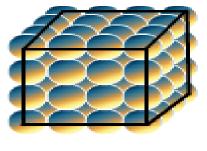
STUDY AND APPLICATION OF PLASMA PHYSICS

By

Fatimah jumaah moean

WHAT'S THE PLASMA?

- The word 'plasma' means jelly in Greek.
- The term plasma was first used by Langmuir in 1928 to describe the inner region of a glowing ionized gas found in an arc discharge.
- Any ionized gas cannot be called a plasma, of course; there is always some small degree of ionization in any gas

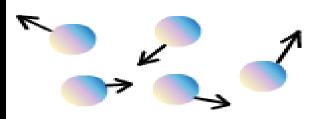

In physics "plasma" is used to describe a partially or completely ionized gas containing electrons, ions, and neutrals atoms. A plasma is a *quasineutral* gas of charged and neutral particles which exhibits collective behavior

Properties	Plasma	Gas	Liquid	Solid
Mass, volume,	Stable mass, no	Stable mass, no definite	Stable mass and volume,	Stable mass, volume,
density and shape	definite shape volume,	volume, density and	no definite density and	density and shape
	density	shape	shape	
Relative position	Relatively far away	Relatively far away from	Free lowing, loosely	Fairly stationary,
of particles	from each other	each other	packed	tightly packed
Particle	Collective behavior	Two-particle collision,	Slides over each other	Vibrates in place
interaction			and few collisions	_
Independently	Different particles	Particles behave in the	Atoms/molecules behave	Atoms/molecules
acting species	behave differently	same way in neutral gas	the same way	behave the same way
Velocity	Often non-Maxwellian	Maxwellian vel.	Eddy and laminar	Vibrate about a fixed
distribution		distribution	velocities	position
Energy	Extremely high	High	Medium	low
Electrical	Usually very high	Conductivity is very low	Conductivity is low	Very high in solid
Conductivity	(infinite)		-	conductors

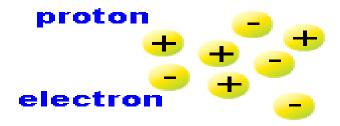
So What's the difference between a gas and plasma?

- Gas is electrically neutral throughout and is used as an electrical insulator
- Plasma is electrically charged and used as a conductor of electricity

Solid

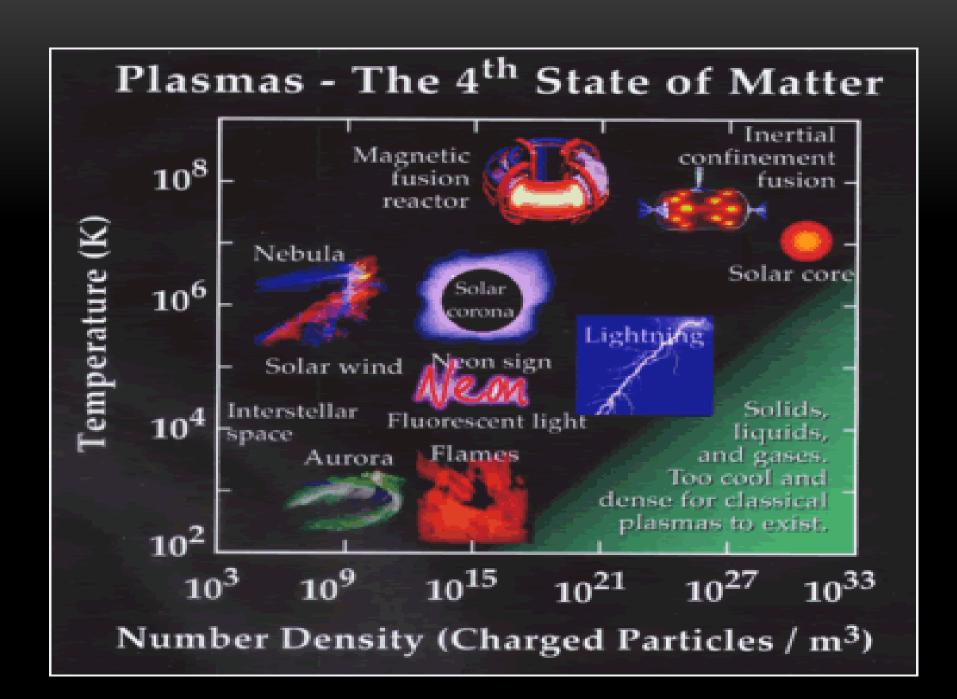

Strong bonds

Liquid


Weak bonds

Gas

no bonds


Plasma

ionization

TYPES OF PLASMA:

- Plasma can be categorized into:
- high temperature known as fusion plasma
- low temperature plasma.
- Low temperature plasmas can be further divided into:
- plasma that is in *thermal equilibrium* and those which are *not in thermal equilibrium*, the term thermal equilibrium refers to when the temperature of all plasma species such as electrons, ions, neutral particles is the same.

CHARACTERISTICS OF PLASMAS

- A plasma is a group of charged particles, which consists of free positive and negative charge carriers, have some characteristics such as:
- Debye shielding: A fundamental characteristic of the behavior of plasma is its ability to shield out electric potentials that are applied to it.

$$\lambda_{D} = \left[\frac{\varepsilon_{o} K_{B} T_{e}}{n_{e} e^{2}} \right]^{1/2} \approx 7.43 \times 10^{2} \left(\frac{T_{e}(eV)}{n_{e}} \right)^{\frac{1}{2}}$$

Debye number Since the shielding effect is the result of the collective behavior inside a Debye sphere of radius λ_D , it is necessary that this sphere contains enough particles due to the exponential decay of the potential.

$$N_D = \frac{4}{3}\pi n_e \lambda_D^3$$

Plasma frequency An important plasma property is the stability of its macroscopic space charge neutrality

$$\omega_{pe}=(n_ee^2/m_e\varepsilon_0)^{1/2}$$

PLASMA CRITERIA

- $N_D>>1$. The number of charged particles within a Debye cube (or sphere) must be large so that collective interactions dominate at the mean interparticle separation distance.
- L >> λ_D .The spatial extent of a collection of charged particles must be large if it is compared to the collective interaction scale length for plasmas, and the Debye length λ_D .
- $\omega_{\rho} >> v_{ne}$. The collective inertial response frequency in a plasma, the electron plasma frequency ω_{ρ} , must be large if it is compared to the electron neutral collision frequency v_{ne} .

PLASMA DIAGNOSTICS WITH EMISSION SPECTROSCOPY:

• Electrostatic ion probes (Langmuir probes)

• Optical emission spectroscopy (OES)

 Laser Induced Fluorescence (LIF) and Optical Absorption Spectroscopy (OAS)

TYPICAL PLASMA APPLICATIONS

- plasma etching.
- Digital printing.
- 3D printing.
- Semiconductor technology.
- Shipbuilding and aircraft construction.
- Medicine and Cosmetics.
- plasma coating.
- Electronics

PLASMA CONFINEMENT:

- *tokamak* magnetic field coils confine plasma particles to allow the plasma to achieve the conditions necessary for fusion.
- *magnetic mirror*; known as a magnetic trap is a type of magnetic confinement fusion device used in fusion power to trap high temperature plasma using magnetic fields.

Thank you