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1. Definition and Examples of Groups.
Definition(1-1):
A set  is a group if it is satisfying the following four axioms
i.  a binary operation  (closure) 
ii.  (associativity), 
iii.  s.t.  
iv.  s.t.   (inverse)
Examples(1-2):
1.   is a group.
Solution: , we have
, ii.  iii. , iv.   
  is a group.
  is a group.
Solution: i, ii are clear, 
iii. ,
 iv.  
  is a group.
Solution: i, ii are clear, iii., iv. 
5.   is a group.
Solution: 
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We note that axioms i, ii and iii from above table are satisfy axiom iv. 
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6.  is not a group.
Solution: since 
7.  is a group.
Solution:
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8. Let  be a set. Define a binary operation  on  by the following table 
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


Show that  is a group.
Solution: axioms i,ii are satisfy from above table, iii. The identity element is , axiom iv. 
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9.   is a group.
Solution:
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10. Let , show that  is a group.
Solution:, we have i. ,
 ii. ,
 iii.  
iv. 
11. Let  with   s.t.  are mappings on  s.t. . Show that is a group.
Solution: 
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12. Let and  be defined by . Show that  is a group.
Solution: i.  
ii.,
 iii. ,
 iv.
13. Let  be an arbitrary group, the set of the functions from  into  with the composition  is forms a group, where  s.t. .
Solution: i. Let 

ii. 
iii. is an identity of , since 
iv. the inverse of  in  is , since 
14. Let  be a positive integer and take , then  is an abelian group.
Definition(1-3):  A group  is an abelian if .
Example(1-4): Determine whether  the  previous examples are abelian .


[bookmark: _GoBack]Exercises:
1. Determine whether  an abelian group.
· 
·  s.t. 
·  where 
·  s.t. 
· 
· 
2. Show that,  is a group.
3.      Show that,  is an abelian group.




 

