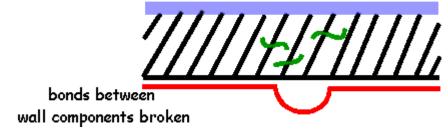
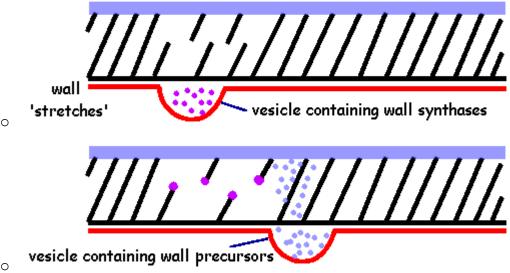

Introduction to Hyphal Growth

Apical Growth

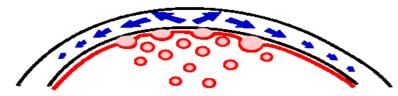

- To understand the mechanisms involved in apical growth of a hypha we need to look again at the HYPHAL TIP.
- We already know that the growing hyphal tip is structurally and functionally different from the rest of the hypha.
- BUT the hyphal tip (like the rest of the hypha) is surrounded by a wall although the wall may be thinner and simpler in structure than the mature lateral wall of the hypha further back.
- We also know that growth of a hypha is closely linked to the presence of vesicles which form the APICAL VESICULAR CLUSTER (AVC):
 - o when a hypha stops growing, these vesicles disappear
 - o when growth of the hypha resumes, the vesicles reappear.
- In addition the position of the vesicles is linked to the direction of growth of a hypha:
 - when a hypha is growing straight ahead, the vesicles are positioned in the centre of the hyphal tip
 - o movement of the vesicles to the left or right side of the hyphal tip is accompanied by a change in direction of growth of the hypha
- So it's clear that the vesicles play a key role in apical growth.
- Vesicles of the AVC contain:

0


- wall PRECURSORS the sub-units or building blocks of the wall polymers e.g. uridine diphosphate N-acetylglucosamine, the sub-unit of chitin
- wall LYTIC ENZYMES which help breakdown and separate wall components e.g. chitinase, glucanase
- wall SYNTHASE ENZYMES which help assemble new wall components and so increase the size of the wall e.g. chitin synthase, glucan synthase.
- TWO MODELS have been proposed to explain the mechanisms of apical growth they differ in whether or not wall lytic enzymes are necessary.
- Model 1 involvement of wall lytic enzymes:
 - According to this model, if the hypha is going to be able to extend at its tip, there will have to be:
- some softening (lysis) of the existing wall, and
- the synthesis and incorporation of new wall material.
 - But these processes will have to be finely balanced otherwise, the wall may become too weak or too rigid for further growth
 - o The following series of diagrams helps illustrate what may happen:

- Vesicles containing lytic enzymes or wall precursors move through the cytoplasm towards the hyphal tip, where they fuse with the plasma membrane, releasing their contents into the wall.
- The lytic enzymes released into the wall attack the polymeric fibrils.

• The weakened fibrils stretch out and become separated from one another due to the turgor pressure of the protoplasm.



- Synthase enzymes and wall precursors build new fibrils and synthesise additional amorphous components of the wall.
- The surface area of the hyphal wall increases. Fusion of the vesicles with the plasma membrane ensures that the former contribute to the increase in surface area of the latter.

• Model 2 - steady state:

Flow of new wall components

 Vesicles fusing with plasma membrane to release contents

- 0
- o According to this model:
- lytic enzymes are NOT involved in apical growth
- because the newly formed wall at the extreme tip of the hypha is VISCOELASTIC (essentially fluid)
- so that as new wall components are added at the tip, the wall flows outwards and backwards (see adjacent diagram)
- and the wall then RIGIDIFIES progressively behind the tip by the formation of extra chemical bonds.

• Hyphal Branching

- Although each <u>hypha</u> exhibits apical growth (i.e. extends at its tip), it doesn't continue growing as just a single filament it will eventually BRANCH and as the branches become progressively longer they too will branch, as illustrated in this <u>movie clip</u> from the <u>Fungal Cell Biology Group</u> based at the University of Edinburgh.
- Features:
- Hyphal branching is necessary for efficient colonization and utilization of the substrate upon which the fungus is growing.
- A branch arises when a NEW GROWTH POINT is initiated in the existing lateral wall of the hypha - this is accompanied by the ACCUMULATION OF VESICLES.
- Branch formation almost certainly involves wall lytic enzymes (model 1), since the branch will emerge through a mature, rigid area of the hypha's lateral wall.
- Branches normally EXTEND AWAY FROM ONE ANOTHER, filling the gaps between existing hyphae, because they're:
 - o responding to nutrient gradients growing out of areas where nutrients have become limited around existing hyphae, into areas where nutrients are more plentiful
 - o growing away from areas which have become staled by the metabolic by-products of existing hyphae.
- The extent of hyphal branching, i.e. the density of a fungal colony (number of hyphal branches formed per unit area), is directly related to the concentration of nutrients in the substrate or growth medium:
 - o a sparsely branched colony (low hyphal density) will develop on a nutritionally weak substrate or growth medium

Lab 2 Fungal Physiology Dr. Hebba Al-Lami

- o a densely branched colony will develop on a nutritionally rich substrate or growth medium.
- o BUT:
- RADIAL GROWTH of the colony is NOT influenced by the concentration of nutrients (within limits).
- So a colony will reach approximately the same diameter in a given time interval whether growing on a nutritionally rich or poor growth medium (again, within limits).
 - THE REASON? BECAUSE:
- Existing hyphal tips at the colony margin (which determine the diameter of a colony) have priority over all other hyphal tips (i.e. the branches) for the available nutrients.
- Only nutrients in excess of those required by the marginal hyphal tips are available to support branching.
- Therefore, the more nutrients that are surplus to the colony margin's requirements, the greater the hyphal densit