
قالجامعة المسنتصرية /كلية العلوم

Mustansiriyah University

College of science
Physics department

Optics

2023-2024
Lecture (5-6)
For $3^{\text {rd }}$ year Students
Lecture Title: Problems, Solutions, and Assignments on Light Refraction

Edited by

Prof. Dr. Ali A. Al - Zuky

Normal shift

$\longleftarrow t \longrightarrow$

Optical path: It is defined as distance travelled by light in vacuum in the same time in which it travels a given path length in a medium.

Real and Apparent Depth:

If object and observer are situated in different medium then due to refraction, object appears to be displaced from its real position. There are two possible conditions

| When object is in denser medium and |
| :--- | :--- |
| observer is in rare medium | | When object is in rare medium and |
| :--- |
| observer is in denser medium |

(2) $\mu=\frac{\text { Real depth }}{\text { Apparent depth }}=\frac{h}{h^{\prime}}$

Real depth >Apparent depth that's why a coin at the bottom of bucket (full of water) appears to be raised)
(2) $\mu=\frac{h^{\prime}}{h}$

Real depth < Apparent depth that's why high flying aeroplane appears to be higher than it's actual height.
(3) Shift $d=h-h^{\prime}=\left(1-\frac{1}{\mu}\right) h$
(4) For water $\mu=\frac{4}{3} \Rightarrow d=\frac{h}{4}$

For glass $\mu=\frac{3}{2} \Rightarrow d=\frac{h}{3}$
(3) $d=(\mu-1) h$
(4) Shift for water $d_{w}=\frac{h}{3}$

Shift for glass $d_{g}=\frac{h}{2}$

- Greater the refractive index lesser will be the critical angle.
(b) For (water-air) pair $\mu=1.33 \rightarrow i_{c \text { water }}=49.19$
(a) For (glass- air) pair $\mu=1.5 \rightarrow i_{\text {c glass }}=41.81$
(c) For (diamond-air) pair $\mu=2.42 \rightarrow i_{\text {c diamond }}=24.42$
- With temperature rise refractive index of the material decreases therefore critical angle increases

Examples of total internal reflection (TIR)

1. Brilliance of diamond: Due to repeated internal reflections diamond sparkles.
2. Mirage and looming.

Mirage : An optical illusion in deserts

Looming : An optical illusion in cold ponintrios
3. Optical fiber : Optical fibers consist of many long high quality composite glass/quartz fibers. Each fiber consists of a core and cladding. The refractive index of the material of the core $(\mu 1)$ is higher than that of the cladding $(\mu 2)$.
4. Field of vision of fish (or swimmer) : A fish (diver) inside the water can see the whole world through a cone with:
a) Apex angle $=2 i_{c}=2 C=98^{\circ}$
b) Radius if base $r=h \tan \left(i_{c}\right)=\frac{h}{\sqrt{\mu^{2}-1}}$
c) Area of base $A=\frac{\pi h^{2}}{\mu^{2}-1}$

For water

$$
\begin{gathered}
\mu=1.33=\frac{4}{3} \text { so } r=\frac{3 h}{\sqrt{7}} \text {, and } A \\
=\frac{9 \pi h^{2}}{7} \\
i_{c}=C
\end{gathered}
$$

5. Porro prism : A right angled isosceles prism, which is used in periscopes or binoculars. It is used to deviate light rays through o 90 and o 180 and also to erect the image

Solved Problems for previous lectures:

Problem1: A beam of light passes through a plate of glass with a thickness of 1.52 cm and a refractive index $\mu=1.47$. The beam enters from the air at an angle of 35.8°. Determine the deviation d of the ray as illustrated in below diagram:.

sol:

$$
\begin{gathered}
\text { used } d=l \sin (i-r) \quad \ldots\left(12 l e c 2_{2} 4\right) \text { and } l=\frac{t}{\cos (r)} \quad \ldots\left(14 l e c 2 _4\right) \text { to get: } \\
\qquad d=t \frac{\sin (i-r)}{\cos (r)} \quad \ldots
\end{gathered}
$$

Or used

$$
d=t \sin (i)\left[1-\frac{\mu 1}{\mu 2} \frac{\cos (i)}{\cos (r)}\right] \quad \ldots\left(19 l e c 2_{-} 4\right)
$$

Must be find angle of refraction (r) using Snell's law:

$$
\begin{gathered}
\sin (r)=\frac{\mu 1}{\mu 2} \sin (i) \\
\sin (r)=\frac{1}{\mu} \sin (i) \\
\sin (r)=\frac{1}{1.47} \sin (35.8)=\frac{0.5851}{1.47}=0.3980 \\
r=\sin ^{-1}(0.398)=23.4532^{\circ} \\
\therefore d=t \frac{\sin (i-r)}{\cos (r)}
\end{gathered}
$$

$$
\begin{gathered}
d=1.52 \frac{\sin (35.8-23.4532)}{\cos (23.4532)}=1.52 \frac{\sin (12.3468)}{\cos (23.4532)}=1.52 \frac{0.2138}{0.9174} \\
d=1.52 \times 0.2330=0.3542 \mathrm{~cm}
\end{gathered}
$$

Problem2: A laser beam is directed through a rectangular block of acrylic glass (PMMA) with a refractive index (μ) of 1.49 . The incident angle of the laser beam is 45°. The block has a thickness of 2.5 cm . Calculate the lateral displacement (deviation) of the laser beam as it exits the acrylic glass block.

Sol:

$$
\begin{gathered}
\sin (r)=\frac{\mu 1}{\mu 2} \sin (i) \\
\sin (r)=\frac{1}{\mu} \sin (i) \\
\sin (r)=\frac{1}{1.49} \sin (45)=0.4746 \\
r=\sin ^{-1}(0.4746)=28.3333^{\circ} \\
\therefore d=t \frac{\sin (i-r)}{\cos (r)} \\
d=2.5 \frac{\sin (45-28.3333)}{\cos (28.3333)}=2.5 \frac{\sin (16.6667)}{\cos (28.3333)}=2.5 \frac{0.2868}{0.8802} \\
d=2.5 \times 0.3258=0.8145 \mathrm{~cm}
\end{gathered}
$$

Problem3: A ray of light is incident on a piece of glass at an angle of 45°. If the angle of refraction is 25.37°, find (a) the refractive index and (b) the critical angle:

Sol:
we'll use Snell's Law for refraction, which relates the angle of incidence (i), the angle of refraction (r), and the refractive indices of the two media. Snell's Law is given by:

$$
\begin{gathered}
\mu 2 \sin (r)=\mu 1 \sin (i) \\
\mu 2=\mu 1 \frac{\sin (i)}{\sin (r)}=1 \frac{\sin (45)}{\sin (25.37)}=\frac{0.7071}{0.4285}=1.6502 \\
i_{c}=\sin ^{-1}\left(\frac{1}{\mu}\right) \quad \ldots(11) \text { lect } 2 _4
\end{gathered}
$$

The critical angle for light transitioning from glass to air is as follows:

$$
i_{c}=\sin ^{-1}\left(\frac{1}{1.6502}\right)=\sin ^{-1}\left(\frac{1}{1.6502}\right)=\sin ^{-1}(0.6060)=37.3008^{\circ}
$$

Problem4: A rectangular aquarium is to be filled with water. The sides are made of glass plates 8 mm thick. Inside, the walls are 35 cm apart, and the refractive index of the glass is 1.5250 . If a ray of light is incident on one side at an angle of 50°, find the lateral displacement produced when the tank is (a) empty and (b) filled with water.

Sol:

Case 1:

$$
\mu 3=\mu 1 \text { no water in tank }
$$

Must be find angle of refraction (r) using Snell's law:

$$
\begin{gathered}
\sin (r)=\frac{\mu 1}{\mu 2} \sin (i) \\
\sin (r)=\frac{1}{\mu} \sin (i) \\
\sin (r)=\frac{1}{1.5250} \sin (50)=\frac{0.7660}{1.525}=0.5023 \\
r=\sin ^{-1}(0.5023)=30.1523^{\circ} \\
\therefore d 1=t \frac{\sin (i-r)}{\cos (r)} \text { form } 1^{\text {st }} \text { face } \\
d=0.8 \frac{\sin (50-30.1523)}{\cos (30.1523)}=0.8 \frac{\sin (19.8477)}{\cos (30.1523)}=0.8 \frac{0.3395}{0.8647} \\
d 1=0.8 \times 0.3926=0.3141 \mathrm{~cm}
\end{gathered}
$$

At the same way compute the deviation d 2 from the $2^{\text {nd }}$ face, so:

$$
d 2=0.3141 \mathrm{~cm}
$$

$$
\therefore d=d 1+d 2=0.3141+0.3141=0.6282 \mathrm{~cm}
$$

In case 2: tank fills with water:

$$
\mu 3=1.33 \neq \mu 1
$$

In same way compute d 1 in this case air-glass: $\mathrm{t} 1=0.8 \mathrm{~cm}$ glass thickness

$$
d 1=0.3141 \mathrm{~cm}
$$

The deviation caused by water d 2 computed as follows:
Here $\mathrm{t} 2=35 \mathrm{~cm}$ tank thickness, and $\mathrm{i} 2=\mathrm{r} 1=30.1523^{\circ}$

$$
\begin{gathered}
\mu 2 \sin (i 2)=\mu 3 \sin (r 2) \\
\sin (r 2)=\frac{\mu 2}{\mu 3} \sin (i 2) \\
\sin (r 2)=\frac{1.525}{1.33} \sin (30.1523)=1.1466 \times 0.5023=0.5759 \\
r 2=\sin ^{-1}(0.5759)=35.1627^{\circ} \\
\therefore d 2=t 2 \frac{\sin (i 2-r 2)}{\cos (r 2)} \text { form water } \\
d 2=35 \frac{\sin (30.1523-35.1627)}{\cos (35.1627)}=35 \frac{\sin (-5.0104)}{\cos (35.1627)}=35 \frac{-0.0873}{0.8175} \\
d 2=35 \times(-0.1068)=-3.7380 \mathrm{~cm}
\end{gathered}
$$

Now compute the deviation caused by $2^{\text {nd }}$ face of tank d 3 as follows:
Here $\mathrm{t} 3=0.8 \mathrm{~cm}$ glass thickness and $\mathrm{i} 3=\mathrm{r} 2=35.1627^{\circ}$

$$
\begin{gathered}
\mu 3 \sin (i 3)=\mu 2 \sin (r 3) \\
\sin (r 3)=\frac{\mu 3}{\mu 2} \sin (i 3)
\end{gathered}
$$

$$
\begin{gathered}
\sin (r 3)=\frac{1.33}{1.525} \sin (35.1627)=0.8721 \times 0.5759=0.5022 \\
r 3=\sin ^{-1}(0.5022)=30.1457^{\circ} \\
\therefore d 3=t 3 \frac{\sin (i 3-r 3)}{\cos (r 3)} \text { form } 2^{\text {nd }} \text { face of tank }
\end{gathered}
$$

$$
d 3=0.8 \frac{\sin (35.1627-30.1457)}{\cos (30.1457)}=0.8 \frac{\sin (5.0170)}{\cos (30.1457)}=0.8 \frac{0.0875}{0.8648}
$$

$$
d 3=0.8 \times 0.1012=0.0810 \mathrm{~cm}
$$

So the total deviation given by:

$$
\begin{gathered}
d=d 1+d 2+d 3=0.3141-3.7380+0.0810 \\
d=-3.3429 \mathrm{~cm}
\end{gathered}
$$

Problem5: A ray of light is incident on one face of a rectangular glass slab of thickness 0.1 m and refractive index 1.5 at an angle of 60° with the normal. Calculate the lateral shift produced. (Given $\sin 35.3^{\circ}=0.5773, \cos 35.3^{\circ}=0.816, \sin 24.7^{\circ}=0.148$).

Sol:
The correct is $\mathrm{d}=0.0513$ given $\mathrm{i}=60^{\circ}$ thickness of the slab, $\mathrm{t}=0.1 \mathrm{~m}$, refractive index of the slab $\mu=1.5$. let the angle of refraction angle is r 1 . We know that

$$
\begin{gathered}
\mu=\frac{\sin (i 1)}{\sin (r 1)} \\
\sin (r 1)=\frac{\sin (i 1)}{\mu}=\frac{\sin (60)}{1.5}=0.5773 \\
r 1=\sin ^{-1}\left(0.5773=35.5^{\circ}\right.
\end{gathered}
$$

The lateral shift (d) by glass slab is given by:

$$
\begin{aligned}
d=t \frac{\sin (i 1-r 1)}{\cos (r 1)}= & 0.1 \frac{\sin (60-35.5)}{\cos (35.5)}=0.1 \frac{\sin (24.7)}{\cos (35.5)} \\
& d=0.1 \frac{0.418}{0.816} \\
& d=0.0513 \mathrm{~m}
\end{aligned}
$$

Problem6: A beam of monochromatic blue light of wavelength $4200 \AA$ in air travels in water ($\mu=4$ / 3). Its wavelength in water will be: (a) $2800 \AA$ (b) $5600 \AA$ (c) $3150 \AA$ (d) $4000 \AA$

Solution: (c)

$$
\begin{aligned}
\mu & =\frac{c}{v}=\frac{f_{o} \lambda_{o}}{f \lambda} \\
\therefore \mu=\frac{\lambda_{o}}{\lambda} & \\
\quad \therefore \mu \alpha \frac{1}{\lambda} f_{o} & =\text { fand } \lambda_{o} \neq \lambda
\end{aligned}
$$

$$
\begin{gathered}
\frac{\mu_{1}}{\mu_{2}}=\frac{\frac{\lambda_{o}}{\lambda_{1}}}{\frac{\lambda_{o}}{\lambda_{2}}}=\frac{\lambda_{2}}{\lambda_{1}} \\
\frac{\mu_{1}}{\mu_{2}}=\frac{1}{\frac{4}{3}}=\frac{\lambda_{2}}{4200} \\
\lambda_{2}=4200 \times \frac{3}{4}=3150 A^{o}
\end{gathered}
$$

Problem7: A ray of light is incident at the meduim1-meduim2 interface at an angle i , it emerges finally parallel to the surface of meduim2. Prove that the value of : $\mu_{1}=\frac{1}{\sin (i)}$

Sol:
For medium1-medium 2 interface

$$
\begin{equation*}
\frac{\mu_{1}}{\mu_{2}}=\frac{\sin (r)}{\sin (i)} \tag{1}
\end{equation*}
$$

For medium2-air interface:

$$
\begin{gathered}
\frac{\mu_{2}}{\mu_{\text {air }}}=\frac{\sin (r 2)}{\sin (i 2)}=\frac{\sin (90)}{\sin (r)} \\
\frac{\mu_{2}}{1}=\frac{\sin (90)}{\sin (r)} \\
10
\end{gathered}
$$

$$
\begin{align*}
\frac{\mu_{2}}{1} & =\frac{1}{\sin (r)} \\
\sin (r) & =\frac{1}{\mu_{2}} \quad \ldots \tag{2}
\end{align*}
$$

Substitute eq2 in eq1 get:

$$
\begin{gathered}
\frac{\mu_{1}}{\mu_{2}}=\frac{\sin (r)}{\sin (i)}=\frac{\frac{1}{\mu_{2}}}{\sin (i 1)} \\
\frac{\mu_{1}}{\mu_{2}}=\frac{\frac{1}{\mu_{2}}}{\sin (i)} \\
\mu_{1}=\frac{1}{\sin (i)}
\end{gathered}
$$

Problem8: A rectangular slab of refractive index μ is placed over another slab of refractive index 3 , both slabs being identical in dimensions. If a coin is placed below the lower slab, for what value of μ will the coin appear to be placed at the interface between the slabs when viewed from the top: (a) 1.8 , (b) 2, (c) 1.5 , (d) $=2.5$.

Sol:
(c) Apparent depth of coin as seen from top:

$$
\begin{gathered}
d=\frac{x}{\mu 1}+\frac{x}{\mu 2}=x \rightarrow \frac{1}{\mu 1}+\frac{1}{\mu 2}=1 \rightarrow \frac{1}{3}+\frac{1}{\mu}=1 \\
\frac{1}{\mu}=1-\frac{1}{3}=\frac{2}{3} \\
\mu=1.5
\end{gathered}
$$

Problem9: A light ray from air is incident (as shown in figure) at one end of a glass fiber making an incidence angle of 60° on the lateral surface, so that it undergoes a total internal reflection. How much time would it take to traverse the straight fiber of length 1 km : a) $3.33 \mu \mathrm{~s}$, b) $6.67 \mu \mathrm{~s}$, c) $5.77 \mu \mathrm{~s}$, d) $3.85 \mu \mathrm{~s}$.

Sol: d)
When total internal reflection just takes place from lateral surface then:

From

$$
\begin{array}{r}
i=i_{c}=C=60^{\circ} \\
\mu=\frac{1}{\sin \left(i_{c}\right)}=\frac{1}{\sin (60)}=\frac{2}{\sqrt{3}}
\end{array}
$$

Hence time taken by light transverse some distance in medium:

$$
t=\frac{\mu x}{c}=\frac{\frac{2}{\sqrt{3}}\left(1 \times 10^{3}\right)}{\left(3 \times 10^{8}\right)}=3.85 \mu \mathrm{~s}
$$

H.w.

1. A ray of light passes from vacuum into a medium of refractive index μ, the angle of incidence is found to be twice the angle of refraction. Prove the angle of incidence is $i=2 \cos \left(\frac{\mu}{2}\right)$ use relation $\sin (2 \theta)=2 \sin (\theta) \operatorname{cose}(\theta)$
2. Calculate the lateral displacements of rays of light incident on a block of glass with parallel sides of thickness 5 cm , at the following angles: (i) $\mathbf{5}^{\circ}$, (ii) $\mathbf{1 0}^{\circ}$, (ii) $\mathbf{1 5}^{\circ}$, (iv) $\mathbf{2 0}$, (v) 30°, and (vi) 40°.
3. On a glass plate a light wave is incident at an angle of 60°. If the reflected and the refracted waves are mutually perpendicular, the refractive index of material is:
.(a) $\frac{\sqrt{3}}{2}$, (b) $\sqrt{3},($ c $) \frac{3}{2}$, (d) $\frac{1}{\sqrt{3}}$
4. Velocity of light in glass whose refractive index with respect to air is 1.5 is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and in certain liquid the velocity of light found to be $2.50 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of the liquid with respect to air is: (a) 0.64 , (b) 0.8 , (c) 1.2 , (d) 1.44 .
Hinte: $\mu=\frac{c}{v}, \rightarrow \frac{\mu_{1}}{\mu_{2}}=\frac{\frac{c}{v_{1}}}{\frac{c}{v_{2}}}=\frac{v_{2}}{v_{1}} \quad \rightarrow \frac{\mu_{1}}{\mu_{2}}=\frac{v_{2}}{v_{1}}$
5. The ratio of thickness of plates of two transparent mediums A and B is $6: 4$. If light takes equal time in passing through them, then refractive index of B with respect to A will be : .(a)1.4 (b) 1.5 (c) 1.75 (d) 1.33.
6. A ray of light passes from vacuum into a medium of refractive index μ, the angle of incidence is found to be twice the angle of refraction. Then the angle of incidence is:

$$
(a) \cos ^{-1}\left(\frac{\mu}{2}\right),(b) 2 \cos ^{-1}\left(\frac{\mu}{2}\right), \quad(c) 2 \sin ^{-1}(\mu), \quad(d) 2 \sin ^{-1}\left(\frac{\mu}{2}\right)
$$

7. The wavelength of light in two liquids ' x ' and ' y ' is $3500 \AA$ and $7000 \AA$, then the critical angle of x relative to y will be : (a) 60° (b) 45° (c) 30° (d) 15°.

References

1. A. Jenkins , and Harvey E.White, " FUNDAMENTALS OF OPTICS" FourthEdition, McGraw-Hill Higher Education 1981.
2. N. SUBRAHMANYAM, and BRIJ LAL ,"A TEXTBOOK OF OPTICS", S. CHAND \& COMPANY LTD. (AN ISO 9001: 2000 COMPANY) RAM NAGAR, NEW DELHI-110 055, 2000
