Group theory

What is group ?

Group theory is the study of a set of elements present in a group, in Mathematics. A group's concept is fundamental to abstract algebra. Other familiar algebraic structures namely rings, fields, and vector spaces can be recognized as groups provided with additional operations and axioms.

If G is a nonempty set, a binary operation * on G

is a function * : G x G into G

*(x,y) = x*y for all x & y \in G

The above property called closure property and if its satisfied we call G is closed under *.

A mathematic system : we call (G,*) is a mathematic system if its satisfied the closure property.

Examples:

- ▶ 1- (N,+) is a mathematic system
 - 2- (N,-) is not mathematic system, show that?

Definition

A nonempty set G with a binary operation (*) is called a group denoted by (G, *)

If satisfied

- 1 closure property
- 2- Associative Low
- 3- Existence of identity
- 4- Existence of inverse

Properties of Group

Closure :	Associativity
For all y, x є G we have x * y є G	(a*b)*c = a*(b*c) , for all a, b, c є G
An Identity element exists :	An Inverse element exists
e ∈ G e * x = x * e = x	For all x є G there exists y є G s.t x * y = e є G

Example : show that (Z, +) is group

- ▶ 1- for all a & b ∈ Z s.t a+b ∈ Z then Z is closed
- > 2- for all a ,b , c \in Z s.t (a+b)+c = a+(b+c) then + is associative
- > $3 0 \in Z$ s.t a + 0 = 0 + a = a for all $a \in Z$ (identity element)
- ▶ 4- for all x ∈ Z there exists x^{-1} (=-x) ∈ Z s.t x+ x^{-1} = 0

Hence Z is a group

Definition (Commutative group)

A group *G*,* is called a Commutative group iff $a*b=b*a, \forall a, b \in G$.

Examples

- (Z,+), (Q,+), (C,+) are commutative groups.
- ▶ (N,+) is not a group. Why?

H.W

• Let $G = \{a, b, c, d\}$ be a set. Define a binary operation * on G by the following

► Is *G*,* a commutative group?

