Bío Chemístry

MSC. Hanaa Khalíl & MSC. Sana Basam

Carbohydrates

• *Carbohydrates:* Are the most abundant and diverse class of organic compounds occurring in nature.

• They play **a key role in the evolution of life** due to creating a direct link between the sun and chemical energy.

The aim of the experiments:

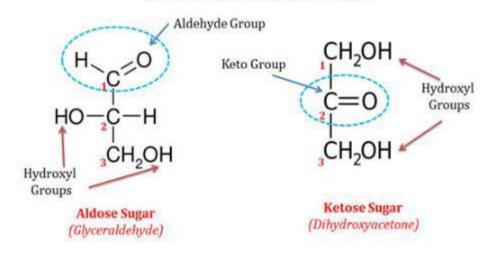
• Understanding simple tests for the *identification of carbohydrates* in a given sample.

Theory:

- *Carbo*=Carbon, *Hydrate*=Water (Hydrogen+Oxygen)
- General formula: (CH₂O)_n
- They have important structural and metabolic roles in both animals and plants.
- Commonly used for **food and energy storage**.

Classification of carbohydrates

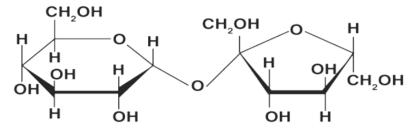
- Monosaccharides: Cannot be hydrolyzed into a more simple form.
- *Disaccharides: Products of two monosaccharide units.*
- *Oligosaccharides: Products of three to ten monosaccharides.*
- > **Polysaccharides:** Products of **more than ten** monosaccharide units.


Lab 1 :

Examples of carbohydrates

Monosaccharides:
Can be further classified into: No. of carbon atoms Trioses
Tetroses – Pentoses – Hexoses – Heptoses
Aldehyde or Ketone group
Aldoses – Ketoses

Monosaccharides structure:



Monosaccharides examples:

	Aldoses	Ketoses
Trioses (C ₃ H ₆ O ₃)	Glyceraldehyde	Dihydroxyacetone
Tetroses (C ₄ H ₈ O ₄)	Erythrose	Erythrulose
Pentoses (C ₅ H ₁₀ O ₅)	Ribose	Ribulose
<i>Hexoses</i> (<i>C</i> ₆ <i>H</i> ₁₂ <i>O</i> ₆)	Glucose	Fructose

Other examples of carbohydrates include:

- Disaccharides:
- Lactose, Maltose, and Sucrose.

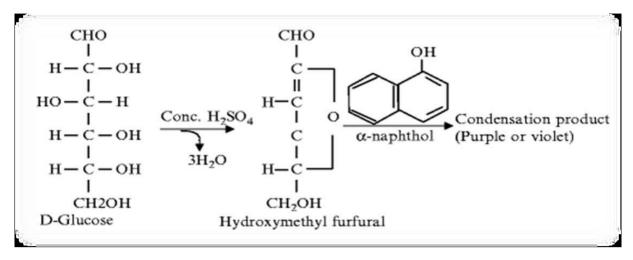
• Polysaccharides:

Starch and Dextrin.
 Can be linear or branched polymers.
 Also, sometimes they are classified as Hexosans or Pentosans depending on their yield when hydrolyzed.

Qualitative and Quantitative tests for carbohydrates

To identify the presence of carbohydrates in a sample:

- 1 Molisch's test
- 2 Fehling's test
- 3 Benedict's test
- 4 Tollen's test
- 5 Iodine test


Carbohydrate identification tests

1 - Molisch's test:

General test for carbohydrates.

Concentrated sulfuric acid converts the carbohydrate into furfural or any of its' derivatives, which in turn reacts with α -naphtol to form a purple colored product. Purple or violet ring is a positive result for the presence of carbohydrates in the sample.

Molisch's chemical reaction:

Molisch's Procedure:

1. Take **2ml of the given sample solution** in a clean test tube.

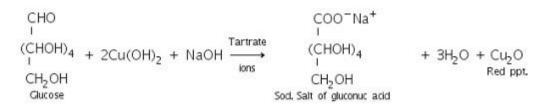
2. Add 2-3 drops of Molisch reagent slowly.

3. Add concentrated sulfuric acid along the sides of the test tube.

4. Notice the separation of the sample (Acid: bottom, sample: top).

5. If a violet ring is observed in the middle, then the presence of carbohydrates is confimed.

2. Fehling's test:


This test identifies reducing sugars.

Needs boiling water bath.

The copper ions in Fehling's solution (+3) state is reduced to (+2) oxidation state, and **red cuprus oxide** is precipitated in the **alkaline medium**.

Red precipitate is a positive result for the presence of reducing sugars and carbohydrates.

Fehling's chemical reaction:

Fehling's Procedure: 1. Take **2ml of the given sample solution** in a clean test tube.

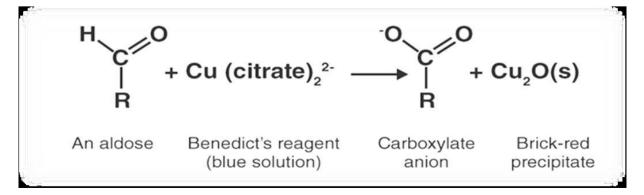
2. Add 1ml of Fehling A solution slowly.

3. Add 1ml of Fehling B solution slowly.

4. Keep the solution in a boiling water bath for ≈ 10 *minutes.*

5. If a **red precipitate** is observed, then the **presence of carbohydrates and reducing sugars** is confimed.

3. Benedict's test:


This test identifies reducing sugars.

In **Alkaline medium, sodium carbonate** converts glucose to **enediol**, which in turn reduces **cupric to cuprous** forming **cuprous hydroxide**.

Upon boiling, red precipitate of cuprous oxide is formed.

Red precipitate is a positive result for the presence of reducing sugars and carbohydrates.

Benedict's chemical reaction:

Benedict's Procedure:

1. Take 3ml of the given sample solution in a clean test tube.

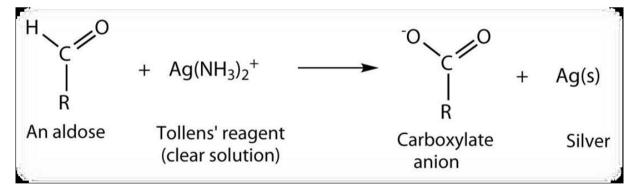
2. Add 3ml of Benedict's reagent.

3. Boil the solution for ≈ 2 minutes.

4. Cool the solution and observe the test tube.

5. If a red/green/yellow precipitate is observed, then the presence of carbohydrates and reducing sugars is confimed.

4. Tollen's test:


This test identifies reducing sugars.

Reacts with carbohydrates to form a silver mirror along the inner walls of the tube.

Silver ions are reduced to metallic silver.

Silver mirror is a positive result for the presence of reducing sugars and carbohydrates.

Tollen's chemical reaction:

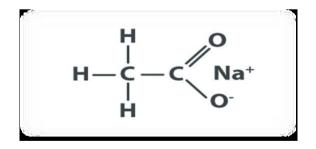
Tollen's Procedure:

- 1. Take **3ml of the given sample solution** in a clean test tube.
- 2. Add 3ml of Tollen's reagent.
- *3.* Keep the test tube in boiling water for ≈ 10 minutes.

4. If a shiny silver mirror is observed, then the presence of carbohydrates and reducing sugars is confimed.

5 - Iodine test:

This test identifies starch. Starch reacts with Iodine solution, and upon cooling a blue color appears. Blue color is a positive result for the presence of starch.


Iodine test chemical reaction:

Iodine Test Procedure:

1. Take **3ml of the given sample solution** in a clean test tube.

- 2. Add 3 drops of Iodine solution.
- 3. Observe the change in color.
- 4. If a **blue color** is observed, then the presence of **starch** is confimed.

Sodium acetate