
221

Chapter 7
User-Defined Functions
and Function Files

A simple function in mathematics, , associates a unique number to each
value of x. The function can be expressed in the form , where is
usually a mathematical expression in terms of x. A value of y (output) is
obtained when a value of x (input) is substituted in the expression. Many func-
tions are programmed inside MATLAB as built-in functions, and can be used in
mathematical expressions simply by typing their name with an argument (see
Section 1.5); examples are sin(x), cos(x), sqrt(x), and exp(x). Fre-
quently, in computer programs, there is a need to calculate the value of func-
tions that are not built in. When a function expression is simple and needs to be
calculated only once, it can be typed as part of the program. However, when a
function needs to be evaluated many times for different values of arguments, it is
convenient to create a “user-defined” function. Once a user-defined function is
created (saved) it can be used just like the built-in functions.

A user-defined function is a MATLAB program that is created by the user,
saved as a function file, and then used like a built-in function. The function can
be a simple single mathematical expression or a complicated and involved series
of calculations. In many cases it is actually a subprogram within a computer
program. The main feature of a function file is that it has an input and an out-
put. This means that the calculations in the function file are carried out using
the input data, and the results of the calculations are transferred out of the func-
tion file by the output. The input and the output can be one or several variables,
and each can be a scalar, a vector, or an array of any size. Schematically, a func-
tion file can be illustrated by:

f x
y f x= f x

Function
File

Input data Output data

222 Chapter 7: User-Defined Functions and Function Files

A very simple example of a user-defined function is a function that calcu-
lates the maximum height that a ball reaches when thrown upward with a cer-

tain velocity. For a velocity , the maximum height is given by ,

where g is the gravitational acceleration. In function form this can be written as

. In this case the input to the function is the velocity (a number),

and the output is the maximum height (a number). For example, in SI units (g =
9.81 m/s2) if the input is 15 m/s, the output is 11.47 m.

In addition to being used as math functions, user-defined functions can be
used as subprograms in large programs. In this way large computer programs
can be made up of smaller “building blocks” that can be tested independently.
Function files are similar to subroutines in Basic and Fortran, procedures in
Pascal, and functions in C.

The fundamentals of user-defined functions are explained in Sections 7.1
through 7.7. In addition to user-defined functions that are saved in separate
function files and called for use in a computer program, MATLAB provides an
option to define and use a user-defined math function within a computer pro-
gram (not in a separate file). This can be done by using anonymous function,
which is presented in Section 7.8. There are built-in and user-defined functions
that have to be supplied with other functions when they are called. These func-
tions, which in MATLAB are called function functions, are introduced in Sec-
tion 7.9. The last two sections cover subfunctions and nested functions. Both are
methods for incorporating two or more user-defined functions in a single func-
tion file.

7.1 CREATING A FUNCTION FILE

Function files are created and edited, like script files, in the Editor/Debugger
Window. This window is opened from the Command Window. In the Toolstrip
select New, then select Function. Once the Editor/Debugger Window opens, it
looks like that shown in Figure 7-1. The editor contains several pre-typed lines
that outline the structure of a function file. The first line is the function defini-
tion line, which is followed by comments the describe the function. Next comes
the program (the empty lines 4 and 5 in Figure 7-1), and the last line is an end
statement, which is optional. The structure of a function file is described in
detail in the next section.

Note: The Editor/Debugger Window can also be opened (as was described
in Chapter 1) by clicking on the New Script icon in the Toolstrip, or by clicking
New in the Toolstrip and then selecting Script from the menu that open. The

v0 hmax

Function File
15 m/s 11.47 m

7.2 Structure of a Function File 223

window that opens is empty, without any pre-typed lines. In general, the Editor/
Debugger Window can be used for writing a script file or a function file.

7.2 STRUCTURE OF A FUNCTION FILE

The structure of a typical complete function file is shown in Figure 7-2. This
particular function calculates the monthly payment and the total payment of a
loan. The inputs to the function are the amount of the loan, the annual interest
rate, and the duration of the loan (number of years). The output from the func-
tion is the monthly payment and the total payment.

Figure 7-1: The Editor/Debugger Window.

Figure 7-2: Structure of a typical function file.

The first line in a function file must
be the function definition line.

Function definition line.

The H1 line.

Help text.

Assignment of values to output arguments.

Function body
(computer program).

224 Chapter 7: User-Defined Functions and Function Files

The various parts of the function file are described in detail in the following sec-
tions.

7.2.1 Function Definition Line

The first executable line in a function file must be the function definition line.
Otherwise the file is considered a script file. The function definition line:

• Defines the file as a function file

• Defines the name of the function

• Defines the number and order of the input and output arguments

The form of the function definition line is:

The word “function,” typed in lowercase letters, must be the first word in
the function definition line. On the screen the word function appears in blue.
The function name is typed following the equal sign. The name can be made up
of letters, digits, and the underscore character (the name cannot include a
space). The rules for the name are the same as the rules for naming variables
described in Section 1.6.2. It is good practice to avoid names of built-in func-
tions and names of variables already defined by the user or predefined by MAT-
LAB.

7.2.2 Input and Output Arguments

The input and output arguments are used to transfer data into and out of the
function. The input arguments are listed inside parentheses following the func-
tion name. Usually, there is at least one input argument, although it is possible
to have a function that has no input arguments. If there are more than one, the
input arguments are separated with commas. The computer code that performs
the calculations within the function file is written in terms of the input argu-
ments and assumes that the arguments have assigned numerical values. This
means that the mathematical expressions in the function file must be written
according to the dimensions of the arguments, since the arguments can be sca-
lars, vectors, or arrays. In the example shown in Figure 7-2 there are three input
arguments (amount,rate,years), and in the mathematical expressions they
are assumed to be scalars. The actual values of the input arguments are assigned

function [output arguments] = function_name(input arguments)

The word “function”
must be the first word,
and must be typed in
lowercase letters.

The name of
the function.

A list of output
arguments typed
inside brackets.

A list of input
arguments typed
inside parentheses.

7.2 Structure of a Function File 225

when the function is used (called). Similarly, if the input arguments are vectors
or arrays, the mathematical expressions in the function body must be written to
follow linear algebra or element-by-element calculations.

The output arguments, which are listed inside brackets on the left side of the
assignment operator in the function definition line, transfer the output from the
function file. Function files can have zero, one, or several output arguments. If
there are more than one, the output arguments are separated with commas. If
there is only one output argument, it can be typed without brackets. For the
function file to work, the output arguments must be assigned values in the
computer program that is in the function body. In the example in Figure 7-2
there are two output arguments, mpay and tpay. When a function does not
have an output argument, the assignment operator in the function definition
line can be omitted. A function without an output argument can, for example,
generate a plot or write data to a file.

It is also possible to transfer strings into a function file. This is done by typ-
ing the string as part of the input variables (text enclosed in single quotes).
Strings can be used to transfer names of other functions into the function file.

Usually, all the input to, and the output from, a function file transferred
through the input and output arguments. In addition, however, all the input and
output features of script files are valid and can be used in function files. This
means that any variable that is assigned a value in the code of the function file
will be displayed on the screen unless a semicolon is typed at the end of the com-
mand. In addition, the input command can be used to input data interactively,
and the disp, fprintf, and plot commands can be used to display informa-
tion on the screen, save to a file, or plot figures just as in a script file. The follow-
ing are examples of function definition lines with different combinations of
input and output arguments.

Function definition line Comments

function[mpay,tpay]= loan(amount,rate,years) Three input arguments, two
output arguments.

function [A] = RectArea(a,b) Two input arguments, one out-
put argument.

function A = RectArea(a,b) Same as above; one output
argument can be typed with-
out the brackets.

function [V, S] = SphereVolArea(r) One input variable, two output
variables.

function trajectory(v,h,g) Three input arguments, no
output arguments.

226 Chapter 7: User-Defined Functions and Function Files

7.2.3 The H1 Line and Help Text Lines

The H1 line and help text lines are comment lines (lines that begin with the per-
cent, %, sign) following the function definition line. They are optional but are
frequently used to provide information about the function. The H1 line is the
first comment line and usually contains the name and a short definition of the
function. When a user types (in the Command Window) lookfor a_word,
MATLAB searches for a_word in the H1 lines of all the functions, and if a
match is found, the H1 line that contains the match is displayed.

 The help text lines are comment lines that follow the H1 line. These lines
contain an explanation of the function and any instructions related to the input
and output arguments. The comment lines that are typed between the function
definition line and the first non-comment line (the H1 line and the help text) are
displayed when the user types help function_name in the Command Win-
dow. This is true for MATLAB built-in functions as well as the user-defined
functions. For example, for the function loan in Figure 7-2, if help loan is
typed in the Command Window (make sure the current directory or the search
path includes the directory where the file is saved), the display on the screen is:

A function file can include additional comment lines in the function body. These
lines are ignored by the help command.

7.2.4 Function Body

The function body contains the computer program (code) that actually per-
forms the computations. The code can use all MATLAB programming features.
This includes calculations, assignments, any built-in or user-defined functions,
flow control (conditional statements and loops) as explained in Chapter 6, com-
ments, blank lines, and interactive input and output.

7.3 LOCAL AND GLOBAL VARIABLES

All the variables in a function file are local (the input and output arguments and
any variables that are assigned values within the function file). This means that
the variables are defined and recognized only inside the function file. When a

>> help loan

loan calculates monthly and total payment of loan.

Input arguments:

amount=loan amount in $.

rate=annual interest rate in percent.

years=number of years.

Output arguments:

mpay=monthly payment, tpay=total payment.

7.4 Saving a Function File 227

function file is executed, MATLAB uses an area of memory that is separate
from the workspace (the memory space of the Command Window and the script
files). In a function file the input variables are assigned values each time the
function is called. These variables are then used in the calculations within the
function file. When the function file finishes its execution, the values of the out-
put arguments are transferred to the variables that were used when the function
was called. All this means that a function file can have variables with the same
names as variables in the Command Window or in script files. The function file
does not recognize variables with the same names as have been assigned values
outside the function. The assignment of values to these variables in the function
file will not change their assignment elsewhere.

Each function file has its own local variables, which are not shared with
other functions or with the workspace of the Command Window and the script
files. It is possible, however, to make a variable common (recognized) in several
different function files, and perhaps in the workspace too. This is done by
declaring the variable global with the global command, which has the form:

Several variables can be declared global by listing them, separated with spaces,
in the global command. For example:

global GRAVITY_CONST FrictionCoefficient

• The variable has to be declared global in every function file that the user wants it
to be recognized in. The variable is then common only to these files.

• The global command must appear before the variable is used. It is recom-
mended to enter the global command at the top of the file.

• The global command has to be entered in the Command Window, or in a
script file, for the variable to be recognized in the workspace.

• The variable can be assigned, or reassigned, a value in any of the locations in
which it is declared common.

• The use of long descriptive names (or all capital letters) is recommended for
global variables in order to distinguish them from regular variables.

7.4 SAVING A FUNCTION FILE

A function file must be saved before it can be used. This is done, as with a script
file, by choosing Save as . . . from the File menu, selecting a location (many stu-
dents save to a flash drive), and entering the file name. It is highly recommended
that the file be saved with a name that is identical to the function name in the
function definition line. In this way the function is called (used) by using the
function name. (If a function file is saved with a different name, the name it is
saved under must be used when the function is called.) Function files are saved

global variable_name

228 Chapter 7: User-Defined Functions and Function Files

with the extension .m. Examples:

7.5 USING A USER-DEFINED FUNCTION

A user-defined function is used in the same way as a built-in function. The func-
tion can be called from the Command Window, from a script file, or from
another function. To use the function file, the folder where it is saved must either
be in the current folder or be in the search path (see Sections 1.8.3 and 1.8.4).

A function can be used by assigning its output to a variable (or variables), as
a part of a mathematical expression, as an argument in another function, or just
by typing its name in the Command Window or in a script file. In all cases the
user must know exactly what the input and output arguments are. An input
argument can be a number, a computable expression, or a variable that has an
assigned value. The arguments are assigned according to their position in the
input and output argument lists in the function definition line.

Two of the ways that a function can be used are illustrated below with the
user-defined loan function in Figure 7-2, which calculates the monthly and
total payments (two output arguments) of a loan. The input arguments are the
loan amount, annual interest rate, and the length (number of years) of the loan.
In the first illustration the loan function is used with numbers as input argu-
ments:

In the second illustration the loan function is used with two pre-assigned
variables and a number as the input arguments:

Function definition line File name

function [mpay,tpay] = loan(amount,rate,years) loan.m

function [A] = RectArea(a,b) RectArea.m

function [V, S] = SphereVolArea(r) SphereVolArea.m

function trajectory(v,h,g) trajectory.m

>> [month total]=loan(25000,7.5,4)

month =
 600.72
total =
 28834.47

>> a=70000; b=6.5;

>> [x y]=loan(a,b,30)

First argument is loan amount, second is
interest rate, and third is number of years.

Define variables a and b.

Use a, b, and the number 30 for input
arguments and x (monthly pay) and y
(total pay) for output arguments.

7.6 Examples of Simple User-Defined Functions 229

7.6 EXAMPLES OF SIMPLE USER-DEFINED FUNCTIONS

Sample Problem 7-1: User-defined function for a math function

Write a function file (name it chp7one) for the function . The

input to the function is x and the output is . Write the function such that x
can be a vector. Use the function to calculate:
(a) for x = 6.
(b) for x = 1, 3, 5, 7, 9, and 11.

Solution

The function file for the function is:

Note that the mathematical expression in the function file is written for element-
by-element calculations. In this way if x is a vector, y will also be a vector. The
function is saved and then the search path is modified to include the directory
where the file was saved. As shown below, the function is used in the Command
Window.
(a) Calculating the function for can be done by typing chp7one(6) in
the Command Window, or by assigning the value of the function to a new vari-
able:

(b) To calculate the function for several values of x, a vector with the values of x
is created and then used for the argument of the function.

x =
 440.06
y =
 158423.02

function y=chp7one(x)

y=(x.^4.*sqrt(3*x+5))./(x.^2+1).^2;

>> chp7one(6)

ans =
 4.5401

>> F=chp7one(6)

F =
 4.5401

>> x=1:2:11

x =
 1 3 5 7 9 11

f x

f x
f x

f x

Function definition line.

Assignment to output argument.

x 6=

230 Chapter 7: User-Defined Functions and Function Files

Another way is to type the vector x directly in the argument of the function.

Sample Problem 7-2: Converting temperature units

Write a user-defined function (name it FtoC) that converts temperature in
degrees F to temperature in degrees C. Use the function to solve the following
problem. The change in the length of an object, , due to a change in the tem-
perature, , is given by: , where is the coefficient of thermal
expansion. Determine the change in the area of a rectangular (4.5 m by 2.25 m)

aluminum (1/°C) plate if the temperature changes from 40°F to
92°F.

Solution

A user-defined function that converts degrees F to degrees C is:

A script file (named Chapter7Example2) that calculates the change of the area
of the plate due to the temperature is:

Executing the script file in the Command Window gives the solution:

>> chp7one(x)

ans =
 0.7071 3.0307 4.1347 4.8971 5.5197 6.0638

>> H=chp7one([1:2:11])

H =
 0.7071 3.0307 4.1347 4.8971 5.5197 6.0638

function C=FtoC(F)

%FtoC converts degrees F to degrees C

C=5*(F-32)./9;

a1=4.5; b1=2.25; T1=40; T2=92; alpha=23e-6;

deltaT=FtoC(T2)-FtoC(T1);

a2=a1+alpha*a1*deltaT;

b2=b1+alpha*b1*deltaT;

AreaChange=a2*b2-a1*b1;

fprintf('The change in the area is %6.5f meters
square.',AreaChange)

>> Chapter7Example2
The change in the area is 0.01346 meters square.

L
T L L T=

Function definition line.

Assignment to output argument.

Using the FtoC function to calculate the
temperature difference in degrees C.

Calculating the new length.

Calculating the new width.

Calculating the change in the area.

7.7 Comparison between Script Files and Function Files 231

7.7 COMPARISON BETWEEN SCRIPT FILES AND FUNCTION FILES

Students who are studying MATLAB for the first time sometimes have difficulty
understanding exactly the differences between script and function files, since for
many of the problems that they are asked to solve using MATLAB, either type
of file can be used. The similarities and differences between script and function
files are summarized below.

• Both script and function files are saved with the extension .m (that is why they
are sometimes called M-files).

• The first executable line in a function file is (must be) the function definition line.

• The variables in a function file are local. The variables in a script file are recog-
nized in the Command Window.

• Script files can use variables that have been defined in the workspace.

• Script files contain a sequence of MATLAB commands (statements).

• Function files can accept data through input arguments and can return data
through output arguments.

• When a function file is saved, the name of the file should be the same as the
name of the function.

• A user-defined function is used in the same way as a built-in function. It can be
used (called) in the Command Window, in a script file, or in another function.

7.8 ANONYMOUS FUNCTIONS

User-defined functions written in function files can be used for simple mathe-
matical functions, for large and complicated math functions that require exten-
sive programming, and as subprograms in large computer programs. In cases
when the value of a relatively simple mathematical expression has to be calcu-
lated many times within a program, MATLAB provides the option of using
anonymous functions. An anonymous function is a user-defined function that is
defined and written within the computer code (not in a separate function file)
and is then used in the code. Anonymous functions can be defined in any part of
MATLAB (in the Command Window, in script files, and inside regular user-
defined functions).

An anonymous function is a simple (one-line) user-defined function that is
defined without creating a separate function file (m-file). Anonymous functions
can be constructed in the Command Window, within a script file, or inside a reg-
ular user-defined function.

232 Chapter 7: User-Defined Functions and Function Files

An anonymous function is created by typing the following command:

A simple example is cube = @ (x) x^3, which calculates the cube of the input
argument.
• The command creates the anonymous function and assigns a handle for the

function to the variable name on the left-hand side of the = sign. (Function han-
dles provide means for using the function and passing it to other functions; see
Section 7.9.1.)

• The expr consists of a single valid mathematical MATLAB expression.

• The mathematical expression can have one or several independent variables. The
independent variable(s) is (are) entered in the (arglist). Multiple indepen-
dent variables are separated with commas. An example of an anonymous func-
tion that has two independent variables is: circle = @ (x,y)
16*x^2+9*y^2.

• The mathematical expression can include any built-in or user-defined functions.

• The expression must be written according to the dimensions of the arguments
(element-by-element or linear algebra calculations).

• The expression can include variables that are already defined when the anony-
mous function is defined. For example, if three variables a, b, and c are defined
(have assigned numerical values), then they can be used in the expression of the
anonymous function parabola = @ (x) a*x^2+b*x+c.

Important note: MATLAB captures the values of the predefined variables
when the anonymous function is defined. This means that if new values are sub-
sequently assigned to the predefined variables, the anonymous function is not
changed. The anonymous function has to be redefined in order for the new val-
ues of the predefined variables to be used in the expression.

Using an anonymous function:

• Once an anonymous function is defined, it can be used by typing its name and a
value for the argument (or arguments) in parentheses (see examples that follow).

• Anonymous functions can also be used as arguments in other functions (see Sec-
tion 7.9.1).

name = @ (arglist) expr

The name of the anon-
ymous function.

The @
symbol.

A list of input argu-
ments (indepen-
dent variables).

Mathematical
expression.

7.8 Anonymous Functions 233

Example of an anonymous function with one independent variable:

The function can be defined (in the Command Window) as an

anonymous function for x as a scalar by:

If a semicolon is not typed at the end, MATLAB responds by displaying the
function. The function can then be used for different values of x, as shown
below.

If x is expected to be an array, with the function calculated for each element,
then the function must be modified for element-by-element calculations.

Example of an anonymous function with several independent variables:

The function can be defined as an anonymous function
by:

Then the anonymous function can be used for different values of x and y. For
example, typing HA(2,3) gives:

>> FA = @ (x) exp(x^2)/sqrt(x^2+5)

FA =
 @(x)exp(x^2)/sqrt(x^2+5)

>> FA(2)

ans =
 18.1994

>> z = FA(3)

z =
 2.1656e+003

>> FA = @ (x) exp(x.^2)./sqrt(x.^2+5)

FA =
 @(x)exp(x.^2)./sqrt(x.^2+5)

>> FA([1 0.5 2])
ans =
 1.1097 0.5604 18.1994

>> HA = @ (x,y) 2*x^2 - 4*x*y + y^2

HA =
 @(x,y)2*x^2-4*x*y+y^2

>> HA(2,3)
ans =
 -7

Using a vector as input argument.

234 Chapter 7: User-Defined Functions and Function Files

Another example of using an anonymous function with several arguments is
shown in Sample Problem 6-3.

Sample Problem 7-3: Distance between points in polar coordinates

Write an anonymous function that calculates the
distance between two points in a plane when the
position of the points is given in polar coordinates.
Use the anonymous function to calculate the dis-
tance between point A (2, /6) and point B (5, 3 /
4).

Solution

The distance between two points in polar coordi-
nates can be calculated by using the Law of
Cosines:

The formula for the distance is entered as an anonymous function with four
input arguments . Then the function is used for calculating the
distance between points A and B.

7.9 FUNCTION FUNCTIONS

There are many situations where a function (Function A) works on (uses)
another function (Function B). This means that when Function A is executed, it
has to be provided with Function B. A function that accepts another function is
called in MATLAB a function function. For example, MATLAB has a built-in
function called fzero (Function A) that finds the zero of a math function
(Function B) — i.e., the value of x where . The program in the func-
tion fzero is written such that it can find the zero of any . When fzero is
called, the specific function to be solved is passed into fzero, which finds the
zero of the . (The function fzero is described in detail in Chapter 9.)

>> d= @ (rA,thetA,rB,thetB) sqrt(rA^2+rB^2-2*rA*rB*cos(thetB-thetA))

d =
 @(rA,thetA,rB,thetB)sqrt(rA^2+rB^2-2*rA*rB*cos(thetB-thetA))

>> DistAtoB = d(2,pi/6,5,3*pi/4)
DistAtoB =
 5.8461

rA A rB B, , ,

List of input arguments.

The arguments are typed in the order defined in the function.

f x

f x 0=
f x

f x

7.9 Function Functions 235

A function function, which accepts another function (imported function),
includes in its input arguments a name that represents the imported function.
The imported function name is used for the operations in the program (code) of
the function function. When the function function is used (called), the specific
function that is imported is listed in its input argument. In this way different
functions can be imported (passed) into the function function. There are two
methods for listing the name of an imported function in the argument list of a
function function. One is by using a function handle (Section 7.9.1), and the
other is by typing the name of the function that is being passed in as a string
expression (Section 7.9.2). The method that is used affects the way that the oper-
ations in the function function are written (this is explained in more detail in the
next two sections). Using function handles is easier and more efficient, and
should be the preferred method.

7.9.1 Using Function Handles for Passing a Function into a Function
Function

Function handles are used for passing (importing) user-defined functions, built-
in functions, and anonymous functions into function functions that can accept
them. This section first explains what a function handle is, then shows how to
write a user-defined function function that accepts function handles, and finally
shows how to use function handles for passing functions into function func-
tions.

Function handle:

A function handle is a MATLAB value that is associated with a function. It is a
MATLAB data type and can be passed as an argument into another function.
Once passed, the function handle provides means for calling (using) the func-
tion it is associated with. Function handles can be used with any kind of MAT-
LAB function. This includes built-in functions, user-defined functions (written
in function files), and anonymous functions.
• For built-in and user-defined functions, a function handle is created by typing

the symbol @ in front of the function name. For example, @cos is the function
handle of the built-in function cos, and @FtoC is the function handle of the
user-defined function FtoC that was created in Sample Problem 7-2.

• The function handle can also be assigned to a variable name. For example,
cosHandle=@cos assigns the handle @cos to cosHandle. Then the name
cosHandle can be used for passing the handle.

• As anonymous functions (see Section 7.8.1), their name is already a function
handle.

Writing a function function that accepts a function handle as an input argument:

As already mentioned, the input arguments of a function function (which
accepts another function) includes a name (dummy function name) that rep-

236 Chapter 7: User-Defined Functions and Function Files

resents the imported function. This dummy function (including a list of input
arguments enclosed in parentheses) is used for the operations of the program
inside the function function.
• The function that is actually being imported must be in a form consistent with

the way that the dummy function is being used in the program. This means that
both must have the same number and type of input and output arguments.

The following is an example of a user-defined function function, named
funplot, that makes a plot of a function (any function that is imported
into it) between the points and . The input arguments are
(Fun,a,b), where Fun is a dummy name that represents the imported func-
tion, and a and b are the end points of the domain. The function funplot also
has a numerical output xyout, which is a matrix with the values of x and

 at the three points , , and . Note that in the pro-
gram, the dummy function Fun has one input argument (x) and one output
argument y, which are both vectors.

As an example, the function over the domain
 is passed into the user-defined function funplot. This is done in two

ways: first by writing a user-defined function for , and then by writing
as an anonymous function.

function xyout=funplot(Fun,a,b)

% funplot makes a plot of the function Fun which is passed in
% when funplot is called in the domain [a, b].

% Input arguments are:
% Fun: Function handle of the function to be plotted.

% a: The first point of the domain.
% b: The last point of the domain.

% Output argument is:
% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

y=Fun(x);

xyout(1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;

xyout(1,2)=y(1);

xyout(2,2)=Fun((a+b)/2);

xyout(3,2)=y(100);

plot(x,y)

xlabel('x'), ylabel('y')

f x
x a= x b=

f x x a= x b=

A name for the function that is passed in.

Using the imported function to calculate f(x) at 100 points.

Using the imported function to
calculate f(x) at the midpoint.

0.5 4,
f x f x

7.9 Function Functions 237

Passing a user-defined function into a function function:

First, a user-defined function is written for . The function, named Fdemo,
calculates for a given value of x and is written using element-by-element
operations.

Next, the function Fdemo is passed into the user-defined function function
funplot, which is called in the Command Window. Note that a handle of the
user-defined function Fdemo is entered (the handle is @Fdemo) for the input
argument Fun in the user-defined function funplot.

In addition to the display of the numerical output, when the command is
executed, the plot shown in Figure 7-3 is displayed in the Figure Window.

Passing an anonymous function into a function function:

To use an anonymous function, the function first
has to be written as an anonymous function, and then passed into the user-
defined function funplot. The following shows how both of these steps are
done in the Command Window. Note that the name of the anonymous function
FdemoAnony is entered without the @ sign for the input argument Fun in the
user-defined function funplot (since the name is already the handle of the
anonymous function).

function y=Fdemo(x)
y=exp(-0.17*x).*x.^3-2*x.^2+0.8*x-3;

>> ydemo=funplot(@Fdemo,0.5,4)
ydemo =
 0.5000 -2.9852
 2.2500 -3.5548
 4.0000 0.6235

Figure 7-3: A plot of the function .

f x

f x

Enter a handle of the user-
defined function Fdemo.

x
0.5 1 1.5 2 2.5 3 3.5 4

f
(
x
)

-4

-3

-2

-1

0

1

238 Chapter 7: User-Defined Functions and Function Files

In addition to the display of the numerical output in the Command Window,
the plot shown in Figure 7-3 is displayed in the Figure Window.

7.9.2 Using a Function Name for Passing a Function into a Function
Function

A second method for passing a function into a function function is by typing the
name of the function that is being imported as a string in the input argument of
the function function. The method that was used before the introduction of
function handles can be used for importing user-defined functions. As men-
tioned, function handles are easier to use and more efficient and should be the
preferred method. Importing user-defined functions by using their name is cov-
ered in the present edition of the book for the benefit of readers who need to
understand programs written before MATLAB 7. New programs should use
function handles.

When a user-defined function is imported by using its name, the value of the
imported function inside the function function has to be calculated with the
feval command. This is different from the case where a function handle is
used, which means that there is a difference in the way that the code in the func-
tion function is written that depends on how the imported function is passed in.

The feval command:

The feval (short for “function evaluate”) command evaluates the value of a
function for a given value (or values) of the function’s argument (or arguments).
The format of the command is:

The value that is determined by feval can be assigned to a variable, or if the
command is typed without an assignment, MATLAB displays ans = and the
value of the function.

• The function name is typed as string.

• The function can be a built-in or a user-defined function.

• If there is more than one input argument, the arguments are separated with
commas.

>> FdemoAnony=@(x) exp(-0.17*x).*x.^3-2*x.^2+0.8*x-3
FdemoAnony =
 @(x) exp(-0.17*x).*x.^3-2*x.^2+0.8*x-3

>> ydemo=funplot(FdemoAnony,0.5,4)

ydemo =
 0.5000 -2.9852
 2.2500 -3.5548
 4.0000 0.6235

Create an anonymous
function for .f x

Enter the name of the anony-
mous function (FdemoAnony).

variable = feval(‘function name’, argument value)

7.9 Function Functions 239

• If there is more than one output argument, the variables on the left-hand side of
the assignment operator are typed inside brackets and separated with commas.

Two examples using the feval command with built-in functions follow.

The following shows the use of the feval command with the user-defined
function loan that was created earlier in the chapter (Figure 7-2). This function
has three input arguments and two output arguments.

Writing a function function that accepts a function by typing its name as an input
argument:

As already mentioned, when a user-defined function is imported by using its
name, the value of the function inside the function function has to be calculated
with the feval command. This is demonstrated in the following user-defined
function function that is called funplotS. The function is the same as the
function funplot from Section 7.9.1, except that the command feval is used
for the calculations with the imported function.

>> feval('sqrt',64)

ans =
 8

>> x=feval('sin',pi/6)

x =
 0.5000

>> [M,T]=feval('loan',50000,3.9,10)

M =
 502.22

T =
 60266.47

function xyout=funplotS(Fun,a,b)

% funplotS makes a plot of the function Fun which is passed
in
% when funplotS is called in the domain [a, b].

% Input arguments are:
% Fun: The function to be plotted. Its name is entered as
string expression.

% a: The first point of the domain.
% b: The last point of the domain.

A $50,000 loan, 3.9% interest, 10 years.

Monthly payment.

Total payment.

A name for the function that is passed in.

240 Chapter 7: User-Defined Functions and Function Files

Passing a user-defined function into another function by using a string expression:

The following demonstrates how to pass a user-defined function into a function
function by typing the name of the imported function as a string in the input

argument. The function from Section 7.9.1, cre-
ated as a user-defined function named Fdemo, is passed into the user-defined
function funplotS. Note that the name Fdemo is typed in a string for the
input argument Fun in the user-defined function funplotS.

In addition to the display of the numerical output in the Command Window,
the plot shown in Figure 7-3 is displayed in the Figure Window.

7.10 SUBFUNCTIONS

A function file can contain more than one user-defined function. The functions
are typed one after the other. Each function begins with a function definition
line. The first function is called the primary function and the rest of the func-
tions are called subfunctions. The subfunctions can be typed in any order. The
name of the function file that is saved should correspond to the name of the pri-
mary function. Each of the functions in the file can call any of the other func-
tions in the file. Outside functions, or programs (script files), can call only the
primary function. Each of the functions in the file has its own workspace, which
means that in each the variables are local. In other words, the primary function
and the subfunctions cannot access each other’s variables (unless variables are

% Output argument is:
% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

y=feval(Fun,x);

xyout(1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;

xyout(1,2)=y(1);

xyout(2,2)=feval(Fun,(a+b)/2);

xyout(3,2)=y(100);

plot(x,y)

xlabel('x'), ylabel('y')

>> ydemoS=funplotS('Fdemo',0.5,4)

ydemoS =
 0.5000 -2.9852
 2.2500 -3.5548
 4.0000 0.6235

Using the imported function to calculate f(x) at 100 points.

Using the imported function to
calculate f(x) at the midpoint.

The name of the imported
function is typed as a string.

7.10 Subfunctions 241

declared to be global).
Subfunctions can help in writing user-defined functions in an organized

manner. The program in the primary function can be divided into smaller tasks,
each of which is carried out in a subfunction. This is demonstrated in Sample
Problem 7-4.

Sample Problem 7-4: Average and standard deviation

Write a user-defined function that calculates the average and the standard devia-
tion of a list of numbers. Use the function to calculate the average and the stan-
dard deviation of the following list of grades:
80 75 91 60 79 89 65 80 95 50 81

Solution

The average (mean) of a given set of n numbers is given by:

The standard deviation is given by:

A user-defined function, named stat, is written for solving the problem. To
demonstrate the use of subfunctions, the function file includes stat as a pri-
mary function, and two subfunctions called AVG and StandDiv. The function
AVG calculates , and the function StandDiv calculates . The subfunc-
tions are called by the primary function.The following listing is saved as one
function file called stat.

The user-defined function stat is then used in the Command Window for cal-
culating the average and the standard deviation of the grades:

function [me SD] = stat(v)

n=length(v);

me=AVG(v,n);

SD=StandDiv(v,me,n);

function av=AVG(x,num)

av=sum(x)/num;

function Sdiv=StandDiv(x,xAve,num)

xdif=x-xAve;

xdif2=xdif.^2;

Sdiv= sqrt(sum(xdif2)/(num-1));

xave x1 x2 xn, , ,

xave

The primary function.

Subfunction.

Subfunction.

242 Chapter 7: User-Defined Functions and Function Files

7.11 NESTED FUNCTIONS

A nested function is a user-defined function that is written inside another user-
defined function. The portion of the code that corresponds to the nested func-
tion starts with a function definition line and ends with an end statement. An
end statement must also be entered at the end of the function that contains the
nested function. (Normally, a user-defined function does not require a terminat-
ing end statement. However, an end statement is required if the function con-
tains one or more nested functions.) Nested functions can also contain nested
functions. Obviously, having many levels of nested functions can be confusing.
This section considers only two levels of nested functions.

One nested function:

The format of a user-defined function A (called the primary function) that con-
tains one nested function B is:

function y=A(a1,a2)
.......

function z=B(b1,b2)
.......
end

.......
end

• Note the end statements at the ends of functions B and A.

• The nested function B can access the workspace of the primary function A, and
the primary function A can access the workspace of the function B. This means
that a variable defined in the primary function A can be read and redefined in
nested function B and vice versa.

• Function A can call function B, and function B can call function A.

Two (or more) nested functions at the same level:

The format of a user-defined function A (called the primary function) that con-
tains two nested functions B and C at the same level is:

>> Grades=[80 75 91 60 79 89 65 80 95 50 81];

>> [AveGrade StanDeviation] = stat(Grades)

AveGrade =
 76.8182

StanDeviation =
 13.6661

7.11 Nested Functions 243

function y=A(a1,a2)
.......

function z=B(b1,b2)
.......
end

.......
function w=C(c1,c2)
.......
end

.......
end

• The three functions can access the workspace of each other.

• The three functions can call each other.

As an example, the following user-defined function (named statNest),
with two nested functions at the same level, solves Sample Problem 7-4. Note
that the nested functions are using variables (n and me) that are defined in the
primary function.

Using the user-defined function statNest in the Command Window for cal-
culating the average of the grade data gives:

function [me SD]=statNest(v)

n=length(v);

me=AVG(v);

 function av=AVG(x)

 av=sum(x)/n;

 end

 function Sdiv=StandDiv(x)

 xdif=x-me;

 xdif2=xdif.^2;

 Sdiv= sqrt(sum(xdif2)/(n-1));

 end

SD=StandDiv(v);

end

>> Grades=[80 75 91 60 79 89 65 80 95 50 81];

>> [AveGrade StanDeviation] = statNest(Grades)

The primary function.

Nested function.

Nested function.

244 Chapter 7: User-Defined Functions and Function Files

Two levels of nested functions:

Two levels of nested functions are created when nested functions are written
inside nested functions. The following shows an example for the format of a
user-defined function with four nested functions in two levels.

function y=A(a1,a2) (Primary function A.)
.......

function z=B(b1,b2) (B is nested function in A.)
.......

function w=C(c1,c2) (C is nested function in B.)
.......
end

end
function u=D(d1,d2) (D is nested function in A.)
.......

function h=E(e1,e2) (E is nested function in D.)
.......
end

end
.......
end

The following rules apply to nested functions:
• A nested function can be called from a level above it. (In the preceding example,

function A can call B or D, but not C or E.)

• A nested function can be called from a nested function at the same level within
the primary function. (In the preceding example, function B can call D, and D
can call B.)

• A nested function can be called from a nested function at any lower level.

• A variable defined in the primary function is recognized and can be redefined by
a function that is nested at any level within the primary function.

• A variable defined in a nested function is recognized and can be redefined by any
of the functions that contain the nested function.

AveGrade =
 76.8182

StanDeviation =
 13.6661

7.12 Examples of MATLAB Applications 245

7.12 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 7-5: Exponential growth and decay

A model for exponential growth or decay of a quantity is given by

where and are the quantity at time t and time 0, respectively, and k is a
constant unique to the specific application.

Write a user-defined function that uses this model to predict the quantity
 at time t from knowledge of and at some other time . For func-

tion name and arguments, use At = expGD(A0,At1,t1,t), where the output
argument At corresponds to , and for input arguments, use
A0,At1,t1,t, corresponding to , , , and t, respectively.

Use the function file in the Command Window for the following two cases:
(a) The population of Mexico was 67 million in the year 1980 and 79 million in

1986. Estimate the population in 2000.
(b) The half-life of a radioactive material is 5.8 years. How much of a 7-gram

sample will be left after 30 years?

Solution

To use the exponential growth model, the value of the constant k has to be
determined first by solving for k in terms of , , and :

Once k is known, the model can be used to estimate the population at any time.
The user-defined function that solves the problem is:

function At=expGD(A0,At1,t1,t)

% expGD calculates exponential growth and decay

% Input arguments are:

% A0: Quantity at time zero.

% At1: Quantity at time t1.

% t1: The time t1.

% t: time t.

% Output argument is:

% At: Quantity at time t.

k=log(At1/A0)/t1;

At=A0*exp(k*t);

A t A0ekt=

A t A0

A t A0 A t1 t1

A t
A0 A t1 t1

A0 A t1 t1

Function definition line.

Determination of k.

Determination of A(t).
(Assignment of value to output variable.)

246 Chapter 7: User-Defined Functions and Function Files

Once the function is saved, it is used in the Command Window to solve the two
cases. For case a) , , , and :

For case b) , (since corresponds to the half-life, which is
the time required for the material to decay to half of its initial quantity),

, and .

Sample Problem 7-6: Motion of a projectile

Create a function file that calculates the
trajectory of a projectile. The inputs to the
function are the initial velocity and the
angle at which the projectile is fired. The
outputs from the function are the maxi-
mum height and distance. In addition, the
function generates a plot of the trajectory.
Use the function to calculate the trajectory of a projectile that is fired at a veloc-
ity of 230 m/s at an angle of 39°.

Solution

The motion of a projectile can be analyzed by considering the horizontal and
vertical components. The initial velocity can be resolved into horizontal and
vertical components

 and

In the vertical direction the velocity and position of the projectile are given by:

 and

The time it takes the projectile to reach the highest point and the corre-
sponding height are given by:

 and

The total flying time is twice the time it takes the projectile to reach the highest
point, . In the horizontal direction the velocity is constant, and the
position of the projectile is given by:

>> expGD(67,79,6,20)
ans =
 116.03

>> expGD(7,3.5,5.8,30)
ans =
 0.19

A0 67= A t1 79= t1 6= t 20=

Estimation of the population in the year 2000.

A0 7= A t1 3.5= t1

t1 5.8= t 30=

The amount of material after 30 years.

v0

v0x v0 cos= v0y v0 sin=

vy 0=

ttot 2thmax=

x v0xt=

7.12 Examples of MATLAB Applications 247

In MATLAB notation the function name and arguments are entered as
[hmax,dmax] = trajectory(v0,theta). The function file is:

After the function is saved, it is used in the Command Window for a projec-
tile that is fired at a velocity of 230 m/s and an angle of 39°.

function [hmax,dmax]=trajectory(v0,theta)

% trajectory calculates the max height and distance of a
projectile, and makes a plot of the trajectory.

% Input arguments are:

% v0: initial velocity in (m/s).

% theta: angle in degrees.

% Output arguments are:

% hmax: maximum height in (m).

% dmax: maximum distance in (m).

% The function creates also a plot of the trajectory.

g=9.81;

v0x=v0*cos(theta*pi/180);

v0y=v0*sin(theta*pi/180);

thmax=v0y/g;

hmax=v0y^2/(2*g);

ttot=2*thmax;

dmax=v0x*ttot;

% Creating a trajectory plot

tplot=linspace(0,ttot,200);

x=v0x*tplot;

y=v0y*tplot-0.5*g*tplot.^2;

plot(x,y)

xlabel('DISTANCE (m)')

ylabel('HEIGHT (m)')

title('PROJECTILE''S TRAJECTORY')

>> [h d]=trajectory(230,39)

h =
 1.0678e+003

d =
 5.2746e+003

Function definition line.

Creating a time vector with 200 elements.

Calculating the x and y coordi-
nates of the projectile at each time.

Note the element-by-element multiplication.

248 Chapter 7: User-Defined Functions and Function Files

In addition, the following figure is created in the Figure Window:

7.13 PROBLEMS

1. Write a user-defined MATLAB function for the following math function:

The input to the function is x and the output is y. Write the function such
that x can be a vector (use element-by-element operations).
(a) Use the function to calculate y(–2) and y(4).
(b) Use the function to make a plot of the function for .

2. Write a user-defined MATLAB function for the following math function:

The input to the function is (in radians) and the output is r. Write the
function such that can be a vector.
(a) Use the function to calculate r(/6) and r(5 /6).
(b) Use the function to plot (polar plot) r() for .

3. In the U.S. fuel efficiency of cars is specified in miles per gallon (mpg). In
Europe it is often expressed in liters per 100 km. Write a MATLAB user-
defined function that converts fuel efficiency from mpg to liters per 100 km.
For the function name and arguments, use Lkm=mpgToLpkm(mpg). The
input argument mpg is the efficiency in mi/gl, and the output argument Lkm
is the efficiency in liters per 100 km (rounded to the nearest hundredth). Use
the function in the Command Window to:
(a) Determine the fuel efficiency in liters per 100 km of a car whose fuel effi-

ciency is 21 mi/gal.
(b) Determine the fuel efficiency in liters per 100 km of a car whose fuel effi-

ciency is 36 mi/gal.

DISTANCE (m)
0 1000 2000 3000 4000 5000 6000

H
E

IG
H

T
 (

m
)

0

200

400

600

800

1000

1200
PROJECTILE'S TRAJECTORY

y x

r 3 3 0.5cossin=

7.13 Problems 249

4. Pressure in U.S. customary units is measured in psi (pound per square inch).

In SI metric units pressure is measured in Pa (N/m2). Write a user-defined
MATLAB function that converts pressure given in units of psi to pressure in
units of Pa. For the function name and arguments, use [Pa] = Psi-
ToPa(psi). The input argument psi is the pressure in units of psi to be
converted, and the output argument Pa is the converted pressure in units of
Pa (rounded to the nearest integer). Use the function in the Command Win-
dow to:
(a) Convert 120 psi to units of Pa.
(b) Convert 3,000 psi to units of Pa.

5. Tables of material properties list density, in units of kg/m3, when the inter-
national system of units (SI) is used, and list specific weight, in units of lb/

in.3, when the U.S. customary system of units is used. Write a user-defined
MATLAB function that converts density to specific weight. For the func-
tion name and arguments, use [sw] = DenToSw(den). The input argu-

ment den is the density of a material in kg/m3, and the output argument sw

is the specific weight in lb/in.3. Use the function in the Command Window
to:

(a) Determine the specific weight of copper whose density is 8,960 kg/m3.

(b) Determine the specific weight of concrete whose density is 2,340 kg/m3.

6. Write a user-defined MATLAB function that converts torque given in units
of N-m to torque in units of lb-ft. For the function name and arguments,
use lbft = NmTOlbft(Nm). The input argument Nm is the torque in N-m,
and the output argument lbft is the torque in lb-ft (rounded to the nearest
integer). Use the function to convert 2,000 N-m to units of lb-ft.

7. The body surface area (BSA) in m2 of a person (used for determining dosage
of medications) can be calculated by the formula (Mosteller formula):

in which H is the person’s height in inches, and W is the persons weight in lb.
Write a MATLAB user-defined function that calculates the body sur-

face area. For the function name and arguments, use BSA = Body-
SurA(w,h). The input arguments w and h are the weight and height,
respectively. The output argument BSA is the BSA value. Use the function to
calculate the body surface area of:
(a) A 170-lb, 5-ft 10-in. tall person.
(b) A 220-lb, 6-ft 5-in. tall person.

250 Chapter 7: User-Defined Functions and Function Files

8. The fuel tank shown in the figure in shaped as a half
a sphere with in.

Write a user-defined function that calculates the
volume of fuel in the tank (in gallons) as a function
of the height y (measured from the bottom). For the
function name and arguments, use V = Vol-
fuel(y). Use the function to make a plot of the
volume as a function of y for in.

9. A paper cup is designed to have a geometry of a
frustum of a cone. Write a user-defined function that
determines the volume and the surface area (side plus
bottom) of the cup for given values of r, R, and h. For
the function name and arguments, use [V, S] =
VolSArea(r,R,h). The input arguments r, R, and
h are the radius of the base, the radius of the top and
the height, respectively (all in units of inches). The out-
put arguments V and S are the volume (in units of U.S.

fluid ounce) and the surface area (in units of in.2),
respectively. Use the function to determine the volume and the surface area of
cups with the following dimensions:
(a) in., in., in.
(b) in., in., in.

10. The relative humidity, RH, at sea level can be calculated from measured val-
ues of the dry-bulb temperature, , and the wet-bulb temperature by
(temperatures in degrees Celsius):

where VP is the vapor pressure given by:

and SVP is the saturated vapor pressure given by:

Write a user-defined function for calculating RH for given and . For
the function name and arguments, use RH = RelHum(Tdb,Twb). The
input arguments are Tdb and Twb are the dry-bulb and wet-buld tempera-
tures, respectively in °F. The output argument RH is the relative humidity in
percent (rounded to the nearest integer). Inside the user-defined function
use a subfunction, or an anonymous function to convert the unit of the tem-
perature from Cesius to Fahrenheit. Use the function to determine the rela-
tive humidity for the following conditions:
(a) F, F. (b) F, F.

y

R
R 24=

r
h

R

r 2= R 3.5= h 4.25=
r 2.5= R 3.5= h 4.5=

7.13 Problems 251

11. Write a user-defined function that calculates grade point average (GPA) on
a scale of 0 to 5, where , , , , and . For the
function name and arguments, use GPA = GradePtAve(G,C). The input
argument G is a vector whose elements are letter grades A, B, C, D, or F
entered as a string (e.g., [‘ABACFB’]). The input argument C is a vector
with the corresponding credit hours. The output argument GPA is the calcu-
lated GPA rounded to the nearest tenth (i.e., 3.75 is rounded to 3.8, and
3.749 is rounded to 3.7). Use the function to calculate the GPA for a student
with the following record:

12. Write a user-defined MATLAB function that deter-
mines the angle that forms by the intersection of
two lines. For the function name and arguments,
use th=anglines(A,B,C). The input arguments
to the function are vectors with the coordinates of
the points A, B, and C, as shown in the figure, which
can be two- or three-dimensional. The output th is
the angle in degrees. Use the function anglines for determining the angle
for the following cases:
(a) A(–5, –1, 6), B(2.5, 1.5, –3.5), C(–2.3, 8, 1)
(b) A(–5.5, 0), B(3.5, –6.5), C(0, 7)

13 Write a user-defined MATLAB function that determines the time elapsed
between two events during a day. For the function name and arguments, use
dt = timediff(TA,ap1,TB,ap2). The input arguments to the func-
tion are:
TA is a two-element vector with the time of the first event. The first element
is the hour and the second element is the minute.
ap1 is a string ‘AM’ or ‘PM’ which corresponds to the time of the first
event.
TB is a two-element vector with the time of the second event. The first ele-
ment is the hour and the second element is the minute.
ap2 is a string ‘AM’ or ‘PM’ which corresponds to the time of the second
event.

The output argument dt is a two-element vector with the time elapsed
between two events. The first element is the number of hours and the second
element is number of minutes.

The function displays an error message if the time entered for event B is
before the time entered for event A.

Use the function to determine the time elapsed between the following
events:

Grade A B F C B A D A

Credit Hours 4 3 3 2 3 4 3 3

A 5= B 4= C 3= D 2= F 0=

252 Chapter 7: User-Defined Functions and Function Files

(a) Event A: 5:37 AM; Event B: 2:51 PM.
(b) Event A: 12:53 PM; Event B: 6:12 PM.
(c) Event A: 11:32 PM; Event B: 3:18 PM. (Error situation.)

14. Write a user-defined MATLAB function that determines the unit vector in
the direction of the line that connects two points (A and B) in space. For the
function name and arguments, use n = unitvec(A,B). The input to the
function are two vectors A and B, each with the Cartesian coordinates of the
corresponding point. The output n is a vector with the components of the
unit vector in the direction from A to B. If points A and B have two coordi-
nates each (they are in the x y plane), then n is a two-element vector. If
points A and B have three coordinate each (general points in space), then n
is a three-element vector. Use the function to determine the following unit
vectors:
(a) In the direction from point (–0.7, 2.1) to point (9, 18).
(b) In the direction from point (10, –3.5, –2.5) to point (–11, 6.5, 5.9).

15. Write a user-defined MATLAB function that determines the cross product
of two vectors. For the function name and arguments, use w=cross-
pro(u,v). The input arguments to the function are the two vectors, which
can be two- or three-dimensional. The output w is the result (a vector). Use
the function crosspro for determining the cross product of:
(a) Vectors and .
(b) Vectors and .

16. The area of a triangle ABC can be calculated by:

where AB is the vector from vertex A to vertex B and AC is the vector from
vertex A to vertex C. Write a user-defined MATLAB function that deter-
mines the area of a triangle given its vertices’ coordinates. For the function
name and arguments, use [Area] = TriArea(A,B,C). The input argu-
ments A, B, and C are vectors, each with the coordinates of the corresponding
vertex. Write the code of TriArea such that it has two subfunctions—one
that determines the vectors AB and AC and another that executes the cross
product. (If available, use the user-defined functions from Problem 15). The
function should work for a triangle in the x-y plane (each vertex is defined
by two coordinates) or for a triangle in space (each vertex is defined by three
coordinates). Use the function to determine the areas of triangles with the
following vertices:
(a) , ,
(b) , ,

a 3i 11j+=

A 1 2,= B 10 3,= C 6 11,=

7.13 Problems 253

17. As shown in the figure, the area of a convex polygon
can be calculated by adding the area of the triangles
that the polygon can be divided into. Write a user-
defined MATLAB function that calculates the area
of a convex n-sided polygon. For the function name
and arguments, use A = APolygon(Crd). The
input argument Crd is a two-column matrix where
each row contains the coordinates of a vertex (first column is the x coordi-
nate and the second column is the y coordinate). The vertices are listed in
the order that they are connected to form the polygon (i.e., coordinates of
point A in the first row, point B in the second, and so on). The output argu-
ment A is the area of the polygon. Write the code of APolygon such that it
has a subfunction that calculates the area of a triangle for given vertices’
coordinates. Use APolygon to calculate the area of the polygon shown in
the figure. The coordinates of the vertices are: A(1, 1), B(7, 2), C(10, 5), D(9,
11), E(6, 12), F(1, 12), G(–3, 8), H(–4, 4).

18. Write a user-defined function that determines the location of the center and
the radius of a circle that passes through three given points in a plane. The
function also creates a plot that shows the circle and the points. For the
function name and arguments, use [C R]=Circle3Pts(A,B,C). The
input arguments A, B, and C are each a two-element vector with the x and y
coordinates of the corresponding point. The output argument C, is a vector
with the coordinates of the center the output argument R, is the radius (both
rounded to the nearest hundredth). Use the function with the following
three points: A(7, 1.2), B(0.5, 2.6), and C(–2.4, –1.4).

19. Write a user-defined MATLAB function that converts integers written in
decimal form to binary form. Name the function b=Bina(d), where the
input argument d is the integer to be converted and the output argument b
is a vector with 1s and 0s that represents the number in binary form. The
largest number that could be converted with the function should be a binary
number with 16 1s. If a larger number is entered as d, the function should
display an error message. Use the function to convert the following num-
bers:
(a) 100 (b) 1,002 (c) 52,601 (d) 200,090

20. Write a user-defined function that plots a triangle and the circle that is
inscribed inside, given the coordinates of its vertices. For the function name
and arguments, use TriCirc(A,B,C). The input arguments are vectors
with the x and y coordinates of the vertices, respectively. This function has
no output arguments. Use the function with the points (2.6, 3.2), (11, 14.5),
and (–2, 2.8).

A
B

C

D
EF

G

H

254 Chapter 7: User-Defined Functions and Function Files

21. Write a user-defined function that plots an
ellipse with axes that are parallel to the x and y
axes, given the coordinates of its vertices and
the coordinates of another point that the ellipse
passes through. For the function name and
arguments, use ellipseplot(A,B,C). The
input arguments A and B are each a two-element
vector with the coordinates of the vertices, and C is a two-element vector
with the coordinates of another point on the ellipse (see figure), respectively.
This function has no output arguments. Use the function to plot the follow-
ing ellipses:
(a) A(2,3), B(11,3), C(10,4) (b) A(2,11), B(2,–4), C(4,8)

22. In polar coordinates a two-dimensional vector
is given by its radius and angle . Write a
user-defined MATLAB function that adds two
vectors that are given in polar coordinates. For
the function name and arguments, use
[r th]= AddVecPol(r1,th1,r2,th2),

 where the input arguments are and
, and the output arguments are the

radius and angle of the result. Use the function to carry out the following
additions:
(a) , (b) ,

23. Write a user-defined function that determines if a number is a prime num-
ber. Name the function pr=Trueprime(m), where the input arguments m
is a positive integer and the output argument pr is 1 if m is a prime number
and 0 if m is not a prime number. Do not use MATLAB’s built-in functions
primes and isprime. If a negative number or a number that is not an
integer is entered when the function is called, the error message “The input
argument must be a positive integer.” is displayed.
(a) Use the function with 733, 2001, and 107.5.
(b) Write a MATLAB program in a script file that makes use of Truep-
rime and finds the smallest prime number that remains a prime number
when added to its reverse (37 is the reverse of 73).

24. The harmonic mean H of a set of n positive
numbers is defined by:

Write a user-defined function that calculates
the harmonic mean of a set of numbers. For
function name and arguments use G=Harmean(x), where the input argu-

x

y

A B
C

r,

r1 1,
r2 2,

r1 5 23,= r2 12 40,= r1 6 80,= r2 15 125,=

x1 x2 xn, , ,

7.13 Problems 255

ment x is a vector of numbers (any length) and the output argument H is
their harmonic mean. In electrical engineering the equivalent resistance of
resistors connected in parallel is equal to the harmonic mean of the values
of the resistors divided by the number of the resistors. Use the user-defined
function Harmean to calculate the equivalent resistance of the resistors
shown in the figure.

25. Write a user-defined function that determines the polar
coordinates of a point from the Cartesian coordinates in
a two-dimensional plane. For the function name and
arguments, use [th rad]=CartToPolar(x,y).
The input arguments are the x and y coordinates of the
point, and the output arguments are the angle and the
radial distance to the point. The angle is in degrees and
is measured relative to the positive x axis, such that it is a positive number in
quadrants I and II, and a negative number in quadrant III and IV. Use the func-
tion to determine the polar coordinates of points (14, 9), (–11, –20), (–15, 4),
and (13.5, –23.5).

26. Write a user-defined function that determines the value that occurs most
often in a set of data that is given in a two-dimensional matrix. For the func-
tion name and arguments, use [v, q] =matrixmode(x). The input argu-
ment x is a matrix of any size with numerical values, and the output
arguments v and q are the values that occur most often and the number of
times they occur. If there are two, or more, values that occur most often
than v is a vector with these values. Do not use the MATLAB built-in func-
tion mode. Test the function three times. For input create a matrix
using the following command: x=randi(10,5,6).

27. Write a user-defined function that sorts the elements of a vector from the

largest to the smallest. For the function name and arguments, use
y=downsort(x). The input to the function is a vector x of any length,
and the output y is a vector in which the elements of x are arranged in a
descending order. Do not use the MATLAB built-in functions sort, max,
or min. Test your function on a vector with 14 numbers (integers) randomly
distributed between –30 and 30. Use the MATLAB randi function to
generate the initial vector.

28. Write a user-defined function that sorts the elements of a matrix. For the
function name and arguments, use B = matrixsort(A), where A is any
size matrix and B is a matrix of the same size with the elements of A
rearranged in descending order column after column with the (1,1) element
the largest and the (m,n) element the smallest. If available, use the user-
defined function downsort from the previous problem as a subfunction

256 Chapter 7: User-Defined Functions and Function Files

within matrixsort.
Test your function on a matrix with elements (integers) randomly

distributed between –30 and 30. Use MATLAB’s randi function to gener-
ate the initial matrix.

29. Write a user-defined MATLAB function that finds the largest element of a
matrix. For the function name and arguments, use [Em,rc] = matrix-
max(A), where A is any size matrix. The output argument Em is the value of
the largest element, and rc is a two-element vector with the address of the
largest element (row and column numbers). If there are two, or more, ele-
ments that have the maximum value, the output argument rc is a two-col-
umn matrix where the rows list the addresses of the elements. Test the
function three times. For input create a matrix using the following
command: x=randi([-20 100],4,6).

30. Write a user-defined MATLAB function that calculates the determinant of
a matrix by using the formula:

For the function name and arguments, use d3 = det3by3(A), where the
input argument A is the matrix and the output argument d3 is the value of
the determinant. Write the code of det3by3 such that it has a subfunction
that calculates the determinant. Use det3by3 for calculating the
determinants of:

(a) (b)

31. The shortest distance between two points on the surface of the globe (great-
circle distance) can be calculated by using the haversine formula. If and

 are the latitude and longitude of point 1 and and are the latitude
and longitude of point 2, the great circle distance between the points is given
by:

where , and mi is

the Earth radius. Write a user-defined function that determines the distance
between two points on the Earth. For the function name and arguments, use
dis = GreatCirDis(Lat1,Lng1,Lat2,Lng2), where the input argu-
ments are the latitude and longitude of the two points (degrees in decimal
format), and dis is the great-circle distance in miles. Use the function to
calculate the distance between London (51.50853°, –0.12574°) and New

7.13 Problems 257

York City (40.71427°, –74.00597°).
32. Delta rosette is a set of three strain gages oriented at

120° relative to each other. The strain measured
with each of the strain gages is , , and . The
principal strains and can be calculated from
the strains measured with the rosette by:

Write a user-defined MATLAB function that deter-
mines the principal strains given the strains , ,
and . For the function name and arguments, use
[P1, P2]=DeltaRos(A,B,C). The input arguments A, B, and C are the
values of the three strains measured by the rosette. The output arguments
P1 and P2 are the values of the principal strains.

Use the function to determine the principal strains for the following
cases:
(a) , , .
(b) , , .

33. In a lottery the player has to select several numbers out of a list. Write a
user-defined function that generates a list of n integers that are uniformly
distributed between the numbers a and b. All the selected numbers on the list
must be different. For function name and arguments, use
x=lotto(a,b,n)where the input arguments are the numbers a and b, and
n, respectively. The output argument x is a vector with the selected numbers.
(a) Use the function to generate a list of seven numbers from the numbers 1

through 59.
(b) Use the function to generate a list of eight numbers from the numbers

50 through 65.
(c) Use the function to generate a list of nine numbers from the numbers

–25 through –2.

34. The Taylor series expansion for about is given by:

where x is in radians. Write a user-defined function that determines
using Taylor’s series expansion. For function name and arguments, use
y=sinTay(x), where the input argument x is the angle in degrees and the
output argument y is the value of . Inside the user-defined function,
use a loop for adding the terms of the Taylor series. If is the nth term in
the series, then the sum of the n terms is . In each pass, cal-

culate the estimated error E given by . Stop adding terms when

A B C

1 2

A B

C

xsin x 0=

n 0=

xsin

xsin
an

Sn

258 Chapter 7: User-Defined Functions and Function Files

. Since (n is an integer) write the user-
defined function such that if the angle is larger than 360°, or smaller than
–360°, then the Taylor series will be calculated using the smallest number of
terms (using a value for x that is closest to 0).

Use sinTay for calculating:
(a) (b) (c) .
(d) (e) (f)

Compare the values calculated using sinTay with the values obtained
by using MATLAB’s built-in sind function.

35. Write a user-defined function that determines
the coordinate of the centroid of the I-
shaped cross-sectional area shown in the figure.
For the function name and arguments, use yc =
centroidI(w,h,d,t), where the input
arguments w, h, d, and t are the dimensions
shown in the figure and the output argument
yc is the coordinate .

Use the function to determine for a beam with in., in.,
in., and in.

36. The area moment of inertia of a rectangle about the

axis passing through its centroid is . The

moment of inertia about an axis x that is parallel to is

given by , where A is the area of the rect-

angle, and is the distance between the two axes.

Write a MATLAB user-defined function that
determines the area moment of inertia of a I-
beam about the axis that passes through its cen-
troid (see drawing). For the function name and
arguments use Ixc=IxcBeam(w,h,d,t),
where the input arguments w, h, d, and t are the
dimensions shown in the figure and the output
argument Ixc is . For finding the coordinate

 of the centroid, use the user-defined function centroidI from the pre-
vious problem as a subfunction inside IxcBeam.
(The moment of inertia of a composite area is obtained by dividing the area
into parts and adding the moments of inertia of the parts.)

Use the function to determine the moment of inertia for a beam with
in., in., in., and in.

39sin 205sin
754sin

w

h

t

d

yc

c

t

t

yc

yc

yc w 10= h 8=
d 6= t 0.5=

b

h

dx

xo

x

Ixo

xo

xo

Ix Ixo
Ad x

2+=

dx

w

h

t

d

yc

c

t

t

Ixc

Ixc

yc

w 10= h 8= d 6= t 0.5=

7.13 Problems 259

37. The simple RC high-pass filter shown in the
figure passes signals with frequencies higher
than a certain cutoff frequency. The ratio of
the magnitudes of the voltages is given by:

where , and f is the frequency of the input signal.
Write a user-defined MATLAB function that calculates the ratio of

magnitudes for given values of R, C, and f. For the function name and argu-
ments, use RV = RCFilt(R,C,f). The input arguments are R, the size of
the resistor in (ohms); C, the size of the capacitor in F (farad); and f, the
frequency of the input signal in Hz (hertz). Write the function such that f
can be a vector.

Write a program in a script file that uses the RCFilt function to gener-
ate a plot of RV as a function of f for Hz. The plot has a
logarithmic scale on the horizontal axis. When executed, the script file asks
the user to enter the values of R and C. Label the axes of the plot.

Run the script file with , and F.

38. A circuit that filters out a certain fre-
quency is shown in the figure. In this fil-
ter, the ratio of the magnitudes of the
voltages is given by:

where , and f is the frequency of the input signal.
Write a user-defined MATLAB function that calculates the ratio of

magnitudes. For the function name and arguments, use RV=filt-
afreq(R,C,L,f). The input arguments are R the size of the resistor in
(ohms); C, the size of the capacitor in F (farad); L, the inductance of the coil
in H (henrys); and f, the frequency of the input signal in Hz (hertz). Write
the function such that f can be a vector.

Write a program in a script file that uses the filtafreq function to
generate a figure with two plots of RV as a function of f for
Hz. In one plot F, mH, and , and in the sec-
ond plot C and L are unchanged but .. The plot has a logarithmic
scale on the horizontal axis. Label the axes and display a legend.

39. The first derivative of a function at a point can be

approximated with the four-point central difference formula:

R 80=

Vi Vo

C

L

R

C 160= L 45= R 200=
R 50=

f x x x0=

260 Chapter 7: User-Defined Functions and Function Files

where h is a small number relative to . Write a user-defined function func-
tion (see Section 7.9) that calculates the derivative of a math function
by using the four-point central difference formula. For the user-defined
function name, use dfdx=FoPtder(Fun,x0), where Fun is a name for
the function that is passed into FoPtder, and x0 is the point where the
derivative is calculated. Use in the four-point central difference
formula. Use the user-defined function FoPtder to calculate the following:
(a) The derivative of at .

(b) The derivative of at .

In both cases compare the answer obtained from FoPtder with the
analytical solution (use format long).

40. In lottery the player has to guess correctly r numbers that are drawn out of n
numbers. The probability, P, of guessing m numbers out of the r numbers
can be calculated by the expression:

 where . Write a user-defined MATLAB function that calcu-

lates P. For the function name and arguments, use P = ProbLot-
tery(m,r,n). The input arguments are m, the number of correct guesses;
r, the number of numbers that need to be guessed; and n, the number of
numbers available. Use a subfunction inside ProbLottery for calculating

.

(a) Use ProbLottery for calculating the probability of correctly selecting
3 of 6 numbers that are drawn out of 49 numbers in a lottery game.

(b) Consider a lottery game in which 6 numbers are drawn out of 49 num-
bers. Write a program in a script file that displays a table with seven
rows and two columns. The first column has the numbers 0, 1, 2, 3, 4, 5,
and 6, which are the number of numbers guessed correctly. The second
column show the corresponding probability of making the guess.

x0

f x

f x x3e2x= x0 0.6=

x0 2.5=

Cx y,

	Chapter 7: User-Defined Functions and Function Files
	7.1 CREATING A FUNCTION FILE�����������������������������������
	7.2 STRUCTURE OF A FUNCTION FILE���������������������������������������
	7.2.1 Function Definition Line�������������������������������������
	7.2.2 Input and Output Arguments���������������������������������������
	7.2.3 The H1 Line and Help Text Lines��
	7.2.4 Function Body��������������������������

	7.3 LOCAL AND GLOBAL VARIABLES�������������������������������������
	7.4 SAVING A FUNCTION FILE���������������������������������
	7.5 USING A USER-DEFINED FUNCTION��
	7.6 EXAMPLES OF SIMPLE USER-DEFINED FUNCTIONS��
	7.7 COMPARISON BETWEEN SCRIPT FILES AND FUNCTION FILES���
	7.8 ANONYMOUS FUNCTIONS������������������������������
	7.9 FUNCTION FUNCTIONS�����������������������������
	7.9.1 Using Function Handles for Passing a Function into a Function Function���
	7.9.2 Using a Function Name for Passing a Function into a Function Function��

	7.10 SUBFUNCTIONS������������������������
	7.11 NESTED FUNCTIONS����������������������������
	7.12 EXAMPLES OF MATLAB APPLICATIONS���
	7.13 PROBLEMS��������������������

