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DISTRIBUTED INFORMATION SYSTEMS 
Challenges, Goals, and Approaches 

By: Asst. Prof. Dr. Muhanad Tahrir Younis 
 

Distribution is hard for many reasons (facts of life).  Distributed systems (DS) aim to 

provide the core mechanisms and protocols that address the challenges and hide them under 

convenient, easier to use abstractions that others can use.  Unfortunately, not all challenges 

can be hidden under clever abstractions, and they creep up whenever one pushes a 

distributed system to its limits.  So anyone wishing to develop or even use distributed 

systems must understand these fundamental challenges and general approaches to address 

them when they creep up. 

Below are a few facts of life that make distribution hard, the corresponding goals of 

distributed system design, and the main approaches that distributed systems take to 

address them. 

 

FACT OF LIFE 1: Data is big.  Users are many.  Requests are even more. 

No single machine can store or process all data efficiently. Supercomputers can do a lot, 

but they have not been the final answer to scaling for a long time.  The primary goal of 

distributed systems is to enable distribution, i.e., to make multiple independent machines 

interconnected through a network coordinate in a coherent way to achieve a common goal 

(e.g., efficiently process a lot of data, store it, or serve it to a lot of users).  The preceding 

sentence is an accepted definition of a distributed system. 

However, effective processing at scale is hard. An arbitrarily application may simply not 

scale: 

  - Coordination is expensive (networks are expensive). 

  - The application may not exhibit sufficient parallelism. 

  - Bottlenecks may inhibit parallelism.  Sometimes bottlenecks hide in the very low levels 

if those are not used correctly (e.g., a network hub, a logging server, a database, a 

coordinator, etc.). 
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Goal 1: Scalability.  Effective coordination at scale.   The more resource we add, the more 

data we should be able to store/process, and the more users we can serve.  This implies 

programming models and abstractions that are known to scale.  Examples that we will learn 

about: the map/reduce model, RDDs, etc.  These are all examples of programming models 

that make an application scalable.  However, never hope for perfect scalability: add one 

machine, increase your capacity proportionally forever.  Most often, the scalability curve 

tapers off as various components of the system start to reach their capacity.   Sometimes 

these can be very hidden components (e.g., a monitoring system, a network router). 

 

Approach 1: Sharding.  The primary mechanism for scalability is called sharding: launch 

multiple processes (also known as workers), split up your load into pieces (also known as 

shards), and assign different shards to different workers.  For example, you can split your 

dataset into pieces, split your user base into subsets of users, or distribute your incoming 

requests to different workers.  The workers should be designed to coordinate to achieve a 

common, coherent service despite the sharding (e.g., compute a global statistic over the 

dataset, perform each user’s actions in a consistent way with respect to the other users, etc.).  

Sharding raises substantial semantic challenges (called consistency challenges), especially 

in the context of failures.  

FACT OF LIFE 2: At scale, failures are inevitable.  

Many types of failures exist at all levels of a system: 

  - network failures 

  - machine failures (software, hardware, flipped bits in memory, overheating, etc.) 

  - datacenter failures 

  - software failures 

  … other… 
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They are of many types: some are small and isolated others are major failures, some are 

persistent others are temporary, some resolve themselves others require human 

intervention, some result in crashes others result in small, detectable corruptions.  What 

they all have in common: most failures are very unpredictable!  They can occur at any time, 

and at scale they are guaranteed ALL THE TIME! And they greatly challenge coordination 

between the machines of a distributed systems (e.g., a machine tells another machine to do 

something but it doesn't know if it's done it, how can it proceed?)!  Or, imagine that two 

machines need to coordinate (e.g., to compute a global statistic over a sharded dataset) but 

they cannot talk to each other.  What are they supposed to do?  Can they go on with their 

processing and make progress only among those processes that are up and running?  When 

is it OK to do that?  For example, if the statistic we are computing over a sharded dataset 

is a rough average, then it may be OK to report the average over n-1 workers if one of the 

workers is down.  However, if the statistic needs to be exact and is sensitive to the data 

(e.g., we need an exact maximum/minimum), then n-1 live workers cannot continue until 

the n-th comes back with its own value. 

 

Goal 2: Fault tolerance.  The goal is to hide as much as of the failures as possible and 

provide a service that finishes the computation fast despite failures, stores some data 

reliably despite failures, provides its users with continued and meaningful service despite 

failures. Coordination needs to take failures into account and recover from them. 

 

The fault tolerance goal subsumes multiple sub-goals, including: 

- Availability: the service/data continues to be operational despite failures. 

- Durability: some data or updates that have been acknowledged by the system will 

persist despite failures and will eventually become available. 

- Durability differs from availability: durability can be thought of as “eventual” 

availability of some data or state.  
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Approach 2: Replication. The primary mechanism used for fault tolerance is replication: 

have multiple replicas execute/store the same shard; if one replica dies, another replica can 

provide the data/computation.   For example, if we are computing a maximum over a 

sharded dataset across multiple workers, have the maximum over each shard be computed 

by two or three replicas in parallel; if one replica dies, another one can report the maximum 

to the other n-1 worker sets. 

 

FACT 3: Consistency in sharded and replicated systems is HARD. 

Both sharding and replication raise substantial consistency/semantics challenges in the 

context of failures.  Consider the case of computing an exact average over a sharded and 

replicated dataset: how do we make sure that we incorporate the average over each shard 

only once if the average over each shard is computed and reported by three replicas?  

Assigning each shard a unique ID may help address this particular problem, but the 

challenge can become a lot harder if the faulty replica does not die, but instead spews up a 

faulty average value due to, e.g., a memory error.  

 

Goal 3: Meaningful consistency semantics.  Dealing with these issues is hard for both 

the programmers who build distributed applications and the users who use these 

applications.  Therefore, the key thing is to build infrastructure systems (such as storage 

systems, computation frameworks, etc.) that provide clear semantics that hold in the face 

of failures, and to express those semantics clearly in the APIs of these systems.  For 

example, if we decide that in case of failure our distributed computation system will return 

the results of a partial computation, then we need to communicate that through our API so 

the programmer/user of the results is aware of the situation.  We may also want to provide 

error bounds for the reported results. 
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Approach 3:  Rigorous protocols, such as agreement protocols.  The general approach 

is to develop rigorous protocols, which we will generically call here agreement protocols, 

that allow workers and replicas to coordinate in a consistent way despite failures.  

Agreement protocols often rely on the notion of majorities: as long as a majority agrees on 

a value, the idea is that it can be safe to continue making that action.  Different protocols 

exist for different consistency challenges, and often the protocols can be composed to 

address bigger, more realistic challenges.   

 

We will look at two types of protocols that address consistency challenges in distributed 

databases:  

(1) commitment protocols, for implementing transactional semantics in a sharded database.  

(2) consensus protocols, for implementing consistent updates in a replicated database.    

 

After we look at these separately, we will look at how one particular distributed database, 

Google’s Spanner, combines the two mechanisms to build a strongly consistent database 

of global scale.   

 

II. Example: Web Service Architecture 

 

Before looking at real designs, let us understand the challenges a bit more with a simple 

example: we will build up a web service architecture!  We will start with a basic 

architecture that is not scalable or fault tolerant (or particularly efficient) and we will add 

DS components to make it more so.  Unfortunately, every time we add a new component 

to solve a problem, we will see that we will open up a bunch more problems. 

 

 

 



 

 6 

1. Basic Architecture 

Architecture: 

- web front end (FE): creates and serves pages in response to users’ 

requests; accesses the database to get the data necessary to populate the 

response pages. 

- database server (DB) with disk attached: stores all the data (user data, 

even session data). 

- network that connects web server with database server.  

 

Advantages:  FE is stateless and can restart on failures, all data is in DB, which gives good 

durability and consistency properties. 

Problems: 

       1) Latency:  network, DB (disk, transactions, contention) 

       2) Throughput: limited by DB most likely 

       3) Fault tolerant:  not very.  DB is not replicated => single point of failure for both 

availability and durability. 

       4) Scalable: not very. 1 FE, 1 DB. 

Let us deal with problem 1). 

 

2. Goal: Reduce Latency 

Architecture:  

Web FE’s reads/writes go through in-memory cache ($$).  The 

$$ saves the latest values of written data and responds with them 

when the FE asks for something in the cache. 
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Properties: 

1- Read performance: improved if working set fits in memory.  If not, read performance 

does not improve (may even degrade). 

2- Durability: depends on cache: write-through vs. write-back: 

   a- Write-through cache = writes go through the cache, where they are saved for future 

reads, but then they go all the way to the DB. The cache waits for the DB to 

acknowledge the write before it returns to FE. 

   b- Write-back cache = writes go through the cache, where they are buffered.  The cache 

sends them asynchronously to the database from time to time. 

- Durability is good with write-through $$, poor with write-back $$. 

- Write performance is opposite:  

good with write-back cache, poor with write-through cache. 

- Are there any consistency issues? No.   

Only one server accesses DB, and it goes through one $$. 

Problems 3), 4) from above still exist.  Let us deal with part of 4) next. 

 

3. Goal: Scale Out the FE (and get some fault tolerance for it) 

 

Architecture: Launch multiple replicas of the front end.  

Each has its own local cache, which we will assume is write-

through. 

 

Benefit: If an FE dies, another one can take over.  If the 

caches are write-through, there are no recovery issues.  So 

this architecture gives scalability and fault tolerance for the 

FE part. 
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Problems: 

- Consistency now becomes a problem.  Entries in the caches can become stale.  To address 

this, we need to keep the caches in sync, or invalidate them whenever a write occurs on a 

cached entry.  Writes (or invalidation messages) thus need to propagate to the DB plus all 

the caches. 

- So, write performance can be affected.  

- We also need some concurrency control on the DB now because multiple FEs can update 

the DB  at the same time.  E.g., the DB server needs to lock entries while updating them. 

4. Goal: Fault Tolerance for DB 

Architecture: Launch identical replicas of the DB server, 

each with its disk. All replicas hold all data, writes go to all. 

 

Problems: 

- Writes now need to propagate to all replicas.  So they are 

much slower!  Even if done in parallel, because FE now 

needs to wait for the slowest of DB replicas to commit 

(assuming write-through cache, which offers the best 

durability). 

- Moreover all replicas need to see all writes IN THE SAME ORDER!  If order is 

exchanged, they can quickly go “out of sync”!  So lots more consistency issues. 

- There are also availability issues.  If you require all the replicas to be available when a 

write is satisfied (for durability), availability goes DOWN!  Consensus protocols, which 

work on a majority of replicas, address this. 

- Another consistency challenge: how are reads handled?  If we read from one replica, 

which one should we read given that updates to the item we are interested in might be in 

flight as you attempt to read it? We will see how to address these issues in future lectures 

by structuring the replica set in particular ways.   
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5. Goal: Scalability for DB 

Architecture: Partition the database into multiple shards, 

replicate each multiple times for fault tolerance.  Requests 

for different shards go to different replica groups. 

Problems: 

- How should data be shared? Based on users, based on 

some property of the data? 

- How should different partitions get assigned to replica 

groups?  How do clients know which servers serve/store 

which shards? 

- If the FE wants to write/read multiple entries in the DB, how can it do that atomically if 

they span multiple shards?  If different replica groups need to coordinate to implement 

atomic updates across shards, won’t that hinder scalability? 


