frac{\frac{1}{2} \mp \sqrt{\frac{1}{4} + \frac{V_g}{Rf}}}{V_g}$$
$$\therefore \quad V_G = \frac{V_g}{\frac{1}{2} \mp \sqrt{\frac{1}{4} + \frac{V_g}{Rf}}}$$

This equation tells us that $V_G < V_g$ in all cases because the denominator is larger than one. The difference between $V_G \& V_g$ becomes larger at smaller R, and at smaller latitude angle. To illustrate this difference we consider:

At
$$V_g = 10 \frac{m}{s}$$
 and latitude = 45°

(2 - 4)

if $R = 1000 \ km$, we find $V_G = 9.18 \ m/s$ and the difference between $V_G \& V_g$ is small.

When R becomes much smaller the difference between $V_G \& V_g$ will be large (for example at $R = 10 \ km$, $V_G = 2.73 \ m/s$).

If we assume that *latitude* = 45° and $V_g = 10\frac{m}{s}$ we may calculate the value of R necessary to make $V_G = \frac{1}{2}V_g$, we find from the equation that the radius of R = 50 km. See Table (4.1) for more details.

Table (4.1) The gradient wind speed at latitude 45° and $V_q = 10 m/s$ at different R values for law pressure

No.	R (m)	denominator only at (+) case	square root only	V _G at (+) case	V _G at (-) case	V _G at (+) case at latitude 30 [°]
1	1000	10.36003100	9.860031	0.965	-106.84	0.818250086
2	10000	3.653889842	3.153890	2.737	-3768.05	2.360273054
3	50000	1.979663552	1.479664	5.051	-51037.93	4.484402714
4	100000	1.604401247	1.104401	6.233	-165453.00	5.639112600
5	500000	1.166288543	0.666289	8.574	-3006821.70	8.169486737
6	1000000	1.089041774	0.589042	9.182	-11230683.72	8.911043629
7	2000000	1.046337904	0.546338	9.557	-43161209.60	9.394800613
8	4000000	1.023681729	0.523682	9.769	-168906589.24	9.678827156

B. Anticyclonic flow (high pressure)

In this case, a pressure gradient force and the centrifugal force are in the same direction. In order to have a balance the Coriolis force must act in the opposite direction, we have a high pressure in the center (case c and d in Fig. 4.1).

$$PGF + Ce F - CF = 0$$
$$f V_g + \frac{V_g^2}{R} - f V_G = 0$$

In the same previous manner,

$$V_G = \frac{V_g}{\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{V_g}{R f}}}$$

...

We see that $V_G > V_g$ in all cases.

In the special case where $\frac{V_g}{R_f} = \frac{1}{4}$, $V_G = 2V_g$, the maximum wind in the anticyclonic case is therefore twice the geostrophic wind and hence if we assume that, $f = 10^{-4} s^{-1}$ and $V_g = 10 m/s$, the radius of curvature is equal to about 400 km, which is quite small.

(3 - 4)

No.	R (m)	V _G
1	1000	-
2	10000	-
3	50000	-
4	100000	-
5	387881	19.98738189
6	500000	13.57277449
7	1000000	11.22094898
8	2000000	10.53847271
9	4000000	10.25494409

Table (4.2) The gradient wind speed at latitude 45° and $V_g = 10 m/s$ at different R values for high pressure

4.2 The Cyclostrophic Flow

Cyclostrophic balance occurs when the pressure gradient force and centrifugal force are equal and in opposite direction. This is the situation near the equator

4.3The Inertial Flow

In inertial flow, there is no pressure gradient force, there are two forces only, Coriolis and centrifugal that may balance each other.

