Lab No. (2)

Calculate the frictional velocity u_{*}

Aims: To calculate the frictional velocity u_{*} and the length of the surface roughness Z_{0} from the graph.

Tools:

1- Air tunnel.
2- Hot-wire anemometer.
4- Obstacles.

Theoretical part :

Shear stress τ can be defined using the Frictional velocity u_{*}, since:

$$
\begin{equation*}
\mathrm{T}=\rho u_{*}^{2} \tag{1}
\end{equation*}
$$

\qquad
Shear stress τ is defined as the rate of momentum transfer per unit area during a given time. u_{*} is the Turbulence velocity, which is a disturbance in wind speed caused by an external force. The result of the change is either in the horizontal or vertical direction, which means:

$$
\begin{equation*}
u_{*}=u^{\prime}=w^{\prime} \tag{2}
\end{equation*}
$$

where u^{\prime} and w ' are the turbulent velocities in the horizontal and vertical directions, respectively.
u_{*} can be calculated using the log wind profile equation:

$$
\begin{equation*}
\ln (\mathrm{z})=\frac{\mathrm{k}}{\mathrm{u} *} u(z)+\ln z_{\circ} . \tag{3}
\end{equation*}
$$

Where the relationship between $u(z)$ on the x axis and $\ln (z)$ on the y axis is a linear relationship so the formula of straight line $(y=a+b x)$ can be similar to equation (3) in the neutral condition. so we can determine u_{*} using slope value as shown :

$$
\begin{equation*}
u_{*}=\frac{\mathrm{k}}{\text { slope }} \ldots \tag{4}
\end{equation*}
$$

Where
k : is the (Von Karman) constant and its value $\mathrm{k}=(0.4)$.
in the same way the roughness length Z_{\circ} can be determined using equation below :

$$
\begin{equation*}
z_{\circ}=\exp (a) \ldots \ldots \ldots \tag{5}
\end{equation*}
$$

Where (a) is the intercept in Z-axis.

methodology:

1- Turn on the wind tunnel.
2- Record the wind speed using Hot-wire anemometer for different heights (every 2.5 cm .).

3- Record the data as in the following table:

freq	$\mathrm{Z}(\mathrm{m})$	$\ln (\mathrm{z})$	$\mathrm{u}(\mathrm{m} / \mathrm{s})$	u^{2}	$\operatorname{Ln} \mathrm{Z} \times \mathrm{u}$
1	0.025				
2	0.05				
3	0.075				
4	0.1				
5	0.125				
6	0.15				
7	0.175				
8	0.2				
9	0.225				
10	0.25				
$\mathrm{n}=10$		$\sum \operatorname{Ln}(\mathrm{Z})$	$\sum \mathrm{u}$	$\sum \mathrm{u}^{2}$	$\sum \operatorname{Ln} \mathrm{Z} \times \mathrm{u}$

4- Draw the linear regression between $u(z)$ on the (x) axis and $\ln (z)$ on the (y) axis.

5- Extract the slope value from the graph or through the relationship:

$$
\text { slope }=\frac{\sum \ln z u(z)-\left(\frac{\left(\sum u(z)\right)\left(\sum \ln z\right)}{n}\right)}{\sum\left(u_{(z)}^{2}\right)-\frac{\left(\sum u(z)\right)^{2}}{n}}
$$

where: n is the number of Record.

Then calculate the u_{*} value from equation (4).
6- calculate the value of intercept (a) from the formula below:

$$
a=\text { ave }(\ln z)-\text { slope } *(\text { ave } u(z))
$$

whereas:
ave $(\ln z)$: is the rate of $\ln z$.
slope : is the slope of a straight line.
ave $u(z)$: the average of recorded wind speed.
7- calculate the value of Z_{\circ} through equation No (5).

