Concentration of Solution

- Molarity: is the number of moles of solute dissolved in one liter of solution. The units, therefore are moles per liter, specifically it's moles of solute per liter of solution.

$$
\text { Molarity }=\frac{\neq \text { of moles of solution }}{\text { Liters of solution }}
$$

Example 1. What is the molarity of a 5.00 liter solution that was made with 10.0 moles of KBr ?

Solution:

$$
\begin{gathered}
\text { Molarity }=\frac{\neq \text { of moles of solution }}{\text { Liters of solution }} \\
\text { Molarity }=\frac{10.0 \text { moles of } \mathrm{KBr}}{5.0 \text { Liters of solution }}=2.00 \mathrm{M} \\
\text { Molarity }=\frac{\text { Weight }(\boldsymbol{g})}{\text { Molecular Weight }\left(\frac{\boldsymbol{g}}{\boldsymbol{m} o l}\right)} \times \frac{\mathbf{1 0 0 0}}{\text { Volume }(\boldsymbol{m l})}
\end{gathered}
$$

Molecular Weight $=$ Sum. Of atomic weight
Example 2: Prepare 0.1 M of NaCl in 250 ml of D.Water from Solid?

$$
W t=\frac{M \times M . w t \times V(m l)}{1000}
$$

$=0.1 \times 55.5 \times 250 / 1000$
$=1.38 \mathrm{gm}$

- Normality: is the number of equivalents of solute dissolved in one liter of solution. The units, therefore are equivalents per
liter, specifically it's equivalents of solute per liter of solution.

$$
\text { Normality }=\frac{\text { No.of equivalents of solute }}{\text { Liter of solution }}
$$

$$
\text { No. of equivalents }=\frac{\text { Weight }(g)}{\text { Equivalent Weight }\left(\frac{g}{e q}\right)}
$$

$$
\text { Normality }=\frac{\text { Weight }(g)}{\text { Equivalent weiht }\left(\frac{g}{e q}\right)} \times \frac{1000}{\text { Volume }(m l)}
$$

$$
E q \cdot W t=\frac{M \cdot W t}{n}
$$

$\mathrm{n}=$ No. of (H) atoms for acids
For HCl

$$
\mathrm{n}=1
$$

$\mathrm{n}=\mathrm{No}$ of OH groups for bases
For $\mathrm{NaOH} \quad \mathrm{n}=1$
$\mathrm{n}=$ No of Cation atoms ($\mathrm{M}+$) for salts
For $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{n}=2$
$\mathrm{n}=$ No. of gained or lost electrons for oxidants and reductants
For $\mathrm{KMnO}_{4} \quad \mathrm{n}=7$

- Relationship between Molarity and Normality

$$
\text { Molarity }=\frac{\text { Weight }(g)}{\text { Molecular Weight }\left(\frac{g}{m o l}\right)} \times \frac{1000}{\text { Volume }(m l)}
$$

$$
\text { Normality }=\frac{\text { Weight }(g)}{\text { Equivalent weiht }\left(\frac{g}{e q}\right)} \times \frac{1000}{\text { Volume }(m l)}
$$

$$
E q \cdot W t=\frac{M \cdot W t}{N}
$$

Q / what is the normality of $0.1 \mathrm{~mol} / 1$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?

Concentration \% (w/v\%), (w/w\%), (v/v\%):

- Weight - Volume Percentage (\% w/v)

$$
\% \frac{W}{V}=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{ml})} \times 100
$$

- Weight - Weight Percentage (\% w/w)

$$
\% \frac{w}{w}=\frac{\text { Weight of solute }(g)}{\text { Weight of solution }(g)} \times 100
$$

- Volume - Volume Percentage (\% v/v)

$$
\% \frac{V}{V}=\frac{\text { Volume of solute }(\mathrm{ml})}{\text { Volume of solution }(\mathrm{ml})} \times 100
$$

Q/ What is the weight/volume percentage concentration of 250 mL of aqueous sodium chloride solution containing 5 g NaCl ?

Calculate the weight/volume (\%) $=$ mass solute \div volume of solution x 100
mass solute $(\mathrm{NaCl})=5 \mathrm{~g}$
volume of solution $=250 \mathrm{~mL}$

$$
\mathrm{w} / \mathrm{v}(\%)=5 \mathrm{~g} \div 250 \mathrm{~mL} \times 100=2 \mathrm{~g} / 100 \mathrm{~mL}(\%)
$$

Q / 2.0L of an aqueous solution of potassium chloride contains 45.0 g of KCl . What is the weight/volume percentage concentration of this solution in $\mathrm{g} / 100 \mathrm{~mL}$?
a. Convert the units (mass in grams, volume in mL):
mass $\mathrm{KCl}=45.0 \mathrm{~g}$ volume of solution $=2.0 \mathrm{~L}=2.0 \times 10^{3} \mathrm{~mL}=2000 \mathrm{~mL}$
b. Calculate $\mathrm{w} / \mathrm{v}(\%)=$ mass solute $(\mathrm{g}) \div$ volume solution $(\mathrm{mL}) \times 100$ $\mathrm{w} / \mathrm{v}(\%)=45.0 \div 2000 \mathrm{~mL} \times 100=2.25 \mathrm{~g} / 100 \mathrm{~mL}(\%)$

Q/ prepare 500 ml of 2 percent citric acid solution .

$$
\begin{gathered}
\% \frac{W}{V}=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{ml})} \times 100 \\
\% 2=\frac{\text { Weight of solute }(\mathrm{g})}{500(\mathrm{ml})} \times 100 \\
\frac{500 \mathrm{ml} \times 2 \mathrm{~g}}{100 \mathrm{ml}}=10 \mathrm{~g}
\end{gathered}
$$

Q/ apatient is given $1000 \mathrm{ml} 0.9 \% \mathrm{NaCl}$ intravenously .How many grams of NaCl did the patient receive ?

$$
\begin{gathered}
\% \frac{W}{V}=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{ml})} \times 100 \\
\% 0.9=\frac{\text { Weight of solute }(\mathrm{g})}{1000(\mathrm{ml}) \mathrm{NaCl}} \times 100
\end{gathered}
$$

$$
\frac{1000 \mathrm{ml} \times 0.9 \mathrm{~g}}{100 \mathrm{ml}}=9 \mathrm{~g} \mathrm{NaCl}
$$

Q/ How can you prepare 0.9 \% NaCl?

1) Weight out exactly 0.9 g NaCl .
2) Dissolve 0.9 g NaCl in a 100 ml water.

- Mole Fraction

The mole fraction, X, of a component in a solution is the ratio of the number of moles of that component to the total number of moles of all components in the solution.

To calculate mole fraction, we need to know:

- The number of moles of each component present in the solution.

The mole fraction of $\mathrm{A}, X_{\mathrm{A}}$, in a solution consisting of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ is calculated using the equation:

$$
X_{A}=\frac{\text { moles of } A}{\text { moles of } A+\text { moles of } B+\text { moles of } C+\cdots}
$$

To calculate the mole fraction of $\left(\mathrm{B}, X_{\mathrm{B}}\right)$ use:

$$
X_{B}=\frac{\text { moles of } B}{\text { moles of } A+\text { moles of } B+\text { moles of } C+\cdots}
$$

Molality

Molality, m, tells us the number of moles of solute dissolved in exactly one kilogram of solvent. (Represented by a lower case m.)

We need two pieces of information to calculate the molality of a solute in a solution:

- The moles of solute present in the solution.
- The mass of solvent (in kilograms) in the solution.

To calculate molality we use the equation:

$$
\text { Molality }=\frac{\text { moles of solute }}{\text { mass of solvent in kilograms }}
$$

- Parts per Millions (PPM)

$$
p p m=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Volume of Solution }(\mathrm{ml})} \times 10^{6}
$$

Relationship between PPM and Molarity and Normality

$$
P P M=M \times M . W t \times 1000
$$

$$
P P M=N \times E q . W t \times 1000
$$

Converting weight/volume (w / v) concentrations to ppm $\mathrm{ppm}=1 \mathrm{~g} / \mathrm{m}^{3}=1 \mathrm{mg} / \mathrm{L}=1 \mu \mathrm{~g} / \mathrm{mL}$

1. A solution has a concentration of $1.25 \mathrm{~g} / \mathrm{L}$.

What is its concentration in ppm ?
a. Convert the mass in grams to a mass in milligrams:

$$
1.25 \mathrm{~g}=1.25 \times 1000 \mathrm{mg}=1250 \mathrm{mg}
$$

b. Re-write the concentration in $\mathrm{mg} / \mathrm{L}=1250 \mathrm{mg} / \mathrm{L}=1250 \mathrm{ppm}$
2. A solution has a concentration of $0.5 \mathrm{mg} / \mathrm{ml}$. what is its concentration in ppm?
a. Convert the volume to liters:

$$
\text { volume }=1 \mathrm{~mL}=1 \mathrm{~mL} \div 1000 \mathrm{~mL} / \mathrm{L}=0.001 \mathrm{~L}
$$

b. Re-write the concentration in $\mathrm{mg} / \mathrm{L}=0.5 \mathrm{mg} / 0.001 \mathrm{~L}=500 \mathrm{mg} / \mathrm{L}=$ 500ppm

Converting weight/weight (w/w) concentrations to ppm $1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{kg}=1 \mu \mathrm{~g} / \mathrm{g}$

1. A solution has a concentration of $0.033 \mathrm{~g} / \mathrm{kg}$. What is its concentration in ppm ?
a. Convert mass in grams to mass in milligrams:

$$
0.033 \mathrm{~g}=0.033 \mathrm{~g} \times 1000 \mathrm{mg} / \mathrm{g}=33 \mathrm{mg}
$$

b. Re-write the concentration in $\mathrm{mg} / \mathrm{kg}=33 \mathrm{mg} / \mathrm{kg}=33 \mathrm{ppm}$
2. A solution has a concentration of $2250 \mu \mathrm{~g} / \mathrm{kg}$. What is its concentration in ppm ?
a. Convert mass in $\mu \mathrm{g}$ to mass in mg: $2250 \mu \mathrm{~g}=2250 \mu \mathrm{~g} \div 1000 \mu \mathrm{~g} / \mathrm{mg}=2.25 \mathrm{mg}$
b. Re-write the concentration in $\mathrm{mg} / \mathrm{kg}=2.25 \mathrm{mg} / \mathrm{kg}=2.25 \mathrm{ppm}$

Parts Per Million (ppm) Concentration Calculations

1. 150 mL of an aqueous sodium chloride solution contains 0.0045 g NaCl . Calculate the concentration of NaCl in parts per million (ppm).
a. $\mathrm{ppm}=$ mass solute $(\mathrm{mg}) \div$ volume solution (L)
b. mass $\mathrm{NaCl}=0.0045 \mathrm{~g}=0.0045 \times 1000 \mathrm{mg}=4.5 \mathrm{mg}$ volume solution $=150 \mathrm{~mL}=150 \div 1000=0.150 \mathrm{~L}$
c. concentration of $\mathrm{NaCl}=4.5 \mathrm{mg} \div 0.150 \mathrm{~L}=30 \mathrm{mg} / \mathrm{L}=30 \mathrm{ppm}$
2. What mass in milligrams of potassium nitrate is present in 0.25 kg of a $500 \mathrm{ppm} \mathrm{KNO}_{3(\mathrm{qq})}$?
a. $\mathrm{ppm}=$ mass solute $(\mathrm{mg}) \div$ mass solution (kg)
b. Re-arrange this equation to find the mass of solute: mass solute $(\mathrm{mg})=\mathrm{ppm} \times$ mass solution (kg)
c. Substitute in the values: mass $\mathrm{KNO}_{3}=500 \mathrm{ppm} \times 0.25 \mathrm{~kg}=125 \mathrm{mg}$
3. A student is provided with 500 mL of 600 ppm solution of sucrose. What volume of this solution in milliliters contains 0.15 g of sucrose?
a. $\mathrm{ppm}=$ mass solute $(\mathrm{mg}) \div$ volume solution (L)
b. Re-arrange this equation to find volume of solution: volume solution (L) $=$ mass solute $(\mathrm{mg}) \div \mathrm{ppm}$
c. Substitute in the values:
volume solution $(\mathrm{L})=(0.15 \mathrm{~g} \mathrm{x} 1000 \mathrm{mg} / \mathrm{g}) \div 600=0.25 \mathrm{~L}$
d. Convert liters to milliliters: volume solution $=0.25 \mathrm{~L} \times 1000 \mathrm{~mL} / \mathrm{L}=$ 250 mL

- DILUTIONS

Whenever you need to go from a more concentrated solution ["stock"] to a less concentrated one, you add solvent [usually water] to "dilute" the solution. No matter what the units of concentration are, you can always use this one formula

$$
C_{1} V_{1}=C_{2} V_{2}
$$

[Concentration of the stock] x [Volume of the stock] $=$ [Concentration of the final solution] x Volume of the final solution]

$$
\mathbf{N}_{1} \mathbf{V}_{1}=\mathbf{N}_{2} \mathbf{V}_{2}
$$

$$
\mathbf{M}_{1} \mathbf{V}_{1}=\mathbf{M}_{2} \mathbf{V}_{2}
$$

Q / What is the volume of $0.2 \mathrm{~mol} / \mathrm{L}$ of NaOH that it required to dilute it to $0.05 \mathrm{~mol} / \mathrm{L}$ in 100 ml ?
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$0.2 \times \mathrm{V}_{1}=0.05 \times 100 \longrightarrow \mathrm{~V}_{1}=25 \mathrm{ml}$ complete to 100 ml

- Normality of Concentrated Reagents

$$
\text { Normality }=\frac{\text { Specific Gravity }\left(\frac{g}{l}\right) \times \text { Percentage }(\%) \times 1000}{\text { Equivalent Weight }\left(\frac{g}{e q}\right)}
$$

Molarity $=\frac{\text { Specific } \operatorname{Gravity}\left(\frac{g}{l}\right) \times \text { Percentage }(\%) \times 1000}{\text { Molecular Weight }\left(\frac{g}{m o l}\right)}$
Q / Describe the preparation of 900 mL of $3.00 \mathrm{M} \mathrm{HNO}_{3}$ from the commercial reagent that is 70.5% HN0 $3(\mathrm{w} / \mathrm{w})$ and has a specific gravity of 1.42.

$$
\begin{array}{r}
\text { Molarity }=\frac{\text { Specific Gravity }\left(\frac{g}{l}\right) \times \text { Percentage }(\%) \times 1000}{\text { Molecular Weight }\left(\frac{g}{\text { mol }}\right)} \\
M_{H N O 3}=\frac{1.42 \times\left(\frac{70.5}{100}\right) \times 1000}{63}=15.9
\end{array}
$$

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$15.9 \times \mathrm{V1}=3 \times 900 \rightleftharpoons \mathrm{~V}_{1}=159 \mathrm{ml}$ diluted to 900 ml

Formality

Formula weight and molecular weight have slightly different definitions, though for many substances, the two measurements are the same.
Formula weight is the sum of the atomic weights of the atoms in a molecule's empirical formula.
Molecular formula is a notation that indicates the type and number of atoms in a molecule. The molecular formula of glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, which indicates that a molecule of glucose contains 6 atoms of carbon, 12 atoms of hydrogen, and 6 atoms of oxygen.
Empirical formulas show which elements are present in a compound, with their mole ratios indicated as subscripts. For example the empirical formula of glucose is $\mathrm{CH}_{2} \mathrm{O}$, which means that for every mole of carbon in the compound, there are 2 moles of hydrogen and one mole of oxygen.
Example:
A compound have molecular weight $56 \mathrm{~g} / \mathrm{mol}$ contains 85.6% carbon and 14.4% hydrogen. What is the empirical and molecular formula of this compound?

H.W:

1) a patient is given 1000 ml 0.9 percent NaCl intravenously. How many grams of NaCl did the patient receive?
2) How many grams of glucose are present in 0.5 L of 2.0 M of glucose solution?
3) what are the molality of KOH solution, if dissolve 23 g of KOH in 500 ml water
4) Prepare 250 ml of 0.1 N sodium carbonate solution. (Na:23; C: 12; O: 16) Results: wt: 1.325 gm .
5) Dissolve 5.3 gm of sodium carbonate in water, then complete the volume of the solution to $1 / 4$ liter. Compute molarity of solution. (Na: 23; C: 12; O: 16). Results: $0.2 \mathrm{~mol} /$ liter.
