Lab No(2)
 Zero- Displacement Length (Zd) Calculation

Aims: Calculate the zero- displacement length Zd using engineering methods.

Tools:

1- Miniature model of buildings and plants at a known scale, which represent the obstacles in the reality.

2-Sewing tape measure.

Theoretical Part:

Some of the obstacles elements like the cities and forests, line up closely to form a homogeneous obstacle roof (imagen level). this led to making wind speed equal to zero at this level. The height of this level is called the displacement length Zd . The displacement length Zd can be calculated through the relationship derived by Bottema in 1995, which is as follows:

$$
\begin{equation*}
Z_{d}=\left[\frac{\sum A_{p b}+\sum(1-P) A_{p t}}{A_{T}}\right]^{0.6} * Z_{H} . \tag{1}
\end{equation*}
$$

Whereas:
Zd: Zero- Displacement Length
A_{pb} : Surface level area of buildings
P: Air permeability coefficient of trees and its value 0.4
A_{T} : Total section area
A_{pt} : Surface level area of trees
ZH: The average of obstacle element height and can be calculated as follows:.

$$
\begin{equation*}
Z H=\frac{(Z H 1+Z H 2+Z H 3+\cdots . .+Z H n)}{n} . \tag{2}
\end{equation*}
$$

Whereas:

$\mathrm{N}=1,2,3,4,-\cdots--------\mathrm{n}$ and It represents the number of roughness elements

Methodology:

1- Calculate the obesticals height averag ZH from equation No. [2] and using measuring tape.

2- Using a sewing tape measure, calculate the surface area of the buildings A_{bp} and the surface area of plants $A_{p t}$.

2- Calculate the total area A_{T}.
3- From equation [1] calculate the Zero-Displacement Length Zd by using the table

A_{Pt}	A_{Pb}
$\sum A_{P t}=$	$\sum A_{P b}=$

