Assistant Lacturer

Kadhim naeem ajel

Organic Chemistry

Organic chemistry is the study of compounds containing carbon with the exception of simple compounds *e.g.* carbonates (CO_3^{2-}) , carbon dioxide (CO_2) and carbon monoxide (CO).

Nomenclature

There are over 6 million known organic compounds. Nomenclature is therefore very important.

Here are some basic guidelines that should help in the naming of the simple compounds you will come across during this course. You will get practice at this in your tutorials.

1) Find the longest carbon chain in the molecule. This will give you the base of the name:

No of C atoms	Name
1	meth-ane
2	eth-ane
3	prop-ane
4	but-ane
5	pent-ane
6	hex-ane
7	hept-ane
8	oct-ane
9	non-ane
10	dec-ane

2) Determine the principle functional group and its position.

principal functional group	formula	ending becomes
alkane	C-C	-ane
alkene	C=C	-ene
alkyne	C≡C	-yne
alcohol	-OH	-anol
aldehyde	-CH=O	-anal
ketone	>C=O	-anone
carboxylic acid	-COOH	-anoic acid

Position is indicated, where necessary, by numbering the carbons in the main chain. Position need not be indicated for alkanes, as they have no functional group, and aldehydes and acids, as they are terminal functional groups. Positioning numbers are flanked by dash signs. Multiple positions for a given functional group are separated by commas and indicated by the prefixes di, tri, tetra, penta, hexa, hepta, octa, nona and deca.

3) Ancilliary functional groups are given in alphabetical order, with their position at the beginning of the name.

ancilliary functional group	formula	prefix
methyl	-CH ₃	methyl
ethyl	-C ₂ H ₅	ethyl

propyl	$-C_3H_7$	propyl
butyl	$-C_4H_9$	butyl
pentyl	$-C_5H_{11}$	pentyl
hexyl	-C ₆ H ₁₃	hexyl
heptyl	-C ₇ H ₁₅	heptyl
octyl	-C ₈ H ₁₇	octyl
nonyl	-C ₉ H ₁₉	nonyl
decyl	$-C_{10}H_{21}$	decyl
fluorine	-F	fluoro
chlorine	-Cl	chloro
bromine	-Br	bromo
iodine	-1	iodo
amine	-NH ₂	amino
hydroxyl	-OH	hydroxy
cyanide	-CN	cyano
benzyl	$-CH_2C_6H_5$	benzyl
phenyl	-C ₆ H ₅	phenyl

Empirical and Molecular Formulae

Quantitative elemental analysis tells us what elements make up a compound and in what proportions.

The percentage of each element present in a compound is determined by total combustion. C, H, S and N burn to give CO₂, H₂O, SO₂ and NO₂. The quantities of these gases may readily be measured and this leads to information that can be used to calculate the % composition and hence empirical and molecular formulae.

How is this done? First some definitions:

One mole of a substance is 6.02 x 10²³ particles of that substance. This huge value is termed Avogadro's number. One mole of any substance has a mass equal to the relative molecular mass (RMM) of that substance in grams.

Relative molecular mass is the sum of the relative atomic masses (RAMs) of the constituent elements in the compound.

e.g. for ethanol C₂H₅OH RMM = $(2 \times 12.010 \text{ g mol}^{-1}) + (6 \times 1.006 \text{ g mol}^{-1}) + (15.999 \text{ g mol}^{-1})$ = 46.057 g mol⁻¹

0.152 g of an organic compound X containing only C, H and O produces: 0.223 g of CO_2 0.091 g of H_2O upon total combustion. Calculate the empirical formula of the compound X.

Consider the CO₂ $CO_2 \text{ RMM} = 12.010 \text{ g mol}^{-1} + 2 \text{ x } 15.999 \text{ g mol}^{-1} = 44.008 \text{ g mol}^{-1}$ $0.223 \text{ g of } CO_2 = 0.223 \text{ g } / 44.008 \text{ g mol}^{-1} = 5.07 \text{ x } 10^{-3} \text{ mol}$ $5.07 \text{ x } 10^{-3} \text{ mol of } CO_2 \text{ were produced from } 5.07 \text{ x } 10^{-3} \text{ mol of } C$ The mass of C = 5.07 x $10^{-3} \text{ mol x } 12.010 \text{ g mol}^{-1} = 0.061 \text{ g}$ % C in X = 100% x 0.061 g / 0.152 g = 40.1%

Consider the H₂O

H₂O RMM = 2 x 1.006 g mol⁻¹ + 15.999 g mol⁻¹ = 18.011 g mol⁻¹ 0.091 g of H₂O = 0.091 g / 18.011 g mol⁻¹ = 5.05 x 10⁻³ mol 5.05 x 10⁻³ mol of H₂O were produced from 1.01 x 10⁻² mol of H The mass of C = 1.01 x 10⁻² mol x 1.006 g mol⁻¹ = 0.010 g % C in X = 100% x 0.010 g / 0.152 g = 6.7%

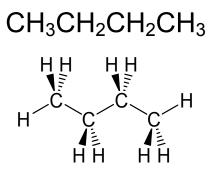
Consider the O

% O in X = 100% - 40.1% - 6.7% = 53.2%

Mass % are used to calculate mole % which yield the empirical formula or simplest ratio of the elements present.

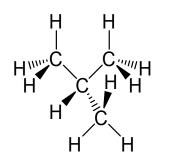
	С	Н	0
relative mass %	40.1	6.6	53.2
divide by RAM	12.010	1.006	15.999
relative mole %	3.3	6.6	3.3
divide by smallest	1	2	1

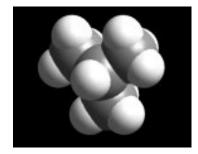
This gives the ratio 1:2:1 and the empirical formula CH_2O . The molecular formula could be any multiple of the empirical formula *e.g.* $C_2H_4O_2$, or $C_3H_6O_3$ since these would all have the same percentage mass ratios.

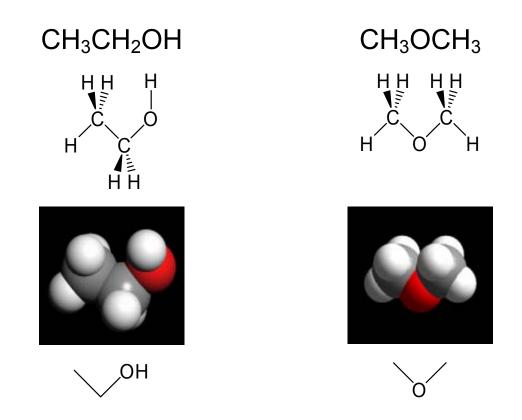

 5.05×10^{-3} mol of C means 5.05×10^{-3} mol of X in 0.152 g RMM of X = 0.152 g / 5.05 x 10^{-3} g mol⁻¹ = 30.10 g mol⁻¹

The molecular formula is also CH₂O and X is actually methanal or formaldehyde.

Structural and Isomerism Structural Formulae


Different arrangements of atoms for a given molecular formula are often possible. Such compounds are called isomers.

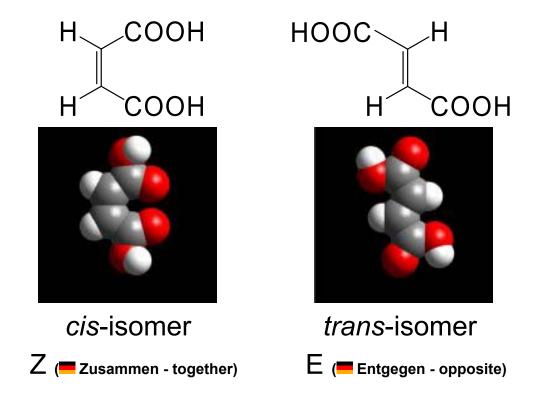

Example one: C₄H₁₀



CH₃CHCH₃CH₃

Example two: C₂H₆O

Both exemplify structural isomerism. C_4H_{10} is a molecular formula as it shows constituent atoms. $CH_3HC_2CH_2CH_3$ is a structural formula as it shows constituent atoms AND connectivities.

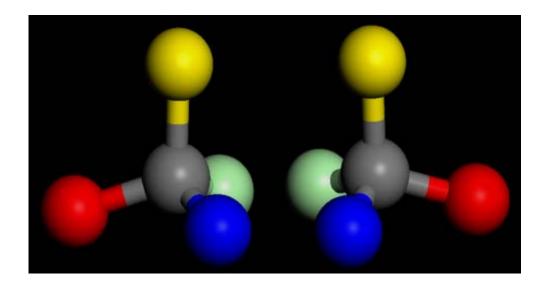

Stereoisomerism

It is also possible to arrange the atoms in molecules with the same structural formulae such that they have different spatial orientation. This is known as stereoisomerism. There are two distinct types of stereoisomer: geometric and optical.

Geometric isomerism

It is possible for single C-C bonds to rotate freely, however, double C=C bonds cannot.

Thus if the two carbon atoms of a C=C bond carry different groups, it becomes possible to orientate these groups in two ways to create geometric isomers.



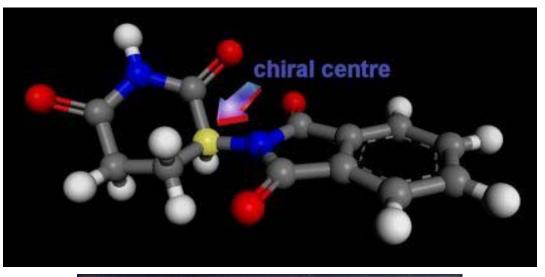
Geometric isomers have *different* physical and chemical properties

Optical isomerism

A carbon atom attached to four *different* groups (substituents) is termed a chiral centre.

Two *different* non-superimposable mirror images are possible.

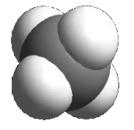
These mirror images are called enantiomers.

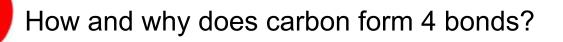

Enantiomers have identical physical properties, except for the direction in which they rotate the plane of plane polarised light.

Rotation to right termed *dextro* or *d* Rotation to left termed *laevo* or *l*

They have identical chemical properties except towards optically active reagents.

If a compound contains a chiral centre but does not rotate the plane of plane polarised light then it must be an equal mixture of *d*- and *l*-enantiomers. Such a mixture is termed a racemic mixture or a racemate.

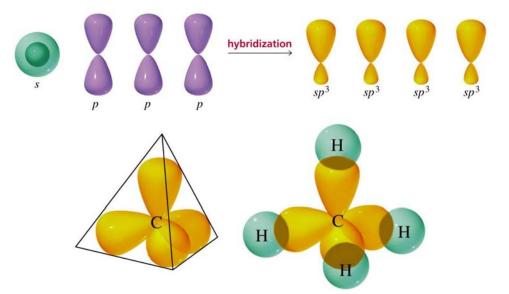

Stereochemistry is crucially important to the pharmaceutical industry. The drug thalidomide, prescribed to pregnant women as a powerful sedative from 1956 exists as two enantiomers. One was the powerful sedative. The other caused human transmutation...

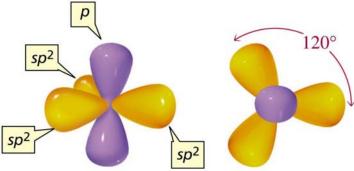


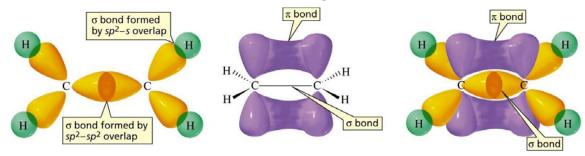
Hybridisation

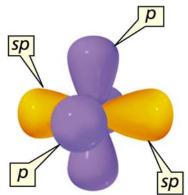
The simplest organic molecule is methane CH₄.

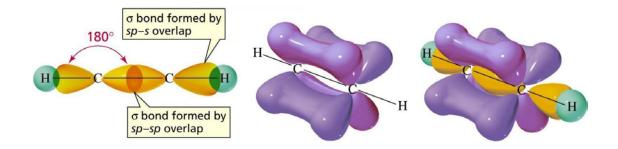
The ground electronic state of carbon suggests it should form 2 bonds as there are two unpaired electrons.




Promotion of one of the two 2s electrons increases energy but the formation of four bonds causes a four-fold decrease.


How can the four bonds formed be identical?


This mixing of an s orbital and three p orbitals to produce four hybrid orbitals is called sp³ hybridisation. ALL tetrahedral carbon and nitrogen atoms in organic chemistry are sp³ hybridised.


ALL trigonal carbons such as those found in double bonds are p^2 hybridised. The unused p orbital on each carbon overlaps to form the π part of the double bond, e.g. ethene.

93 —

ALL linear carbons such as those found in triple bonds are sp hybridised. The unused p orbitals on each carbon overlap to form the π parts of the triple bond, e.g. ethyne (acetylene).

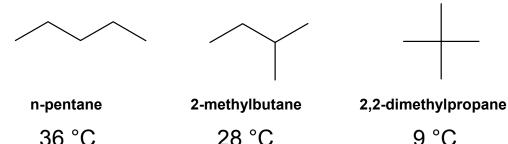
Hydrocarbons

Hydrocarbons are a family of compounds containing only hydrogen and carbon. There are two main classes:

aliphatic and aromatic

Within the aliphatic class there are both saturated and unsaturated hydrocarbons.

The Alkanes


A homologous series of saturated compounds with general molecular formula C_nH_{2n+2} (where n is an integer).

methane CH₄, ethane C₂H₆, propane C₃H₈, butane C₄H₁₀, pentane C₅H₁₂, hexane C₆H₁₄, heptane C₇H₁₆, octane C₈H₁₈, nonane C₉H₂₀, decane C₁₀H₂₂, etc.

Homologous series: a series of compounds in which each successive compound differs from the previous one by a CH_2 unit.

At n = 4 it becomes possible to arrange the carbon skeleton differently *i.e.* it becomes possible for structural isomers to exist. The result is termed branching of the C-C backbone.

How does this affect a physical property such as the boiling point?

As branching increases, the strength of the van der Waals interactions between molecules decreases, resulting in the lowering of boiling points.

Occurrence

Natural gas - principally methane CH_4 Petroleum oil - mixture up to *ca.* n = 40 Separation of crude oil is achieved by fractional distillation. This forms the basis of the petroleum and petrochemical industries.

Chemistry

Relatively, alkane chemistry is very limited. Their main use is as fuels for combustion or oxidation.

Methane	domestic gas supply
Propane	LPG (liquid propane gas)
Butane	camping stove gas

Octane petrol

Complete combustion yields carbon dioxide and water. Incomplete combustion is dangerous as it produces carbon monoxide. Always provide a good supply of air to any process in which a hydrocarbon is being burned

$$2C_{2}H_{6}(g) + 7O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(I)$$

$$2C_{2}H_{6}(g) + 5O_{2}(g) \rightarrow 4CO(g) + 6H_{2}O(I)$$

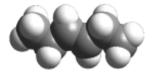
Chemically this is more accurately described as oxidation. Both reactions produce energy in the form of heat and are said to be exothermic.

Halogenation

In the presence of a halogen and ultraviolet light a series of reactions take place:

$Cl_2 \rightarrow 2Cl$	[1]
$CI + CH_4 \rightarrow CH_3 + HCI$	[P]
$CH_3 + CI_2 \rightarrow CH_3CI + CI$	[P]
CI· + CH ₃ CI → CH ₂ CI· + HCI	[P]
$CH_2CI + CI_2 \rightarrow CH_2CI_2 + CI$	[P]
$CI + CH_2CI_2 \rightarrow CHCI_2 + HCI$	[P]
$CHCl_2 + Cl_2 \rightarrow CHCl_3 + Cl_3$	[P]
$CI + CHCI_3 \rightarrow CCI_3 + HCI$	[P]
$CCI_3 + CI_2 \rightarrow CCI_4 + CI_4$	[P]
$CI + CI \rightarrow CI_2$	[T]
$CH_3 + CH_3 \rightarrow C_2H_6$	[1]

The first step is homolytic fission of the halogen to produce halide radicals. This is termed the intitiation step, [I]. Radicals are extremely reactive species with single unpaired electrons denoted \cdot . Radicals react with non-radical and radical species in propagation and termination steps, [P] and [T] respectively. The result is an extensive, indiscriminate mixture of halogenated hydrocarbons that is very expensive to separate.


Reactivity: $F_2 > CI_2 > Br_2 >> I_2$

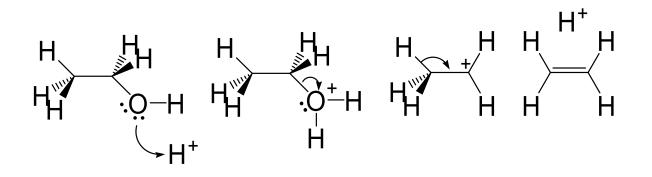
Provides an albeit prohibitively expensive route to useful compounds since polarity (and thus chemical reactivity) has been introduced.

Cracking

This is enormously important industrially. The bonds in longer chain alkanes are cleaved using heat in a process called pyrolysis. The process produces smaller more useful hydrocarbon molecules.

A homologous series of unsaturated compounds with general molecular formula C_nH_{2n} (n is an integer greater than 1) that contain a double bond.

ethene C_2H_4 , propene C_3H_6 , butene C_4H_8 , pentene C_5H_{10} , hexene C_6H_{12} , heptene C_7H_{14} , octene C_8H_{16} , nonene C_9H_{18} , decene $C_{10}H_{20}$, etc.


Preparation

Alkenes are defined by the presence of a C=C double bond. In the laboratory, they can be prepared *via* the dehydration of alcohols by strong acid.

 $H^{+}(aq)$ CH₃CH₂OH \rightarrow CH₂=CH₂ + H₂O

One of the most important principles in organic chemistry is the understanding of how reactions happen at a molecular level. This is termed the reaction mechanism.

Mechanisms are represented by "pushing electrons" between and/or around molecules. The arrows MUST be accurately drawn to show both the origin and destination of the electrons. So what is the mechanism for the dehydration of ethanol?

A mechanism can NEVER be proven, only supported by experimental evidence.

The mechanism shown above may be applied to the dehydration of *any* alcohol with acid to yield *any* alkene.

Chemistry

Alkenes are much more reactive than alkanes. Most of their chemistry involves addition to the C=C double bond.

Hydrogenation (Addition)

Addition of H₂ to C=C in the presence of a suitable catalyst e.g. Pd activated charcoal or Raney Ni (treat nickel aluminium alloy with hot NaOH)

$H_2C=CH_2 + H_2 \rightarrow H_3C-CH_3$