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Abstract

The main objective of this paper Is to solve fuzzy initial value problems, in which
the fuzziness occur In the initial conditions. Two approaches are used to find the
approximate solution, namely the variational iteration method and the Laplace
variational iteration method. From the obtained results, as It Is expected, the
approximate solution of the variational iteration method with Laplace transformation is
more a curate than those results obtained without using Laplace transformation.



The basic definition of fuzzy numbers is given in [1]

We denote the set of all real numbers by R and the set of all fuzzy numbers on R is indicated by
E. A fuzzy number is a

mapping u: R — [0,1] with the following properties:

(a) uis upper semi-continuous,

(b) u is fuzzy convex, i.e, u(Ax + (1 — A)y = min{u(x),u(y)} forallx,y € R,A € [0,1]

(c) uis normal, i.e,, 3 X, € R for whichu(xy) =1

(d) supp u = {x € R|u(x) > 0} is the support of the u, and its closure cl (supp u) is compact.

An equivalent parametric definition is also given in [16,22,36] as follows:

Definition 2.1. A fuzzy number u in parametric form is a pair (u, u) of functions(u(r), u(r) ,0 <
r < 1 which satisfy the

following requirements:

1. u(r)is a bounded non-decreasing left continuous function in (0, 1], and right continuous at 0,

2.u(r) is a bounded non-increasing left continuous function in (0, 1], and right continuous at 0,
3.u(r) <u(r),0<r=<1



A Crisp numbe S Si ssented by (u(r), u(r) = (x x), 0 <r<1.Byappropriate \l

?deflnltlons the fuzzy number space {((u(r), u(r)} becomes a convex cone E! which could
be embedded isomorphically and isometrically into a Banach space

Definition [1] Let x = (x(r),X(r)and y = (y(r),y(r), € E',0 < r < 1 and arbitrary k € R.
Then

(1) x=yiff x(r) = y(r) and x(r) = y(r)

(2) x+y=(x()+y(r),x(r) +y(r) ),

(3)x-y=((x(0)-y(@® ,,x(r)-y(r) ),

Ay — (kx(r),kx(r),k = 0

o= {a&(r), kx(r),k < 0

Definition[2]For arbitrary u = (u,u), v = (v,v) €E}, the quantity

1/2

1 1
D(u,v) = ( jo (U@ - v(®))2dr+ | (@@ - 7@) Y2dr)

Jo

is the distance between fuzzy numbers u and v.[2].[3]
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Laplace Transformation:

The Laplace transformation is an integral transform that changes a real valued function

f (t) into a function F(s), which is defined as follows:

Co

F(s) = LIf(t)} = f &St dt

0
where, in general, s is a real variable Also, after a certain problem is transformed into an

algebraic equation and then solved for F(s), we need to transform F(s) back into f(t). The
solution of the original problem, which is called the inverse Laplace transform of F(s) is

denoted by
f(t) = L7 {F(s)}



10ng the mc ant properties of the Laplace transformation, that will be used later
Wlth the VIM IS the convolution of two functions fiand f2. Let the functions fiand f2 be

defined for all t > 0, then the convolution of fiand fz, denoted by (fi+f2)(t), and is defined by
the integral

(F1 + £2)(6) = f £ (t— O)F, (£)d?
0
Now, let Z{f1(t)} = F1(s) and Z{f2(t)} = F2(s), then:

£ fo fy(t — £)f,(£)d6} = Fy (s)F,(s)



~ Conversely:

LU (9)Fy(s)) = j fy(t — £)f(£)de

0

Also, the convolution Is commutative, that Is:

t t

(f1 + £2)(t) = j £ (t— O)f, (D)de = j £, (t — O)fF, (£)de
0 0

In addition, the most two important properties of the Laplace transformation for solving

differential equations is that one which transform the differential operator % Into an algebraic
operator sF(s) — f(0)



olving FODE'S

Hossein Jafari and Mohammad saeidy and Dumitru Baleanu in 2012 [ 4 ] solves n-th order fuzzy
differential equations by using variational iteration method .According to our belief, the followed
approach seams to be incorrect and have many difficult obstacles in solving fuzzy ordinary
differential equations using the VIM .This is due to effect of the coefficients to be either positive or
negative or a mixed of than, which will affect on the upper and lower solutions of FODE.

The results obtained in [4] for r=1 for the upper and lower solutions y and y are not equal which

contradiction the basic theory of the solution of FODE.

In the next section , we will illustrate the most strict approach for solving such type of equations
using the VIM.
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raer ODE'S[511[611[7]

Consider the following n-th order fuzzy differential equation .[8]
y™(® + Kooy @ PO + -+ Ky () + Koy(D) =R ,t e [0,1]
With initial conditions U @ B
§7(0) = (g8o(0),he(0),¥ (0) = (g1(r), h; (1), ...,V (0) = (g(n—l)(r)rh(n—l)(r))
We have three cases
Case 1:

When all the coefficients k,_1,k,_», ..., Kg are positive.

The correction functionals for Eq(1) read:



+ J z\{y_n(“)(s) + Kp1yn "7V (S) + -+ Kyyy (5) + Koy (s) — @} ds....(2)
0

Yo (1) =y (t1)

+ f%\ {ﬂ(n)(S) + kn—1ﬂ(n_1)(s) + -+ k1ﬂ’ (s) + koy,(s) — @} ds..... (3)
0

n=0
We obtain the Lagrange multipliers in the form.

(S _ t)(n—l)
(n—1)!

Als,t) = A(s, 1) = (=1)" .. (4)

It should be noted that if f a is a linear mapping according to the Euler-Lagrange differential
equations we can obtain the exact value of the Lagrange multipliers,



eration formula. !

t n >~ (n-1) n n— !
Va1 (61) = yu (1) + [ (1) (S(ntil)! (V0 () + kn_1ya OD() + - + kayn (8) + Koy (s) -

— — t n (s— -1 __(p —(n-1 — —
AL R A NG N A ORI S A O S A O RS AR

By Banach's fixed point theorem, it is easy to obtain the convergence condition for the sequences
obtained from(5,6).



When some of the coefficients

k,_1,...,K,_o are positiveand k,_,_1,K,_m—2, ..., K1, Ko are negative.

The correction functions for Eq(1) read :

Va1 (61) = yu (6 1)

t 1\ (n-1)
t [0 Em L (D) + g D) + et Ky 6)
0 (n e 1)! _n n _n n m_n
FhomoaTo () + koY, —REMS e (7)

_ _ t (s—t)-D —(n—1 —(n—
Yn+1(t' I‘) =¥, (t; I‘) + f() (_1)n S(n_l)! {Yn(n) (S) + kn—lYn(n )(S) + ot kn—mYn(n m)(s) +

Knomo1ye " P(S) + 4 Koy (8) = RO} AS o (8)

n=>0



When all the coefficients k,,_{, k,_», ..., Ky are negative

The correction functionals for Eqs(1) reads:

Vi1 (61) = ya(61) + [~ Ly O(s) + K, 7, ()OS + o+ KTy () +
Koy, (s) — @} ds.........(9)

_ — t (s—t)(n—D
yn_|_1(tJ I') — yn (t; r) + f() (_1)n (n—1)!

(F2(8) + Kn_1yn () D(8) + + + kyyy (5) +

koya (5) = R(D} ds ...........(10)

n=>0



/’—~‘
rder FDE'S.[9]

Consider the following Eqs(1)

Back to (VIM for n-th order FDE'S).

Also, we have three cases.
Casel.:

By using the Laplace transform of the differential operator of the differential operator of the
correction functional eqs (1),(2)

On may get:

A=A(s—1t)

A=A(s—1t)



t

cly, &0} +£ U Myn () + koo1ya @D(S) + -+ iy, ' (8) + Koy, (5)
0

~R(s)] ds} . (12)

’C{}_’n+1 (t’ 1‘)}
= L{?n (t, r)}

+L { j AT () + kog§n "6 + KT (8) + KoFa(s)
0
- @} ds} ... (13)

There fore, upon using the convolution theorem with respectto t, eq's (12),(13) will be reduced



= [’{Xn (t, r)}
+ L{Z\(t) * [y_n(“)(s) + kn_ly_n(n_l)(s) + -+ kly_n' (s) + Kkoya(s) — R(s)]} .. (14)

L{yn+l(t’ I')}
= L{y, (t 0} + LD
" {y—n(n) (S) + kn_ly—n(n_l) (S) 4+ ...+ kly_n’ (S) + kOy_n(S) — %} e (15)

Which implicit that

Ly (ED} = L{ya @D} + L{AO} L@ © + Kooy @00 + -+ kyya (0 +
koya () = R} ..... (16)

L7, @D} = LF, (60} + LAOMAT ™ O + ko g5 "V @ + -+ KTy (©) + k() —
@} (17)



We get, the following iteration formulations.

Yas1(t1) =y, (t 1)
+ LLAMM 7 WO + kno1yn OO + -+ kyyn (©) + Koy, (1)
-R®} ... .(18)

Vot (61) =F,(61) + LHLAOMKLTR W O + kst 7o V(O + -+ T (O +
koY (t) — @} ........ (19)

n=0,1,2,...
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e Laplace tra

By using nsform eq's(7)&()
The same way in the first case
We get the final following iteration formulations
Yar1(61) =y, (6 1)
+ L7 DO}y, @O + 1y O + -+ Ky ©
+ kn—m—ﬁﬁn_m_l)(t) + -+ Koy,

~R@® }} )

T &0 = 7,60 + L ROLFE VO + k7 VO + k7O +

Ky 1y D) + -+ Koy, () - @}} o (2D)

n=0,1,2, ...



By using the Laplace transform eq's(9)&(10)

The same way in the first case

We get the final following iteration formulations.

Yar1 (61 = yu (6 1) + L7HLAMIL{ya @ (©) + kg7, (0D + -+ K,y (5 +
Ko¥a — RN - . (22)

Vo (ET) =y (t1)
+L71 {L{X(t)}zz T (0 + kyoyn OOV + -+ gy (O + koya (0

—@}} e (23)

n=0,1,2,...



Consider the following second-order fuzzy linear differential equation:

144

y —4y +4y =0 ... (24)

y(0) = (2 +r1;4 —r);

y(=G+1r7-r1
The exact solution is as follows:
y(t,r) = (2 + r)e2t + (1 — r)te2t

y(t,r) = (4 — r)e2t + (r — 1)te2t

This example is as per the second case

To apply the VIM, first we rewrite Eq. (24) in the form



Yorr = Yo + Jy A |yn () = V2 (8) + ya (9)] ds........(25)

Va1 = n + Jy A|Yn (8) = yu () + 7a(5)| ds........(26)

Sub (27) in (25)&(26),we get

Yot = ¥a + J;(5 = ) [yn (8) = Y (S) + yu(s)| ds

Vot = n + Jy(s = 0|77 () = ya() + 7a(s)| ds

Choosingyy(t; ) =(2+r)+t(5+r)andyy(t, r)=(4 - r) + t(7 — r), after 3 iterations we
obtained approximate solutions



r+t(5+r)—4rt2+1Ot2—§t3(5+r) \

§z4—r+t(7—r)+2t2+4rt2—§t3(7—r)

1=0,0.1,...,1

When r=0.1
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When r=1




When r=0.1
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y —4y +4y=0,t€ [0,1]
FO=Q+r4-1r) . (27)
AOEICER WA

The exact solution is as follows :
Y(t,r) = (24 e’ + (1 —r)te?t
Y(t,1) = (4 —r)e?t + (r — 1tet
To apply the L(V|M),first we rewrite Eq (19)in the form
At) = A(t—s)

A(t) = A(t—s)



d
Ly . (0} =L{y & r)}+LUA(t—s)[ V. — 4 Vn 4§n]ds}

L{Xn+1(t: r)} = L{Xn (t, r)} + LIA(t) ;—;zn - 4%3'7 +4 Xn-}

\

g

d? d
Ly a0} =L{y tr}+ L A(t) [—ﬁ — 4y +47,

L {Xn+1 (t, I‘)}
= L{ya(t D} + LA (O} 2L {yn} — 5y (0) = yn(0) = 4 (s L{yn} —y(0) )
+4L{y,}
L{ynn &0} = L{ya &0} + LR O (7 - 45 + D L{yn} = 5ya(0) = yn (0)]

Take the first variation resect to y, (t) thus



(s2—4s+4))L {SXH} .

1+ L{A®)} (s*—4s+4) =0

O} = =g = e = T
L{—(t)}_sz—4s+4_(S—Z)(S—Z)_(S_Z)z
AD) = —tet
A = ()

Eline) = £} + £ £y, - 457, + 43 )

_ _ d? d
Ly ..} =Ly } + L{-te*} L{ Yo =4 Yo +4Y }
Let y, = 2+4+r)+t(5+7r)

y=0@l-1)+t(7—r)



Invers Laplace transform yields,

y1=2+71) + G+ Dt + (3 + 6te® —3e2) — (=t ++ + - te?t — =)
J 4 a4 4

v 2t 2t 11 o 1
y, =@ —-r1r)+ (7 —r)t+ (3 + 6te*" — e )—(28—4r)(Zt+Zte — 7€ )

With are the exact solution of this problem, i.e , the exact solution is obtained in only one iteration



g3-o=CSRls

Ierto solve the FIVP:
'(x) =x (x),x € [-1, 1]
with initial condition in parametric form:
(-1)=( r, ro)
=( -0.5(1-r), +0.5(1 —r))
The method of solution will be discussed for x > 0 and then for x <0 as the following cases show:
a. If x < 0: The parametric form in this case:

'(x;r)=x (x;r) and "(x;r)=x (x;r)



» ll

lett=x+1

x=t—1

y =({t-1y.,y =({-1y

Lynir} =y} £+ L1 LY, — (6= DFL)

LFart} = £Fa} + LI-13.L{Y, — (= Dy ]
Yo =Ve—05(1-r1),y; =+ve+0.5(1—r)

(x + 1)2

(«/‘ +0.5(1 — r)) — e+ 051 —r)(x+1)

|"<
Il
|"<

2
(X+ D - 05(1—P(x+1)

(\/_ 0.5(1 — r))

=
||



C fgR=x (6n and  Gor=x (5

with initial conditions are 1, ro.

L{ynia} = {yn} £+ L1 LI, = xy0}

Lo} = L + L{-1}L{y  —xy,

yo =Ve—05(1-1),y5 =+ve+05(1—r)

2
&=&+(\/E—O.5(1—r))?

XZ
ﬁ=%+(\/5+o.5(1—r))7
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