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10. The Jordan-Holder Theorem and Related Concepts.
Definition(10-1):
By a chain for a group  is meant any finite sequence of subsets of 
  descending from   to  with the property that all the pairs  are  subgroups of .
    Remark(10-2):
    The integer  is called the length of the chain. When , then the         chain in  definition (10-1) will called the trivial.
    Example(10-3):
    Find all chains in a group .
 Solution: The subgroups of a group  are :
· 
· 
· 
The chains of a group  are
 is a chain of length one
 is a chain of length two.
    Example(10-4):
    In the group  of integers modulo , the following chains are              normal chains:
,
,
,
.
    All subgroups are normal, since  is a commutative group.
Definition(10-5): (Normal Chain)
If  is a normal subgroup of a group  for all , then the chain  is called a normal chain.
Example(10-6):
Find all chains in the following groups and determine their length and type.
· ;
· ;
·  (Homework);
·  (Homework).
Solution: The subgroups of a group  are :




Then the chains in  are:
 is a trivial chain of length one
 is a normal chain of length two
 is a normal chain of length two.
The subgroups of a group  are :




Then the chains in  are:
 is a trivial chain of length one
 is a normal chain of length two
 is a normal chain of length two
 is a normal chain of length three.
    Definition(10-7): (Composition Chain)
    In the group , the descending sequence of sets 

   forms a composition chain for   provided
1.  is a  subgroup of ,
2.  is a normal  subgroup of ,
3. The inclusion , where  is a normal subgroup of , implies either  or .
Remark(10-8):
Every composition chain is a normal, but the converse is not true in general, the following example shows that.
Example(10-9):
In the group , the normal chain 

is not a composition chain, since it may be further refined by inserting of the set or . On other hand,

and 

are both composition chains for  .
Example(10-10):
Find all chains in the following groups and determine their length and type.
· ;
· ;
·  (Homework).
Solution: The subgroups of a group  are :




Then the chains in  are:
 is a trivial chain of length one.
 is a normal chain of length two, but it is not composition chain, since there is a normal subgroup  in , such that .
 is a normal chain of length two, but it is not composition chain, since there is a normal subgroup  in , such that .
 is a composition chain of length three. 
The subgroups of a group  are :






Then the chains in  are:
 is a trivial chain of length one.
 is a normal chain of length two.
 is a normal chain of length two.
 is a normal chain of length two.
 is a normal chain of length two.
 is a composition chain of length three.
 is a composition chain of length three.
Example(10-11):
Let  be the group of symmetries of the square. 
A normal chain for  which fails to be a composition chain is 
.
Example(10-12): (Homework)
Determine the following chain whether normal, composition: 
.
  
Example(10-13):
  The group   has no a composition chain, since the normal subgroups of  are the cyclic subgroups  ,  a nonnegative integer, Since the inclusion   holds for all , there always exists a proper subgroup of any given group.
Definition(10-14):
A normal subgroup   is called a maximal normal subgroup of the group  if  and there exists no normal subgroup  of  such that .
Example(10-15):
In the group , the cyclic subgroups  and  are both maximal normal with orders  and , respectively.
Example(10-16): 
Determine the maximal normal subgroups in the group .
Solution: The normal subgroups of  are:




The maximal normal subgroups of  are  and , since there is no normal subgroup in  containing  and .
Remark(10-17):
A chain  is a composition of a group , if each normal subgroup  is a maximal normal subgroup of , for all .
Example(10-18);
In the group  the chains  is a composition of , since
  is a maximal normal subgroup of 
 is a maximal normal subgroup of,
 is a maximal normal subgroup of, and
 is a composition of , since
 is a maximal normal subgroup of 
 is a maximal normal subgroup of,
 is a maximal normal subgroup of.
Theorem(10-19):
A normal subgroup  of the group  is a maximal if and only if the quotient  is a simple.
Proof:
 Let   or
Since   is a maximal, or is a simple
 let   be a simple
   has two normal subgroups which are  and , but 
Therefore  is a maximal
Corollary(10-20):
The group  is a simple,  if   is a prime number.
Examples(10-21);
1. Show that  is a maximal normal subgroup of .
2. Show that  is a maximal normal subgroup of . (Homework)
Solution(1): 
 is a prime  is a simple (by Corollary (10-20)). From Theorem (10-19), we get that  is a maximal normal subgroup of .
Corollary(10-22):
A normal chain  is a composition of a group , if  is a simple group for all.
Example(10-23);
Show that  is a composition chain of a group .
Solution:  is a prime  is a simple. 
So, we get that is a maximal normal subgroup of .
 is a prime  is a simple. 
So, we get that is a maximal normal subgroup of .
 is a prime  is a simple. 
So, we get that  is a maximal normal subgroup of .
 is a prime  is a simple. 
So, we get that  is a maximal normal subgroup of .
By corollaries (10-19) and (1-21), we have that  is a composition chain of a group .
Theorem(10-24): 
Every finite group  with more than one element has a composition chain.
Theorem(10-25): (Jordan-Holder)
In a finite group  with more than one element, any two composition chains are equivalent.
Example(10-26): 
In a group , show that the two chains

,
are compositions and equivalent.
Solution: 
, since ,
, since ,
, since ,
, since .
Therefore, by Jordan-Holder theorem the two chains 

,
are compositions and equivalent.
Exercises(10-27):
· Check that the following chains represent composition chains for the indicated group.
a. For , the group of integers modulo :
.
b. For , the group of symmetries of the square:
.
c. For , a cyclic group of order:
.
d. For , the symmetric group on  symbols:
.
· Find a composition chain for the symmetric group  .
· Prove that the cyclic subgroup  is a maximal normal subgroup of  if and only if  is a prime number.
· Establish that the following two composition chains for  are equivalent:
,
.
· Find all composition chains for .
· Find all composition chains for .

11. - Groups and Related Concepts.
Definition(11-1): (- Group)
A finite group  is said to be - group  if and only if the order of each element of   is a power of fixed prime .
Definition(11-2): (- Group)
 A finite group  is said to be - group  if and only if  , where  is a prime number.
Example(11-3): 
Show that  is a - group.
Solution:  and 
  is a - group, with
,
,
,
.
Example(11-4): 
Determine whether  is a - group.
Solution:  and
  is not - group.
Example(11-5): (Homework)
Determine whether  is a - group.
Examples(11-6):
·  is a - group, since ,
·  is a - group, since ,
·  is a - group, since .
Theorem(11-7): 
Let , then  is a - group if and only if  and  are - groups.
Proof:     Assume that  is a - group, to prove that  and  are - groups.
Since  is a - group , for some .
Since   group , for some .
So,  is a - group.
To prove  is a - group.
Let , to prove  is a power of .
, ( since  is a - group
 
 Suppose that  and  are - groups, to prove  is a - group.
Let , to prove  is a power of .
  ( is a - group)

From (1) and (2), we have  and  is a - group,

,

Therefore,  is a - group 
Examples(11-8): 
Apply theorem(2-7) on .
Solution: 
 is a - group.
By theorem (2-7),  and  are - groups.
   .
 or      or    or      or      or   ,
 is a - group  is a - group.
 is a - group 
 is a - group 
 is a - group 
 is a - group 
 is a - group .
Remark(11-9); 
If  is a non-trivial  - group, then Cent.
Theorem(11-10): 
Every group of order  is an abelian.
Proof: Let  be a group of order , to prove  is an abelian.
Let Cent is a subgroup of .
By Lagrange Theorem  ,

   or      or    
If   , but this is contradiction with remark(2-9), so .
If 
 is an abelian.
If  
 is a cyclic.
Therefore,  is an abelian 
Remark(11-11): 
The converse of theorem(2-10) is not true in general, for example   is an abelian, but .
Exercises(11-12):
· Let  and  be two normal -subgroups of a finite group . Show that  is a normal -subgroup of .
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Determine whether  is a -group.
· Show that  is a -group.
12. Sylow Theorems
Definition(12-1): (Sylow - Subgroup)
Let  be a finite group and  is a prime number, a subgroup  of a group  is called sylow - subgroup if 
1.  is a - group,
2.  is not contained in any other - subgroup of  for the same prime number .
Example(12-2); 
Find sylow - subgroups and sylow- subgroup of the group .
Solution: The proper subgroups of  the group  are
1.  is not - subgroup.
2.  is a - subgroup.
3.  is not - subgroup.
4.  is a - subgroup.
5.  is a - subgroup.
6.  is a - subgroup.
Theorem(12-3): (First Sylow Theorem)
Let  be a finite group of order , where  is a prime number is not dividing , then  has sylow - subgroup of order .
Example(12-4):
Find sylow - subgroup of the group .
Solution: , and 
 by first sylow theorem, the group  has sylow - subgroup of order  .
  is a sylow - subgroup.
Example(12-5):
Find sylow - subgroup of the group .
Solution: , and 
 by first sylow theorem, the group  has sylow - subgroup of order  .
  is a sylow - subgroup.
Example(12-6):
Find sylow - subgroup of the group .
Solution: , and 
 by first sylow theorem, the group  has sylow - subgroup of order  .
  is a sylow - Subgroup.
Theorem(12-7):
Let  a prime number and  be a finite group such that , then  has a subgroup of order  which is called sylow - subgroup of .
Example(12-8):
Are the following groups  and have sylow - subgroups.
Solution:
 , , 
 a subgroup  such that  which is called sylow - subgroup.
Also,  a subgroup  such that  which is called sylow - subgroup.
,  is - subgroup.
Every subgroup of is - subgroup,   or      or     or   .
Theorem(12-9): (Second Sylow Theorem)
The number of distinct sylow -subgroups is  which is divide the order of .
Example(12-10):
Find the distinct sylow  -subgroups of .
Solution: 
, 
 a subgroup  such that .
The number of sylow  -subgroups is  and 
if  and  
if  and  
if  and  
if  and  
so, there are  three sylow -subgroups.
 a subgroup  such that .
The number of sylow  -subgroups is  and 
if  and  
if  and  
if  and  
So, there is  one sylow -subgroup.
Example(12-11):
Find the number of sylow -subgroups of  such that 
Solution: 
 a subgroup  such that .
The number of sylow  -subgroups is  and 
if  and  
if  and  
if  and  
if  and 
So, there are four sylow -subgroups of .
The number of sylow  -subgroups is  and 
if  and  
if  and 
if  and  
if  and 
So, there are  three sylow -subgroups of .
Remark(12-12):
The group  has exactly one sylow -subgroup   if and only if .
Example(12-13):

 is a sylow -subgroup of ,
So, there is  one sylow -subgroup of .
Exercises(12-14);
· Show that there is no simple group of order .
· Show that there is no simple group of order .
· Show that there is no simple group of order .
· Show that whether  is a sylow.
13.  Solvable Groups and Their Applications
Definition(13-1): 
A group  is called a solvable group if and only if, there is a finite collection of subgroups of ,  such that
1. ,
2. ,
3.  is a commutative group .
Theorem(13-2):
Every commutative group is a solvable group. 
Proof:
Suppose that  is a commutative, to show that  is a solvable.
Let  and 
1. 
2.  satisfies, since , or ( every subgroup of commutative group is a normal)
3.  is a commutative group, or (the quotient of commutative group is a commutative)
So,  is a solvable group,
Example(13-3):
Show that  is a solvable group.
Solution: let 
1. 
2.  satisfies, since ,  is true,
3. To prove  is a commutative group 
     is a commutative group
     is a commutative group
Therefore,  is a solvable group.
Example(13-4): (Homework)
Show that  is a solvable group.
Theorem(13-5):
Every subgroup of a solvable group is a solvable.
Proof: let  be a subgroup of  and  is a solvable group.
To prove  is a solvable.
Since  is a solvable  
there is a finite collection of subgroups of ,  such that
1. ,
2. ,
3.  is a commutative group .
Let 

Each  is a subgroup of .
1.  is hold
2. ,   , since 
3. To prove  is a commutative group .
Let such that .
To prove  is a homomorphism,
 ?
 
So,  is a homomorphism
 is onto ?

 is not onto
  ( by theorem of homomorphism)

so, 
  and  is a commutative 
Hence, is a commutative
Therefore,  is a commutative
So,  is a solvable 

Theorem(13-6):
Let  and  is a solvable, then  is a solvable.
Theorem(13-7):
Let  and both   are solvable, then  is a solvable.
Proof: since  is a solvable  
there is a finite collection of subgroups of ,  such that
1. ,
2. ,
3.  is a commutative group .
Since  is a solvable  
there is a finite collection of subgroups of ,  such that
1. ,
2. ,
3.  is a commutative group .
To prove  is a solvable group.

  or  

So, there is a finite collection  such that 
1. .
2. To prove 
Let and   to prove  




3. To prove   is a commutative group  
 is a commutative group and    (
 is a commutative group
Therefore,  is a solvable group  
Exercises(13-8);
· Show that every -group is a solvable group.
· Show that  is a solvable group.
· Show that  is a solvable group.
· Show that  is a solvable group.
· Show that  is a solvable group.
· Show that  is a solvable group.
· Show that  is a solvable group.
· Show that  is a solvable group.

14.  Applications of Group Theory
14-1 Cayley Theorem
Theorem(14-1-1): (Cayley Theorem)
Every group is an isomorphic to a group of permutations.
This means if  is any group, then , where .
Proof: define  by 
To prove  is a homomorphism, one to one and onto.
1.  is a homomorphism, let 
 is a homomorphism.
2.  is a one to one, let 

 is a one to one.
3.  is a onto, 
Therefore,  
Corollary(14-1-2):
Every finite group  of order  is an isomorphic to .
Example(14-1-3):
Consider the following Cayley table of a group 
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	



Show that is an isomorphic to a subgroup of .
Solution: 
,   
,     
,     
,     
Hence,  is an isomorphic to the subgroup of :
.
Example(14-1-4): (Homework)
Let  be a group, apply Cayley Theorem on .
Example(14-1-5): (Homework)
Show that  is an isomorphic to a subgroup of .
Exercises(14-1-6):
· Apply Cayley Theorem on .
· Apply Cayley Theorem on .
· Apply Cayley Theorem on .
· Apply Cayley Theorem on .



14-2 Direct Product 
Definition(14-2-1):
Let  and  be two normal subgroups of , then  is called an internal direct product of  and  ( is a decomposition by  and ) if and only if  and  .
Example(14-2-2):
Consider the following Cayley table of a group 
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	



Let  and , show that  is a decomposition by  and .
Solution:  since  is a commutative group
 and 
Hence, is decomposition by  and .
Example(14-2-3):
Let  be any group with  and , show that 
 is a decomposition by  and .
Solution: 


Therefore,  is a decomposition by  and .
Example(14-2-4):
Let  be a group. Is  has a proper decomposition.
Solution: the subgroups of  are 
Let  and 


So, 
Let  and 

Therefore,  has no proper decomposition.
Theorem(14-2-5):
Let  and  be two subgroups of   and , then  and .
Proof: 
Since  and 
   and     (by second theorem of isomorphic)
 and
    and       

Definition(14-2-6):
Let  and  be two groups, define  such that . Then    is a group which is called an external direct product of  and .
Example(14-2-7):  (Homework)
Show that  is a group.
Example(14-2-8):
Let  and . Find .
Solution:


o.
Theorem(14-2-9):
Let  and  be two groups, then 
1.  is an abelian if and only if both  and  are abelian.
2. .
3. .
4. .
5. .
Proof:
1.  suppose that  is an abelian, to prove and  are abelian.
Let 
Since  is an abelian, then 


Hence, is an abelian.
Similarly that  is an abelian.
 suppose that  and  are abelian, to prove  is an abelian.
Let , to prove 


  (is an abelian)
  (is an abelian)

Therefore,  is an abelian.
2. To prove 

To prove  is a subgroup of 
Let  

So,  is a subgroup of .
To prove 
Let  and  
To prove 

Hence, .
3. (Homework).
4. To prove .
Proof:
Define  
 is a map ? let  and  , so  is a map
 is an one to one ? let , so  is a one to one.
 is a homomorphism ? , so  is a homomorphism
 is an onto ?    so  is an onto.
Therefore, 
5. (Homework) 
Theorem(14-2-10):
Let  and  be two -groups, then is a -group.
Proof:
Since is -group 
Since is -group 

Therefore,  is a -group 
Exercises(14-2-11):
· Let   and are subgroups of  , show that     is a decomposition.
· Let , show that  is a decomposition.
· Find .
· Is  an abelian?
· Is  an abelian?
· Is  an abelian?
· Is  an abelian?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?
· Is  a -group?

