Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution.

14.1-6

The Fibonacci numbers are defined by recurrence (3.31) on page 69. Give an $O(n)$-time dynamic-programming algorithm to compute the nth Fibonacci number. Draw the subproblem graph. How many vertices and edges does the graph contain?

14.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem of matrix-chain multiplication. Given a sequence (chain) $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of n matrices to be multiplied, where the matrices aren't necessarily square, the goal is to compute the product

$$
\begin{equation*}
A_{1} A_{2} \cdots A_{n} \tag{14.5}
\end{equation*}
$$

using the standard algorithm ${ }^{3}$ for multiplying rectangular matrices, which we'll see in a moment, while minimizing the number of scalar multiplications.

You can evaluate the expression (14.5) using the algorithm for multiplying pairs of rectangular matrices as a subroutine once you have parenthesized it to resolve all ambiguities in how the matrices are multiplied together. Matrix multiplication is associative, and so all parenthesizations yield the same product. A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses. For example, if the chain of matrices is $\left\langle A_{1}, A_{2}, A_{3}, A_{4}\right\rangle$, then you can fully parenthesize the product $A_{1} A_{2} A_{3} A_{4}$ in five distinct ways:
$\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$,
$\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)$,
$\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$,
$\left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right)$,
$\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$.
How you parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product. Consider first the cost of multiplying two rectangular matrices. The standard algorithm is given by the procedure RECTANGULAR-MATRIX-MULTIPLY, which generalizes the square-matrix multiplication procedure MATRIXMULTIPLY on page 81. The RECTANGULAR-MATRIXMULTIPLY procedure computes $C=C+A \cdot B$ for three matrices $A=$ $\left(a_{i j}\right), B=\left(b_{i j}\right)$, and $C=\left(c_{i j}\right)$, where A is $p \times q, B$ is $q \times r$, and C is $p \times r$.

RECTANGULAR-MATRIX-MULTIPLY (A, B, C, p, q, r)

$$
\begin{aligned}
& 1 \text { for } i=1 \text { to } p \\
& 2 \quad \text { for } j=1 \text { to } r \\
& 3 \text { for } k=1 \text { to } q \\
& 4 \\
& c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
\end{aligned}
$$

The running time of RECTANGULAR-MATRIX-MULTIPLY is dominated by the number of scalar multiplications in line 4 , which is $p q r$. Therefore, we'll consider the cost of multiplying matrices to be the number of scalar multiplications. (The number of scalar multiplications dominates even if we consider initializing $C=0$ to perform just $C=A$ -B.)

To illustrate the different costs incurred by different parenthesizations of a matrix product, consider the problem of a chain $\left\langle A_{1}, A_{2}, A_{3}\right\rangle$ of three matrices. Suppose that the dimensions of the matrices are $10 \times 100,100 \times 5$, and 5×50, respectively. Multiplying according to the parenthesization $\left(\left(A_{1} A_{2}\right) A_{3}\right)$ performs $10 \cdot 100 \cdot 5=$ 5000 scalar multiplications to compute the 10×5 matrix product $A_{1} A_{2}$, plus another $10 \cdot 5 \cdot 50=2500$ scalar multiplications to multiply this matrix by A_{3}, for a total of 7500 scalar multiplications. Multiplying according to the alternative parenthesization $\left(A_{1}\left(A_{2} A_{3}\right)\right)$ performs $100 \cdot$ $5 \cdot 50=25,000$ scalar multiplications to compute the 100×50 matrix
product $A_{2} A_{3}$, plus another $10 \cdot 100 \cdot 50=50,000$ scalar multiplications to multiply A_{1} by this matrix, for a total of 75,000 scalar multiplications. Thus, computing the product according to the first parenthesization is 10 times faster.

We state the matrix-chain multiplication problem as follows: given a chain $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of n matrices, where for $i=1,2, \ldots, n$, matrix A_{i} has dimension $p_{i-1} \times p_{i}$, fully parenthesize the product $A_{1} A_{2} \cdots A_{n}$ in a way that minimizes the number of scalar multiplications. The input is the sequence of dimensions $\left\langle p_{0}, p_{1}, p_{2}, \ldots, p_{n}\right\rangle$.

The matrix-chain multiplication problem does not entail actually multiplying matrices. The goal is only to determine an order for multiplying matrices that has the lowest cost. Typically, the time invested in determining this optimal order is more than paid for by the time saved later on when actually performing the matrix multiplications (such as performing only 7500 scalar multiplications instead of 75,000).

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic programming, let us convince ourselves that exhaustively checking all possible parenthesizations is not an efficient algorithm. Denote the number of alternative parenthesizations of a sequence of n matrices by $P(n)$. When $n=1$, the sequence consists of just one matrix, and therefore there is only one way to fully parenthesize the matrix product. When $n \geq 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts, and the split between the two subproducts may occur between the k th and $(k+1)$ st matrices for any k $=1,2, \ldots, n-1$. Thus, we obtain the recurrence
$P(n)= \begin{cases}1 & \text { if } n=1, \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text { if } n \geq 2 .\end{cases}$
Problem 12-4 on page 329 asked you to show that the solution to a similar recurrence is the sequence of Catalan numbers, which grows as
$\Omega\left(4^{n} / n^{3 / 2}\right)$. A simpler exercise (see Exercise 14.2-3) is to show that the solution to the recurrence (14.6) is $\Omega\left(2^{n}\right)$. The number of solutions is thus exponential in n, and the brute-force method of exhaustive search makes for a poor strategy when determining how to optimally parenthesize a matrix chain.

Applying dynamic programming

Let's use the dynamic-programming method to determine how to optimally parenthesize a matrix chain, by following the four-step sequence that we stated at the beginning of this chapter:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

We'll go through these steps in order, demonstrating how to apply each step to the problem.

Step 1: The structure of an optimal parenthesization

In the first step of the dynamic-programming method, you find the optimal substructure and then use it to construct an optimal solution to the problem from optimal solutions to subproblems. To perform this step for the matrix-chain multiplication problem, it's convenient to first introduce some notation. Let $A_{i: j}$, where $i \leq j$, denote the matrix that results from evaluating the product $A_{i} A_{i+1} \cdots A_{j}$. If the problem is nontrivial, that is, $i<j$, then to parenthesize the product $A_{i} A_{i+1} \cdots A_{j}$, the product must split between A_{k} and A_{k+1} for some integer k in the range $i \leq k<j$. That is, for some value of k, first compute the matrices $A_{i: k}$ and $A_{k+1: j}$, and then multiply them together to produce the final product $A_{i: j}$. The cost of parenthesizing this way is the cost of
computing the matrix $A_{i: k}$, plus the cost of computing $A_{k+1: j}$, plus the cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that to optimally parenthesize $A_{i} A_{i+1} \cdots A_{j}$, you split the product between A_{k} and A_{k+1}. Then the way you parenthesize the "prefix" subchain $A_{i} A_{i+1} \cdots A_{k}$ within this optimal parenthesization of $A_{i} A_{i+1} \cdots A_{j}$ must be an optimal parenthesization of $A_{i} A_{i+1} \cdots A_{k}$. Why? If there were a less costly way to parenthesize $A_{i} A_{i+1} \cdots A_{k}$, then you could substitute that parenthesization in the optimal parenthesization of $A_{i} A_{i+1} \cdots A_{j}$ to produce another way to parenthesize $A_{i} A_{i+1} \cdots A_{j}$ whose cost is lower than the optimum: a contradiction. A similar observation holds for how to parenthesize the subchain $A_{k+1} A_{k+2} \cdots$ A_{j} in the optimal parenthesization of $A_{i} A_{i+1} \cdots A_{j}$: it must be an optimal parenthesization of $A_{k+1} A_{k+2} \cdots A_{j}$.

Now let's use the optimal substructure to show how to construct an optimal solution to the problem from optimal solutions to subproblems. Any solution to a nontrivial instance of the matrix-chain multiplication problem requires splitting the product, and any optimal solution contains within it optimal solutions to subproblem instances. Thus, to build an optimal solution to an instance of the matrix-chain multiplication problem, split the problem into two subproblems (optimally parenthesizing $A_{i} A_{i+1} \cdots A_{k}$ and $A_{k+1} A_{k+2} \cdots A_{j}$), find optimal solutions to the two subproblem instances, and then combine these optimal subproblem solutions. To ensure that you've examined the optimal split, you must consider all possible splits.

Step 2: A recursive solution

The next step is to define the cost of an optimal solution recursively in terms of the optimal solutions to subproblems. For the matrix-chain multiplication problem, a subproblem is to determine the minimum cost of parenthesizing $A_{i} A_{i+1} \cdots A_{j}$ for $1 \leq i \leq j \leq n$. Given the input
dimensions $\left\langle p_{0}, p_{1}, p_{2}, \ldots, p_{n}\right\rangle$, an index pair i, j specifies a subproblem. Let $m[i, j]$ be the minimum number of scalar multiplications needed to compute the matrix $A_{i: j}$. For the full problem, the lowest-cost way to compute $A_{1: n}$ is thus $m[1, n]$.

We can define $m[i, j]$ recursively as follows. If $i=j$, the problem is trivial: the chain consists of just one matrix $A_{i: i}=A_{i}$, so that no scalar multiplications are necessary to compute the product. Thus, $m[i, i]=0$ for $i=1,2, \ldots, n$. To compute $m[i, j]$ when $i<j$, we take advantage of the structure of an optimal solution from step 1. Suppose that an optimal parenthesization splits the product $A_{i} A_{i+1} \cdots A_{j}$ between A_{k} and A_{k+1}, where $i \leq k<j$. Then, $m[i, j]$ equals the minimum $\operatorname{cost} m[i, k]$ for computing the subproduct $A_{i: k}$, plus the minimum cost $m[k+1, j]$ for computing the subproduct, $A_{k+1: j}$, plus the cost of multiplying these two matrices together. Because each matrix A_{i} is $p_{i-1} \times p_{i}$, computing the matrix product $A_{i: k} A_{k+1: j}$ takes $p_{i-1} p_{k} p_{j}$ scalar multiplications. Thus, we obtain
$m[i, j]=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}$.
This recursive equation assumes that you know the value of k. But you don't, at least not yet. You have to try all possible values of k. How many are there? Just $j-i$, namely $k=i, i+1, \ldots, j-1$. Since the optimal parenthesization must use one of these values for k, you need only check them all to find the best. Thus, the recursive definition for the minimum cost of parenthesizing the product $A_{i} A_{i+1} \cdots A_{j}$ becomes

$$
m[i, j]= \begin{cases}0 & \text { if } i=j, \tag{14.7}\\ \min \left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}: i \leq k<j\right\} & \text { if } i<j .\end{cases}
$$

The $m[i, j]$ values give the costs of optimal solutions to subproblems, but they do not provide all the information you need to construct an optimal solution. To help you do so, let's define $s[i, j]$ to be a value of k at which you split the product $A_{i} A_{i+1} \quad \cdots \quad A_{j}$ in an optimal
parenthesization. That is, $s[i, j]$ equals a value k such that $m[i, j]=m[i, k]$ $+m[k+1, j]+p_{i-1} p_{k} p_{j}$.

Step 3: Computing the optimal costs

At this point, you could write a recursive algorithm based on recurrence (14.7) to compute the minimum cost $m[1, n]$ for multiplying $A_{1} A_{2} \cdots$ A_{n}. But as we saw for the rod-cutting problem, and as we shall see in Section 14.3, this recursive algorithm takes exponential time. That's no better than the brute-force method of checking each way of parenthesizing the product.

Fortunately, there aren't all that many distinct subproblems: just one subproblem for each choice of i and j satisfying $1 \leq i \leq j \leq n$, or $\binom{n}{2}+n=\Theta\left(n^{2}\right)$ in all. ${ }^{4}$ A recursive algorithm may encounter each subproblem many times in different branches of its recursion tree. This property of overlapping subproblems is the second hallmark of when dynamic programming applies (the first hallmark being optimal substructure).

Instead of computing the solution to recurrence (14.7) recursively, let's compute the optimal cost by using a tabular, bottom-up approach, as in the procedure MATRIX-CHAIN-ORDER. (The corresponding top-down approach using memoization appears in Section 14.3.) The input is a sequence $p=\left\langle p_{0}, p_{1}, \ldots, p_{n}\right\rangle$ of matrix dimensions, along with n, so that for $i=1,2, \ldots, n$, matrix A_{i} has dimensions $p_{i-1} \times p_{i}$. The procedure uses an auxiliary table $m[1: n, 1: n]$ to store the $m[i, j]$ costs and another auxiliary table $s[1: n-1,2: n]$ that records which index k achieved the optimal cost in computing $m[i, j]$. The table s will help in constructing an optimal solution.

$$
\begin{aligned}
& \text { MATRIX-CHAIN-ORDER }(p, n) \\
& \begin{array}{l}
\text { 1 let } m[1: n, 1: n] \text { and } s[1: n-1,2: n] \text { be new tables } \\
2 \text { for } i=1 \text { to } n \\
3 \quad m[i, i]=0 \\
4 \text { for } l=2 \text { to } n
\end{array} \quad / \text { chain length } 1 \\
&
\end{aligned}
$$

5	for $i=1$ to $n-l+1$	I/ chain begins at A_{i}
6	$j=i+l-1$	I/ chain ends at A_{j}
7	$m[i, j]=\infty$	
8	for $k=i$ to $j-1$	I/ try $A_{i}: k^{A_{k}}+1: j$
9	$q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}$	
10	if $q<m[i, j]$	
11	$m[i, j]=q$	I/ remember this cost
12	$s[i, j]=k$	II remember this index

13 return m and s
In what order should the algorithm fill in the table entries? To answer this question, let's see which entries of the table need to be accessed when computing the cost $m[i, j]$. Equation (14.7) tells us that to compute the cost of matrix product $A_{i: j}$, first the costs of the products $A_{i: k}$ and $A_{k+1: j}$ need to have been computed for all $k=i, i+1, \ldots, j-1$. The chain $A_{i} A_{i+1} \cdots A_{j}$ consists of $j-i+1$ matrices, and the chains $A_{i} A_{i+1}$ $\ldots A_{k}$ and $A_{k+1} A_{k+2} \ldots A_{j}$ consist of $k-i+1$ and $j-k$ matrices, respectively. Since $k<j$, a chain of $k-i+1$ matrices consists of fewer than $j-i+1$ matrices. Likewise, since $k \geq i$, a chain of $j-k$ matrices consists of fewer than $j-i+1$ matrices. Thus, the algorithm should fill in the table m from shorter matrix chains to longer matrix chains. That is, for the subproblem of optimally parenthesizing the chain $A_{i} A_{i+1} \cdots$ A_{j}, it makes sense to consider the subproblem size as the length $j-i+1$ of the chain.

Now, let's see how the MATRIX-CHAIN-ORDER procedure fills in the $m[i, j]$ entries in order of increasing chain length. Lines $2-3$ initialize $m[i, i]=0$ for $i=1,2, \ldots, n$, since any matrix chain with just one matrix requires no scalar multiplications. In the for loop of lines 4-12, the loop variable l denotes the length of matrix chains whose minimum costs are being computed. Each iteration of this loop uses recurrence (14.7) to compute $m[i, i+l-1]$ for $i=1,2, \ldots, n-l+1$. In the first iteration, $l=$ 2 , and so the loop computes $m[i, i+1]$ for $i=1,2, \ldots, n-1$: the minimum costs for chains of length $l=2$. The second time through the
loop, it computes $m[i, i+2]$ for $i=1,2, \ldots, n-2$: the minimum costs for chains of length $l=3$. And so on, ending with a single matrix chain of length $l=n$ and computing $m[1, n]$. When lines $7-12$ compute an $m[i$, $j]$ cost, this cost depends only on table entries $m[i, k]$ and $m[k+1, j]$, which have already been computed.

Figure 14.5 illustrates the m and s tables, as filled in by the MATRIX-CHAIN-ORDER procedure on a chain of $n=6$ matrices. Since $m[i, j]$ is defined only for $i \leq j$, only the portion of the table m on or above the main diagonal is used. The figure shows the table rotated to make the main diagonal run horizontally. The matrix chain is listed along the bottom. Using this layout, the minimum cost $m[i, j]$ for multiplying a subchain $A_{i} A_{i+1} \cdots A_{j}$ of matrices appears at the intersection of lines running northeast from A_{i} and northwest from A_{j}. Reading across, each diagonal in the table contains the entries for matrix chains of the same length. MATRIX-CHAIN-ORDER computes the rows from bottom to top and from left to right within each row. It computes each entry $m[i, j]$ using the products $p_{i-1} p_{k} p_{j}$ for $k=i, i+1, \ldots, j-1$ and all entries southwest and southeast from $m[i, j]$.

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER yields a running time of $O\left(n^{3}\right)$ for the algorithm. The loops are nested three deep, and each loop index (l, i, and k) takes on at most $n-1$ values. Exercise $14.2-5$ asks you to show that the running time of this algorithm is in fact also $\Omega\left(n^{3}\right)$. The algorithm requires $\Theta\left(n^{2}\right)$ space to store the m and s tables. Thus, MATRIX-CHAIN-ORDER is much more efficient than the exponential-time method of enumerating all possible parenthesizations and checking each one.

Figure 14.5 The m and s tables computed by MATRIX-CHAIN-ORDER for $n=6$ and the following matrix dimensions:

matrix	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
dimension	30×35	35×15	15×5	5×10	10×20	20×25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of scalar multiplications to multiply the 6 matrices is $m[1,6]=15,125$. Of the entries that are not tan, the pairs that have the same color are taken together in line 9 when computing

$$
\begin{aligned}
m[2,5] & =\min \left\{\begin{array}{l}
m[2,2]+m[3,5]+p_{1} p_{2} p_{5}=0+2500+35 \cdot 15 \cdot 20=13,000, \\
m[2,3]+m[4,5]+p_{1} p_{3} p_{5}=2625+1000+35 \cdot 5 \cdot 20=7125, \\
m[2,4]+m[5,5]+p_{1} p_{4} p_{5}=4375+0+35 \cdot 10 \cdot 20=11,375
\end{array}\right. \\
& =7125 .
\end{aligned}
$$

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar multiplications needed to compute a matrix-chain product, it does not directly show how to multiply the matrices. The table $s[1: n-$ $1,2: n]$ provides the information needed to do so. Each entry $s[i, j]$ records a value of k such that an optimal parenthesization of $A_{i} A_{i+1} \cdots$ A_{j} splits the product between A_{k} and A_{k+1}. The final matrix multiplication in computing $A_{1: n}$ optimally is $A_{1: S[1, n]} A_{S[1, n]+1: n}$. The s table contains the information needed to determine the earlier matrix
multiplications as well, using recursion: $s[1, s[1, n]]$ determines the last matrix multiplication when computing $A_{1: s[1, n]}$ and $s[s[1, n]+1, n]$ determines the last matrix multiplication when computing $A_{S}[1, n]+1: n$. The recursive procedure PRINT-OPTIMAL-PARENS on the facing page prints an optimal parenthesization of the matrix chain product $A_{i} A_{i+1} \cdots A_{j}$, given the s table computed by MATRIX-CHAINORDER and the indices i and j. The initial call PRINT-OPTIMAL$\operatorname{PARENS}(s, 1, n)$ prints an optimal parenthesization of the full matrix chain product $A_{1} A_{2} \cdots A_{n}$. In the example of Figure 14.5, the call PRINT-OPTIMAL-PARENS $(s, \quad 1,6)$ prints the optimal parenthesization $\left(\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)\right)$.

```
PRINT-OPTIMAL-PARENS(s,i,j)
if i== j
print "A" 
    else print "("
        PRINT-OPTIMAL-PARENS(s,i, s[i,j])
        PRINT-OPTIMAL-PARENS( }s,s[[i,j]+1,j
        print ")"
```


Exercises

14.2-1

Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is $\langle 5,10,3,12,5,50,6\rangle$.

14.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A, s, i, j) that actually performs the optimal matrix-chain multiplication, given the sequence of matrices $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$, the s table computed by MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call is MATRIX-CHAIN-MULTIPLY $(A, s, 1, n)$.) Assume that the call RECTANGULAR-MATRIX-MULTIPLY (A, B) returns the product of matrices A and B.

14.2-3

Use the substitution method to show that the solution to the recurrence (14.6) is $\Omega\left(2^{n}\right)$.

14.2-4

Describe the subproblem graph for matrix-chain multiplication with an input chain of length n. How many vertices does it have? How many edges does it have, and which edges are they?

14.2-5

Let $R(i, j)$ be the number of times that table entry $m[i, j]$ is referenced while computing other table entries in a call of MATRIX-CHAINORDER. Show that the total number of references for the entire table is

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} R(i, j)=\frac{n^{3}-n}{3} .
$$

(Hint: You may find equation (A.4) on page 1141 useful.)

14.2-6

Show that a full parenthesization of an n-element expression has exactly $n-1$ pairs of parentheses.

14.3 Elements of dynamic programming

Although you have just seen two complete examples of the dynamicprogramming method, you might still be wondering just when the method applies. From an engineering perspective, when should you look for a dynamic-programming solution to a problem? In this section, we'll examine the two key ingredients that an optimization problem must have in order for dynamic programming to apply: optimal substructure and overlapping subproblems. We'll also revisit and discuss more fully how memoization might help you take advantage of the overlappingsubproblems property in a top-down recursive approach.

Optimal substructure

