Experiment No. (4)

((Estimation of the amounts of solar radiation on)) horizontal surfaces

The purpose of the experiment:

Calculation of the hourly values of direct, diffuse and total solar radiation .on horizontal surfaces

Experience theory:

a. The amount of direct solar radiation falling on a unit of horizontal surfaces can be calculated from the equation:

$$
S_{b}=S_{p} t^{m} \operatorname{Sin} \quad a_{\ldots} \ldots \ldots .(1)
$$

Wheras :
S_{b} Hourly value of direct solar radiation Watt/ $/ m^{2}$
S_{p} solar constant 1260 watt $/ \mathrm{m}^{2}=$
\boldsymbol{t} : air transparency $0.7=$
m Optical path of radiation $\frac{1}{\operatorname{Sin} \alpha}=$
: α Sun elevation angle (degrees)
and to calculate $\operatorname{Sin} \alpha$ The following equation is used:
$\operatorname{Sin} \alpha=\operatorname{Sin} \Phi \operatorname{Sin} \delta \div \operatorname{Cos} \Phi \operatorname{Cos} \delta \operatorname{Cos} \omega$.

Whereas:

$\boldsymbol{\Phi}$: Latitude of the place in degrees.
: The angle of inclination of the sun in degrees. $\boldsymbol{\delta}$
: The hour angle in degrees. $\boldsymbol{\omega}$

Table (1) shows the values of δ for the days of the year.
b. The diffuse solar radiation falling on horizontal surfaces can be calculated from the equation:

$$
S_{d}=\gamma\left(\beta S_{p} \operatorname{Sin} \alpha-S_{b}\right) \ldots \ldots . .
$$

Whereas $0.5=\gamma$
, $0.91=\beta$
It represented the absorption of solar radiation by water vapor, carbon dioxide, ozone and the rest of the atmospheric components.
C. The amount of total radiation falling on a unit of horizontal surfaces can be obtained from:

$$
\begin{equation*}
S_{t}=S_{b} \div S_{d} \cdot \tag{4}
\end{equation*}
$$

Required:

1- Calculate ω From the equation:
$\omega=\dot{\text { ̇ }}(12-T) \frac{360}{24}$
T : The number of hours before or solar noon and the negative sign of the solar noon time.

2- Find value δ From Table 1 for the desired day.
3- Calculate $\operatorname{Sin} \alpha$ for all values ω Calculate the value and then \boldsymbol{m} From the equation:

$$
m=\frac{1}{\operatorname{Sin} \alpha}
$$

4- Calculate the values of S_{d}, S_{b} of the two equations $(1,3)$ then calculate S_{t} From equation (4).

5- Arrange your calculations in a table as follows (Baghdad Latitude.

$$
\left.\Phi=33.3^{\circ} \quad\right)
$$

6- Draw a graph between the values of solar radiation and the hours of

 the day and then discuss this graph.| $\underline{N-}$ | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | \|Jan |Feb |:Mar | \|Apr | \|May | \|Jun | \|Jul | Aug | Sept | Oct | Niov | Dec |
| 1 | \|-23.07|-17.28|-7.78 | \|4.36 | 14.93 | \|22.02 | \|23.20 | 18.20 | 8.51 | \|-2.95 | -14.26 | \|-21.74| |
| 2 | \|-22.99|-17.00|-7.40 | 4.75 | 115.24 | 22.15 | \|23.13 | 17.94 | S.14 | 1-3.33 | -14.58 | -21.90 |
| 3 | $\|-22.90\|-16.71 \mid-7.02$ | \|5.13 | \|15.54 | \|22.29 | \|23.06 | 17.69 | 7.78 | \|-3.72 | -14.90 | \|-22.05| |
| \div | $\|-22.80\|-16.41 \mid-6.63$ | \|5.51 | \|15.83 | 22.41 | \|22.98| | 17.42 | 7.41 | \|-4.11 | -15.22 | --22.19 |
| 5 | \|-22.70|-16.11|-6.25 | \|5.89 | \|16.12 | 22.53 | 122.89 | 17.16 | 7.04 | $1-4.50$ | -15.53 | -22.32 |
| 6 | $\|-22.59\|-15.81 \mid-5.86$ | 6.27 | \|16.41 | \|22.64 | 22.80 | 16.99 | 6.67 | \|-1.83 | $\mid-15.83$ | -22.45 |
| 7 | $\|-22.47\|-15.50 \mid-5.47$ | 6.65 | $\mid 16.69$ | 22.74 | \|22.70| | 16.61 | 630 | \|-5.27 | -16. | \|-22.57| |
| 8 | \|-22.3 :-15.18|-5.08 | 7.03 | \|16.96 | 22.84 | \|22.59 | \|16.33 | 593 | $\mid-5.65$ | -16.4 | -22.68 |
| 9 | $\|-22.21\|-1 \div .57$ \|-4.69 | 7.40 | 17.24 | 22.93 | \|22.48 | \|16.05 | 555 | \|-5.03 | \|-16.72 | \|-22.79 |
| 10 | -22.07; -14.54- -30 | 17.77 | 117.50 | \|23.01 | \|22.36 | 115.76 | 5117 | \|-6.41 | \|-17.01 | -22.2S |
| 1 i | \|-21.92-1 - | \|8.14 | 117.77 | 123.09 | 122.23 | 15.46 | 4.80 | \|-5.79 | -17.2 | -22.98 |
| 12 | \|-21.76:-13.89|-3.51 | \|8.51 | \|18.02 | \|23.16 | \|22.10 | 15.17 | 4.72 | \|-7.17 | -17.57 | -23.06 |
| 13 | -21.60'-13.55-3.12 | \|8.87 | \|18.28 | 23.23 | $\underline{21.96}$ | $1 \div .87$ | 4.03 | Y-7.55 | -17.8 | -23.13 |
| 1+ | -21. $\div 3-13.22-2.72$ | 9.24 | \|18.52 | 23.23 | 121.81 | \|14.5ó | 3.65 | $1-7.92$ | -!S.11 | -23.20 |
| 15 | -21.25-12.87, -2.33 | 19.60 | \|18.77 | 123.33 | \|21.65 | $1 \div .25$ | 3.27 | 1-8.30 | -18.37 | 1-23.26 |
| ! 16 | -21.07-12.53 - 1.93 | 9.95 | 119.00 | $\underline{23.38}$ | 121.50 | 13.9+ | 2.88 | $1-8.67$ | -18.62 | 21-23.3i |
| 17 | -20.88-12.18-1.5! | 10.31 | 19.23 | \|23.41 | [21.34 | 13.62 | 2.50 | 1-9.04 | -18.87 | 7-23.36 |
| $\frac{18}{18}$ | -20.68-11.83-1.14 | \|10.66 | 119.46 | 123.44 | 21.17 | 13.30 | 2.11 | $1-9.40$ | -19.12 | 2!-23.39! |
| 19 | -20.48-11.47-0.74 | 11.0 i | 119.68 | +23.47 | 20.99 | 12.98 | 1.72 | $1-9.77$ | -19.36 | 61-23.42 |
| 20 | -20.27-11.12:-0.35 | \|11.35 | \|19.90 | 123.48 | [20.81 | \|12.66 | 1.34 | -10.13 | \|-19.59 | -23.4-4 |
| -1 | -20.05 -10.76;0.05 | \|11.70 | \|20.10 | 123.49 | 20.63 | 12.33 | 0.95 | \|-10.49 | \|-19.8? | -23.65 |
| 22 | \|-19.83|-10.39;0.44 | \|12.04 | \|20.31 | 23.49 | 20.43 | 11.99 | 0.56 | -10.85 | -20.01 | 4-23.46 |
| 23 | $\|-19.60\|-10.03 \mid 0.84$ | \|12.37 | \|20.51 | 23.49 | 20.23 | \|11.66 | 0.17 | \|-11.21 | -20.25 | \|-23.46| |
| 124 | \|-19.37|-9.66 |1.23 | \|12.71 | \|20.70 | 23.47 | \|20.03 | 11.32 | -0.22 | -11.56 | \|-20.46 | \|-23.45| |
| 25 | $\|-19.13\|-9.29 \mid 1.63$ | \|13.04 | \|20.88 | 23.46 | 19.82 | \|10.98 | -0.61 | -11.91 | -20.67 | \|-23.43| |
| \|26 | $\|-18.88\|-8.91 \mid 2.02$ | 113.36 | \|21.07 | 23.43 | \|19.60 | 10.63 | -1.00 | -12.25 | -20.86 | 5-23.40 |
| 27 | $\|-18.63\|-8.54 \mid 2.41$ | 113.68 | \|21.24 | 23.40 | \|19.38 | \|10.28 | -1.39 | -12.60 | -21.05 | \|-23.37 |
| 28 | \|-18.37|-8.16 $\mid 2.80$ | \| 14.00 | \|21.41 | 23.36 | \|19.15 | 9.93 | \|-1.78 | -12.9 - | -21.23 | \|-23.33| |
| 29 | \|-18.11|0.0 $\mid 3.19$ | \|14.32 | 21.57 | 23.31 | \|18.92 | 9.58 | \|-2.17 | -13.27 | -21.41 | \|-23.28 |
| 30 | \|-17.84|0.0 | 114.63 | 21.73 | 23.26 | \|15.68 | 9.22 | -2.56 | -13.61 | -21.58 | -23.22 |
| 31 | 1-17.56:0.0 | 10.0 | \|21.87 | 0.0 | 118.44 | 8.87 | 0.0 | $\mid-13.9$ \| | 0.0 | \|-23.16 |

