
### Experimental method:

#### TO PREPARATION OF ETHANOL (date extract medium):

- 1. Mix 100 gm from date with 100 ml tap water, heat at 80 CO for 30 min.
- 2. By Gauze filter the mixture or the Soaked.
- 3. Inoculate the medium (date extract medium) with 1% saccharomyces cerevisiae culture grown in malt extract broth & incubate at 30 co for 48 hrs in flask incubator has air pump to convert the condition to anaerobic which is suitable for ethanol production.

Yeast reacting with sugar solution





## **Detection of ethanol by chemical methods:**

- 1. Ceric ammonium nitrate (CAN) method:-
- a) Take 0.5 ml of CAN, add 3ml of D.W to it (dilution).
- b) Add 3-5 drops from the sample (yeast fermented medium) to diluted  $CAN \longrightarrow the$  appearance of red color indicate to a presence of ethanol.
- 2. potassium dichromate method:-
- a) Add 5 ml of  $K_2Cr_2O_7$  solution to 1 ml of concentrated sulfuric acid & heat the mixture.
- b) Add 1 ml of the sample (yeast fermented medium) to the mixture. The positive result: is appearance of green color with acetaldehyde odor.

#### Preparation alcohol in laboratories and factories:

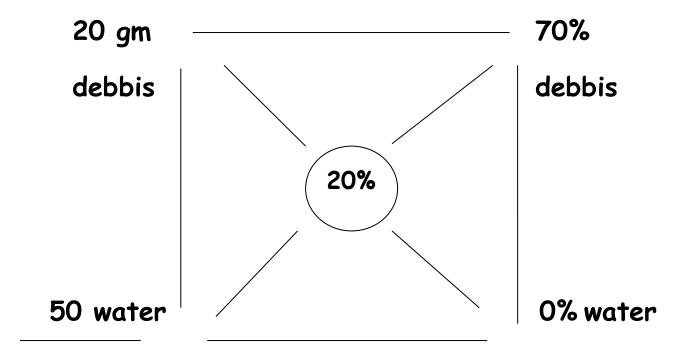
In this method, use a person square to determine the proportion of sugary substance in the preparatory solution.

#### We need to:

- 1-water
- 2- raw sugary substance
- 3-yeast culture or vinegar mother
- 4-salts
- 5-glass of bottle, Gauze

## There are four experiments performed per week:

- 1- Total soluble solid (TSS %)
- 2-pH
- 3- Titrable acidity T.A %
- 4- Ethanol concentration EOH %


Tools and equipments that used to produce the vinegar and alcohol in experiences are:

- 1. Refractometer.
- 2.pH meter or pH paper.

- 3. titration process.
- 4. Distillation Process.

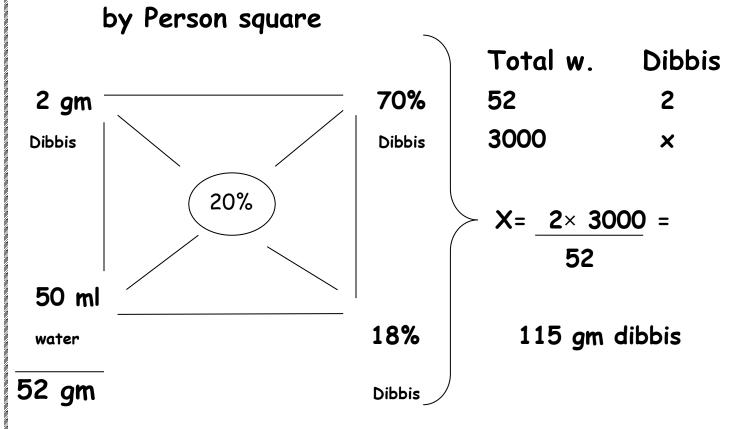
### \*TSS% :

To prepare the alcoholic solutions from sugary solid substances have concentration less than 100% or 100% use a person square method, Then use refractometer apparatus to check of the concentration.



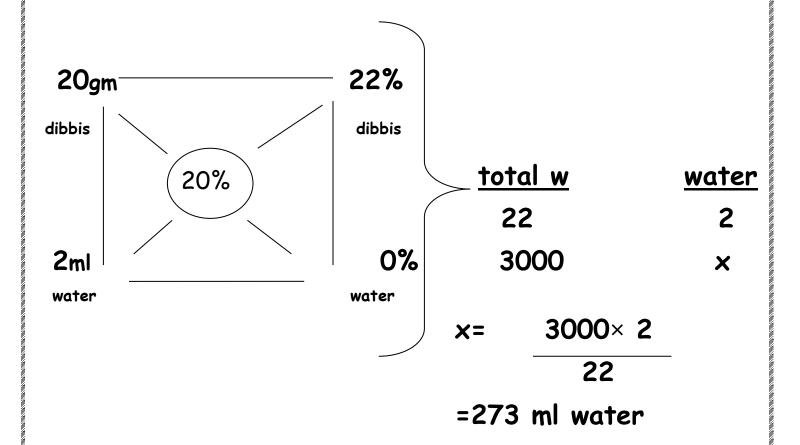
70 gm

For example of the application the Person square To prepare the sugary solution its concentration = 20% & its quantity = 3000 grams :


We need water and a sugary substance

| Total Weight | Dibbis |  |  |
|--------------|--------|--|--|
| 70 gm        | 20 gm  |  |  |
| 3000 gm      | ×      |  |  |

$$X = 3000 \times 20 = 857 \text{ gm} / \text{dibbis}$$


3000 - 857 = 2143 ml (water)

If wanted the solution its concentration 20% of sugar but after examination found its concentration 18%, must be Corrected this Wrong concentration As follows:-



So, The Correction must increase the concentration to 20 by adding 115 gm of dibbis

But in the case the concentration of sugar in solution was Higher than required e.g. 22%, must be Corrected this Wrong concentration As follows:-



So, The Correction must decrease the concentration to 20 by adding 273 ml of water.

### \*pH measure:

pH paper is a simple & easy but limited accuracy and is not suitable for colored solutions therefore prefer to use measuring devices.

## \*Titrable acidity:

To measure percentage of ionized & non-ionized acids ,unlike the pH reading which expresses the percentage of ionized acids only.

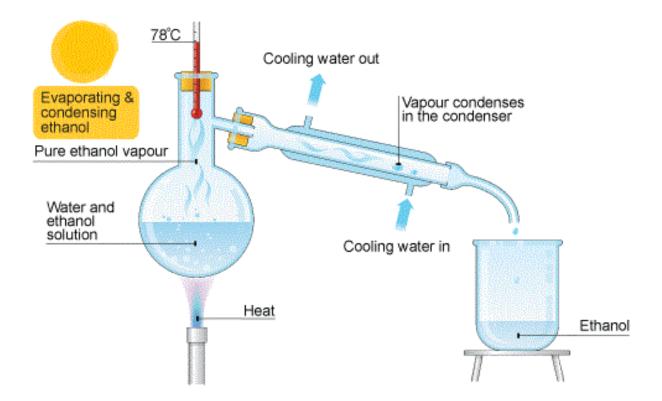
#### Procedure:

- 1. put 1ml of sugary solution in flask.
- 2.add to flask 19 ml of D.W.
- 3. add 12 drop of phenolphthalein Reagent.

Calibration with a mixture of NaOH until pink appears; Here, we must stop the titration process and read the volume then calculate the percentage of T.A % as following:

T.A. % = 
$$\frac{\text{ml NaOH} \times \text{Normality of NaOH} \times \text{m.equivalent w.t of acetic acid}}{\text{w.t of sample} \times \text{total titrable volume}} \times 100$$

The volume of the base that used=mk naoh


Normality of naoh

m. equivalent w.t.of acetic acid=0.06005

w.t. of sample = 1 gm

total titrable volume= (1 gm + 19 ml D.W+12 drop)

# \*Ethanol concentration (EOH %):



#### Procedure:

- 1-put such as 50 ml from sample (sugary solution) in distillation flask.
- 2- Connect the rest of glass tools with Flask for the completion the distillation process by boiling.
- 3- The resulting From the distillation process collected in pycnometer (its volume ranges between 15-25 ml).
- 4- Determine the specific gravity of ethanol concentration at every-time after distillation process of the sample, calculate the specific gravity by the following formula:

Specific gravity = weight of pycnometer with the sample- its weight without sample (empty)

Weight of pycnometer with water - its weight without water(empty)

W= wt. of pycnometer empty.

W1= wt of pycnometer with D.W

W2= wt. of pycnometer with sample .

5- compare the results of specific gravity each week in Lab. With the previous concentrations of sugary solution sample. Shake the bottles a week before taking the sample and recording the readings.

| week                   | TSS% | PH | T.A % | EOH % |
|------------------------|------|----|-------|-------|
| 0 )                    |      |    |       |       |
| 1 Type of fermentation |      |    |       |       |
| 2                      |      |    |       |       |
| 3                      |      |    |       |       |
| 4                      |      |    |       |       |
| 5 Type of fermentation |      |    |       |       |
| 6                      |      |    |       |       |

### Other requirements are added to the mixture solution:

salts for example: Potassium chloride , ammonium phosphate, ammonium sulfate (0.1-0.5 %).