The Experiments of Weather Instruments & Observations lab.

(First Semester) ASD / 2nd Stage 2023 - 2024

Lecturers: L. Ruaa mazin , L. Hasan mahmood, L. Yasamin qusay

Preparing by: L. Ruaa M. Ibraheem, L. Nagham T. Ibraheem

Drawing and analysis of surface observation codes and instruments used for measurement

The surface observation code is written in the following form:

$MiMiMjMj \ YYGGIw$

IIiii IrIxhVV Nddff 1SnTTT 2SnTdTdTd 3PoPoPoPo 4PPPP 5aPPP 6RRRtr 7wwW1W2 8NhClCmCh

• <u>Note:</u> There are latitude and longitude codes (LaLaLa) and (LoLoLo) but they are not mentioned in the main code above.

MiMiMjMj

The type of station, and replace it with one of the following formulas:

If the report is from a stable ground station	(AAXX)
If the report was taken from a marine station	(BBXX)
If the report is from a mobile earth station	(OOXX)

YYGGIw

YY	Date (01-31)
GG	Time (00-23)
Iw	The source and units of wind speed, takes the following values:
0	If the speed is estimated (m/s)
1	If the speed is measured (m/s)
2	If the speed is estimated (knot)
3	If the speed is measured (knot)
/	If the wind speed is not available

IIiii

II Zone number

←

$I_{R}I_{x}hVV$

Vísíbílíty group:

I _R	Gide of Sediment group
0,1,2	In the present of sediment
	This means that there is a sixth group
3,4	In the absence of sediment, omitted or unattended sediment
	This means that the sixth group does not exist
I _X	Gíde of weather case
1	Presence of weather case
1	This means that there is a seventh group
2	In the absence of weather case
	This means that the seventh group does not exist
h	Base height of lower cloud

h	feet	Meters
0	0.100	0.70
0	0-100	0-50
1	100-300	50-100
2	300-600	100-200
3	600-900	200-300
4	900-1900	300- 600
5	1900-3200	600-1000
6	3200-4900	1000-1500
7	4900-6500	1500-2000
8	6500-8000	2000-2500
9	8,000 or higher or no cloud	2500 or higher or no cloud
/	Height of base of cloud is not known.	

Cloud Base Height Measuring Devices:

1. Balloon

2. Scout

3. The siliometer

4. By the mathematical equation:

H=(T-Ta)/6.5*1000

where:

H is the height of the cloud

T dry temperature

Ta The degree of dew point

6.5 is a constant number which is the rate of temperature decrease per 1000 metres.

VV	Vísíbílíty (00-99)
0.50	We add two zeros to the right and the visibility is
0 - 30	measured in units (m)
51 - 55	Doesn't used
56 - 80	We subtract 50, and the visibility is measured in
	uníts (km).
81 - 89	<i>Visibility is calculated from the equation below and</i>
	is measured in units (km)
	VV=(ones dígít)*5+30
90 - 99	This group gives visibility at sea

The location of the visibility is as shown on the station

vv