Modules Theory

مصطفى عباس عزيز

الجامعة المستنصرية ـ كلية العلوم ـ قسم الرياضيات

المرحلة الرابعة

Definition: A right module over a ring R (or right R-module) is an Additive Abelian group R together with a map $M \times R \rightarrow M$ such that to every pair (m, r), where $m \in M, r \in R$, there corresponds a uniquely determined element $m r \in M$ and the following conditions are satisfied:

1. $m(r 1+r 2)=m r 1+m r 2$
2. $(m 1+m 2) r=m 1 r+m 2 r$
3. $m(r 1 r 2)=(m r 1) r 2$
4. $m \cdot 1=m$
for any $m, m 1, m 2 \in M$ and any $r, r 1, r 2 \in R$.

In a similar way one can define the notion of a left R-module. We shall sometimes write $M=M R$ to emphasize the right action of R. If R is a commutative ring and $M=M R$ then we can make M into a left R module by defining $r m=m r$ for $m \in M$ and $r \in R$. Thus for commutative rings we can write the ring elements on either side. If R is not commutative, in general not every right R-module is also a left R-module.

In what follows, by saying an R-module we shall mean a right R module.

Example : Let $M=A$ and as the map $\phi: M \times A \rightarrow M$ we take the usual multiplication,

$$
\text { i.e., } \phi(m, a)=m a \in M \text {. }
$$

Example: If M is a vector space over the field R, then M is an R module.

Example: Let $M=\operatorname{Mmn}(R)$ be the set of all $m \times n$ matrices with entries in R. Then M is an R-module, where addition is ordinary matrix addition, and multiplication of the scalar c by the matrix A means multiplication of each entry of A by c.

Example : Let $A=\mathbf{Z}$ be the ring of integers. Then any Abelian group G is a \mathbf{Z}-module, if we define the map $\phi: G \times \mathbf{Z} \rightarrow G$ as the usual multiplex addition $\phi(g, n)=g n=g+\ldots+g \in G$.

Definition: A homomorphism of a right A-module M into a right A module N is a map $f: M \rightarrow N$ satisfying the following conditions 1. $f(m 1+m 2)=f(m 1)+f(m 2)$ for all $m 1, m 2 \in M$;
2. $f(m a)=f(m) a$ for all $m \in M, a \in A$.

The set of all such homomorphisms f is denoted by $\operatorname{HomA}(M, N)$. If $f, g \in \operatorname{HomA}(M, N)$ then $f+g: M \rightarrow N$ is defined by $(f+g)(m)=$ $f(m)+g(m)$ for all $m \in M$. One can verify that $f+g$ is also a homomorphism and the set $\operatorname{HomA}(M, N)$ forms an additive Abelian group. If a homomorphism $f: M \rightarrow N$ is injective, i.e., $m 1=m 2$ implies $f(m 1)=$ $f(m 2)$, then it is called a monomorphism. In order to verify that f is a monomorphism of A-modules it is sufficient to show that $f(m)=0$ implies $m=0$.

If a homomorphism $f: M \rightarrow N$ is surjective, i.e., every element of N is of the form $f(m)$, then f is called an epimorphism.

If a homomorphism $f: M \rightarrow N$ is bijective, i.e., injective and surjective, then it is called an isomorphism of modules. In this case we say that M and N are isomorphic and we shall write $M_{-} N$. Isomorphic modules have the same properties and they can be identified. It is easy to check that then $f-1: N \rightarrow M$, defined by $f-1(n)=m$ if and only if $f(m)=n$ is also a homomorphism of modules, so that a bijective homomorphism is an isomorphism in the categorical sense.

Definition: A nonempty subset N of an A-module M is called an A submodule if N is a subgroup of the additive group of M which is closed under multiplication by elements of A. Note that since A itself is a right A-module, submodules of the regular module $A A$ are precisely the right ideals of A.

Let N be a submodule of an A-module M. We say that two elements $x, y \in$ M are equivalent if $x-y \in N$. Consider the set M / N of equivalence classes $m+N$, where $m \in M$. We can introduce a module structure on M / N if we define the operations of addition and multiplication by an element $a \in A$ by setting

$$
(m+N)+(m 1+N)=(m+m 1)+N
$$

$$
(m+N) a=m a+N \text { for all } m, m 1 \in M
$$

Definition: The A-module M / N is called the quotient module of M by N. Note that the quotient module has a natural map $\pi: M \rightarrow M / N$ assigning to each element $m \in M$ the class $m+N \in M / N$. Moreover, it is easy to see that π is an epimorphism of A-modules. This epimorphism is called the natural.

Homework:
1- Every abelian group A is a Z-module.

