

Foundation of Mathematics 1

CHAPTER 3 RELATIONS ON SETS

Dr. Amer Ismal, Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana, Lec. Faten Hashim

Mustansiriyah University-College of Science-Department of Mathematics 2023-2024

Chapter Three Relations on Sets

3.1 Cartesian Product

Definition 3.1.1. A set A is called

- (i) **finite** set if A contains finite number of element, say n, and denote that by |A| = n. The symbol |A| is called the **cardinality** of A,
- (ii) infinite set if A contains infinite number of elements.

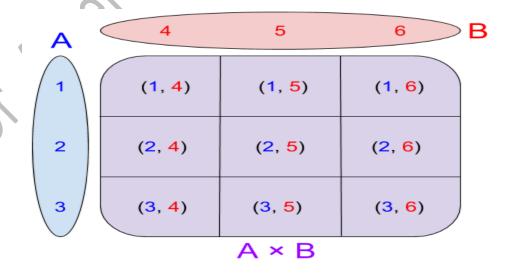
Definition 3.1.2. The Cartesian product (or cross product) of A and B, denoted by $A \times B$, is the set $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$.

- (1) The elements (a,b) of $A \times B$ are ordered pairs, a is called the **first** coordinate (component) of (a,b) and b is called the second coordinate (component) of (a,b).
- (2) For pairs (a,b), (c,d) we have $(a,b) = (c,d) \Leftrightarrow a = c$ and b = d.
- (3) The *n*-fold product of sets A_1 , A_2 , ..., A_n is the set of *n*-tuples

$$A_1 \times A_2 \times ..., \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for all } 1 \le i \le n\}.$$

Example 3.1.3. Let $A = \{1,2,3\}$ and $B = \{4,5,6\}$.

(i)
$$A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}.$$



(ii)
$$B \times A = \{(4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (6,1), (6,2), (6,3)\}.$$

Remark 3.1.4.

- (i) For any set A, we have $A \times \emptyset = \emptyset$ (and $\emptyset \times A = \emptyset$) since, if $(a,b) \in$ $A \times \emptyset$, then $\alpha \in A$ and $b \in \emptyset$, impossible.
- (ii) If |A| = n and |B| = m, then $|A \times B| = nm$. If A or B is infinite set then cross product $A \times B$ is infinite set.
- Example 3.1.3 showed that $A \times B \neq B \times A$. (iii)

Theorem 3.1.5. For any sets A, B, C, D

- $A \times B = B \times A \iff A = B$, (i)
- if $A \subseteq B$, then $A \times C \subseteq B \times C$. (ii)
- $A \times (B \cap C) = (A \times B) \cap (A \times C),$ (iii)
- (iv) $A \times (B \cup C) = (A \times B) \cup (A \times C)$,
- (v) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D),$
- $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. The equialty may not hold. (vi)

Def. of \subseteq

 $A \times (B - C) = (A \times B) - (A \times C).$

Proof.

(i) The necessary condition. Let $A \times B = B \times A$. To prove A = B.

Let
$$x \in A \Longrightarrow (x,y) \in A \times B, \forall y \in B$$
. Def. of \times

$$\Longrightarrow (x,y) \in B \times A$$
By hypothesis
$$\Leftrightarrow x \in B \land y \in A$$
Def. of \times

$$(1) \Longrightarrow x \in B \Longrightarrow A \subseteq B$$
Def. of \subseteq

By the same way we can prove that $B \subseteq A$.

Therefore, A = BInf. (1),(2).

The sufficient condition. Let A = B. To prove $A \times B = B \times A$.

$$A \times B = A \times A = B \times A$$
 Hypothesis

(vii)
$$A \times (B - C) = (A \times B) - (A \times C)$$
.

$$(x,y) \in A \times (B-C) \iff x \in A \land y \in (B-C)$$
 Def. of \times
 $\iff x \in A \land (y \in B \land y \notin C)$ Def. of $-$
 $\iff (x \in A \land x \in A) \land (y \in B \land y \notin C)$ Idempotent Law of \wedge
 $\iff (x \in A \land y \in B) \land (x \in A \land y \notin C)$ Commut. and Assoc. Laws of \wedge
 $\iff (x,y) \in (A \times B) \land (x,y) \notin (A \times C)$ Def. of \times
 $\iff (x,y) \in (A \times B) - (A \times C)$ Def. of $-$

3.2 Relations

Definition 3.2.1. Any subset "R" of $A \times B$ is called a **relation between A and B** and denoted by R(A, B). Any subset of $A \times A$ is called a **relation on A**.

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since a relation R on A is a subset of $A \times A$, it is an element of the power set of $A \times A$; that is, $R \in P(A \times A)$.

If R is a relation on A and $(x, y) \in R$, then we write xRy, read as "x is in R-relation to y", or simply, x is in relation to y, if R is understood.

Example 3.2.2.

- (i) Let $A = \{2, 4, 6, 8\}$, and define the relation R on A by $(x, y) \in R$ iff x divides y. Then, $R = \{(2, 2), (2, 4), (2, 6), (2, 8), (4, 4), (4, 8), (6, 6), (8, 8)\}$.
- (ii) Let $A = \{0,3,5,8\}$, and define $R \subseteq A \times A$ by xRy iff x and y have the same remainder when divided 3.

$$R = \{(0,0),(0,3),(3,0),(3,3),(5,5),(5,8),(8,5),(8,8)\}.$$

Observe, that xRx for $x \in N$ and, whenever xRy then also yRx.

(iii) Let $A = \mathbb{R}$, and define the relation R on \mathbb{R} by xRy iff $y = x^2$. Then R consists of all points on the parabola $y = x^2$.

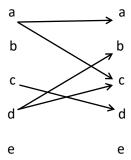
- (iv) Let $A = \mathbb{R}$, and define R on \mathbb{R} by xRy iff $x \cdot y = 1$. Then R consists of all pairs $(x, \frac{1}{x})$, where x is non-zero real number.
- (v) Let $A = \{1, 2, 3\}$, and define R on A by xRy iff x + y = 7. Since the sum of two elements of A is at most 6, we see that xRy for no two elements of A; hence, $R = \emptyset$.

For small sets we can use a pictorial representation of a relation R on A: Sketch two copies of A and, if xRy then draw an arrow from the x in the left sketch to the y in the right sketch.

(vi) Let $A = \{a, b, c, d, e\}$, and consider the relation

$$R = \{(a,a), (a,c), (c,d), (d,b), (d,c)\}.$$

An arrow representation of *R* is given in Fig.



(vii) Let A be any set. Then the relation $R = \{(x, x) : x \in A\} = I_A$ on A is called the **identity relation on A**. Thus, in an identity relation, every element is related to itself only.

Definition 3.2.3. Let *R* be a relation on *A*. Then

- (i) $Dom(R) = \{x \in A : \text{ There exists some } y \in A \text{ such that } (x, y) \in R\}$ is called the **domain of** R.
- (ii) Ran(R) = { $y \in A$: There exists some $x \in A$ such that $(x, y) \in R$ } is called the **range of** R.

Observe that Dom(R) and Ran(R) are both subsets of A.

Example 3.2.4.

(i) Let A and R be as in Example 3.2.2(vi). Then

$$Dom(R) = \{a, c, d\}, Ran(R) = \{a, b, c, d\}.$$

(ii) Let $A = \mathbb{R}$, and define R by xRy iff $y = x^2$. Then

$$Dom(R) = \mathbb{R}, \ Ran(R) = \{ y \in \mathbb{R} : y \ge 0 \}.$$

- (iii) Let $A = \{1, 2, 3, 4, 5, 6\}$, and define R by xRy iff $x \not \le y$ and x divides y; $R = \{(1, 2), (1, 3), \dots, (1, 6), (2, 4), (2, 6), (3, 6)\}$, and Dom $(R) = \{1, 2, 3\}$, Ran $(R) = \{2, 3, 4, 5, 6\}$.
- (iv) Let $A = \mathbb{R}$, and R be defined as $(x, y) \in R$ iff $x^2 + y^2 = 1$. Then

 $(x, y) \in R$ iff (x, y) is on the unit circle with centre at the origin. So,

$$Dom(R) = Ran(R) = \{z \in \mathbb{R}: -1 \le z \le 1\}.$$

Definition 3.2.5. (Reflexive, Symmetric, antisymmetric and Transitive Relations)

Let R be a relation on a nonempty set A.

- (i) R is **reflexive** if $(x, x) \in R$ for all $x \in A$.
- (ii) R is antisymmetric if for all $x, y \in A$, $(x, y) \in R$ and $(y, x) \in R$ implies x = y.
- (iii) R is **transitive** if for all $x, y, z \in A$, $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
- (iv) R is symmetric if whenever $(x, y) \in R$ then $(y, x) \in R$.

Definition 3.2.6.

(i) R is an **equivalence relation** on A, if R is reflexive, symmetric, and transitive. The set

$$[x] = \{ y \in A : xRy \}$$

is called **equivalence class**. The set of all different equivalence classes A/R is called the **quotient set**.

(ii) R is a **partial order** on A(an **order** on A, or an **ordering** of A), if R is reflexive, antisymmetric, and transitive. We usually write \leq for R; that is,

$$x \le y$$
 iff xRy

- (iii) If R is a partial order on A, then the element $a \in A$ is called **least element of** A with respect to R if and only if aRx for all $x \in A$.
- (iv) If R is a partial order on A, then the element $a \in A$ is called **greatest element** of A with respect to R if and only if xRa for all $x \in A$.
- (v) If R is a partial order on A, then the element $a \in A$ is called **minimal element** of A with respect to R if and only if xRa then a = x for all $x \in A$.
- (vi) If R is a partial order on A, then the element $a \in A$ is called maximal element of A with respect to R if and only if aRx then a = x for all $x \in A$.

Example 3.2.7.

(i) The relation on the set of integers \mathbb{Z} defined by

$$(x,y) \in R \text{ if } x - y = 2k, \quad \text{for some } k \in \mathbb{Z}$$

is an equivalence relation, and partitions the set integers into two equivalence classes, i.e., the even and odd integers.

If
$$y = 0$$
, then $[x] = \mathbb{Z}_e$. If $y = 1$, then $[x] = \mathbb{Z}_o$. $\mathbb{Z} = \mathbb{Z}_e \cup \mathbb{Z}_o$, $\mathbb{Z}/R = \{\mathbb{Z}_e, \mathbb{Z}_o\}$.

- (ii) The inclusion relation \subseteq is a partial order on power set P(X) of a set X.
- (iii) Let $A = \{3,6,7\}$, and

$$R_1 = \{(x, y) \in A \times A : x \le y\}, R_2 = \{(x, y) \in A \times A : x \ge y\}$$

 $R_3 = \{(x, y) \in A \times A : y \text{ divisble by } x\}$

are relations defined on A.

$$R_1 = \{(3,3), (3,6), (3,7), (6,6), (6,7), (7,7)\},\$$

$$R_2 = \{(3,3), (6,3), (6,6), (7,3), (7,6), (7,7)\}.\$$

$$R_3 = \{(3,3), (3,6), (6,6), (7,7)\}.$$

 R_1, R_2 and R_3 are partial orders on A.

- (1) The least element of A with respect to R_1 is ------
- (2) The least element of A with respect to R_2 is ------
- (3) The greatest element of A with respect to R_1 is -----
- (4) The greatest element of A with respect to R_2 is ------
- (5) A has no least and greatest element with respect to R_3 since, -----
- (6) The maximal element of A with respect to R_3 is ------
- (7) The minimal element of A with respect to R_3 is ------
- (iv) Let $X = \{1,2,4,7\}, K = \{\{1,2\},\{4,7\},\{1,2,4\},X\}$ and $R_1 = \{(A,B) \in K \times K : A \subseteq B\},$ $R_2 = \{(A,B) \in K \times K : A \supseteq B\},$

are relations defined on K.

$$R_1 = (\{1,2\}, \{1,2\}), \quad (\{1,2\}, \{1,2,4\}), \quad (\{1,2\}, X), \\ \quad (\{4,7\}, \{4,7\}), \quad (\{4,7\}, X), \\ \quad (\{1,2,4\}, \{1,2,4\}), \quad (\{1,2,4\}, X), \\ \quad (X, X)$$

$$R_{2} = (\{1,2\},\{1,2\}),$$

$$(\{4,7\},\{4,7\}),$$

$$(\{1,2,4\},\{1,2\}), \quad (\{1,2,4\},\{1,2,4\}),$$

$$(X,\{1,2\}), \quad (X,\{4,7\}), \quad (X,\{1,2,4\}), \quad (X,X)$$

 R_1 and R_2 are partial orders on K.

- (1) K has no least element with respect to R_1 since, -----
- (2) The greatest element of K with respect to R_1 is
- (3) The least element of K with respect to to R_2 is
- (4) K has no greatest element with respect to R_2 since, ------
- (5) The minimal elements of K with respect to R_1 are -----
- (6) The maximal element of K with respect to R_1 is -----
- (7) The minimal element of K with respect to R_2 is -----
- (8) The maximal element of K with respect to R_2 is ------

Remark 3.2.8.

- (i) Every greatest (least) element is maximal (minimal). The converse is not true.
- (ii) The greatest (least) element if exist, it is unique.
- (iii) Every finite partially ordered set has maximal (minimal) element.

Properties of equivalence classes

- (iv) For all $a \in X$, $a \in [a]$.
- (v) $aRb \Leftrightarrow [a] = [b]$.
- (vi) $[a] = [b] \Leftrightarrow (a,b) \in R \Leftrightarrow aRb$.
- (vii) $[a] \cap [b] \neq \emptyset \Leftrightarrow [a] = [b]$.
- (viii) $[a] \cap [b] = \emptyset \Leftrightarrow [a] \neq [b]$.
- (ix) For all $a \in X$, $[a] \in X/R$ but $[a] \subseteq X$.

Definition 3.2.9. R is a totally order on A if R is a partial order, and xRy or yRx for all $x, y \in A$; that is, if any two elements of A are comparable with respect to R. Then we call the pair (A, \leq) a totally order set or a chain.

Example 3.2.10.

- (i) Let $A = \{2,3,4,5,6\}$, and define R by the usual \leq relation on \mathbb{N} , i.e. aRb iff $a \leq b$. Then R is a **totally order** on A.
- (ii) Let us define another relation on \mathbb{N}

$$a/b$$
 iff a divides b.

To show that / is a partial order we have to show the three defining properties of a partial order relation:

Reflexive: Since every natural number is a divisor of itself, we have a/a for all $a \in A$.

Antisymmetric: If a divides b then we have either a = b or a < b in the usual ordering of \mathbb{N} ; similarly, if b divides a, then b = a or b < a. Since a < b and b < a is not possible, a/b and b/a implies a = b.

Transitive: If a divides b and b divides c then a also divides c. Thus, / is a partial order on N.

The relation "/" is not totally order since $(3,4) \notin$ /.

(iii) Let
$$A = \{x, y\}$$
 and define \leq on the power set $P(A) = \{\emptyset, \{x\}, \{y\}, A\}$ by $s \leq t$ iff s is a subset of t .

This gives us the following relation:

$$\emptyset \le \emptyset, \emptyset \le \{x\}, \emptyset \le \{y\}, \emptyset \le \{x,y\} = A, \{x\} \le \{x\}, \{x\} \le \{x,y\}, \{y\} \le \{y\}, \{y\} \le \{x,y\}, \{x,y\} \le \{x,y\}.$$

The relation " \leq " is not totally order since $(\{x\}, \{y\}) \notin \leq$.

Exercise 3.2.11.

Let $A = \{1, 2, ..., 10\}$ and define the relation R on A by xRy iff x is a multiple of y. Show that R is a partial order on A.

(Hint: $R = \{(ny, y) : \text{ for some } n \in \mathbb{Z} \text{ and } y \in A\}$)

Definition 3.2.12. (Inverse of a Relation)

Suppose $R \subseteq A \times B$ is a relation between A and B then the inverse relation $R^{-1} \subseteq B \times A$ is defined as the relation between B and A and is given by

$$bR^{-1}a$$
 if and only if aRb .

That is, $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}.$

Example 3.2.13. Let R be the relation between \mathbb{Z} and \mathbb{Z}^+ defined by mRn if and only if $m^2 = n$.

Then

$$R = \{(m, n) \in \mathbb{Z} \times \mathbb{Z}^+ \colon m^2 = n\} = \{(m, m^2) \in \mathbb{Z} \times \mathbb{Z}^+\},$$

and

$$R^{-1} = \{(n, m) \in \mathbb{Z}^+ \times \mathbb{Z} : m^2 = n\} = \{(m^2, m) \in \mathbb{Z}^+ \times \mathbb{Z} \}.$$

For example, -3 R 9, -4 R 16, $16 R^{-1} 4$, $9 R^{-1} 3$, etc.

Remark 3.2.14. If R is partial order relation on $A \neq \emptyset$, then

(i) R^{-1} is also partial order relation on A.

(ii)
$$(R^{-1})^{-1} = R$$
.

(iii) $Dom(R^{-1}) = Ran(R)$ and $Ran(R^{-1}) = Dom(R)$.

Proof. (i)

(1) **Reflexive.** Let $x \in A$.

$$\Rightarrow$$
 $(x, x) \in R$ (Reflexivity of A) \Rightarrow $(x, x) \in R^{-1}$

Def of R^{-1}

(2) Anti-symmetric. Let $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. To prove x = y.

$$\Rightarrow$$
 $(y, x) \in R \land (x, y) \in R$

Def of R^{-1}

$$\implies y = x$$

Since *R* is antisymmetric

(3) **Transitive.** Let $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. To prove $(x, z) \in R^{-1}$.

$$\Rightarrow$$
 $(y, x) \in R \land (z, y) \in R$

Def of R^{-1}

$$\implies$$
 $(z, y) \in R \land (y, x) \in R$

Commut. Law of ∧

$$\implies$$
 $(z, x) \in R$

Since *R* is transitive

$$\implies$$
 $(x, z) \in R^{-1}$

Def of R^{-1}

Definition 3.2.15. (Partitions)

Let A be a set and let A_1, A_2, \dots, A_n be subsets of A such

- (i) $A_i \neq \emptyset$ for all i,
- (ii) $A_i \cap A_j = \emptyset$ if $i \neq j$,
- (iii) $A = \bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup ... \cup A_n$. Then the sets A_i partition the set A and these sets are called the **classes of the partition.**

Remark 3.2.16. An equivalence relation on *X* leads to a partition of *X*, and **vice versa** for every partition of *X* there is a corresponding equivalence relation.

Proof:

- (a) Let R be an equivalence relation on X.
- 1- $\forall a \in X, a \in [a]$ Def. of equ. Class
- 2- $\exists [b] \in X/R$ such that [b] = [a]

Since X/R contains all diff. classes

- $3-X = \bigcup_{a \in X} \{a\} \subseteq \bigcup_{a \in X} [a] \subseteq \bigcup_{a \in [b]} [b] \subseteq X \Longrightarrow X = \bigcup_{[b] \in X/R} [b].$
- 4- $[b] \cap [a] = \emptyset$, for all [b], $[a] \in X/R$ Def. of X/R
- 5- R is partition of X

Inf.(3),(4)

- **(b)** Let (i) $A_i \neq \emptyset$ for all $i, A_i \subseteq X$
- (ii) $A_i \cap A_j = \emptyset$ if $i \neq j$,
- (iii) $X = \bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup ... \cup A_n$.

Define R(relation) on X by $aRb \Leftrightarrow if \exists A_i$ such that $a, b \in A_i$.

This relation is an equivalence relation on X.

Definition 3.2.17. (The Composition of Two Relations)

The composition of two relations $R_1(A, B)$ and $R_2(B, C)$ is given by $R_2 \circ R_1$ where $(a, c) \in R_2 \circ R_1$ if and only if there exists $b \in B$ such that $(a, b) \in R_1$ and $(b, c) \in R_2$. That is,

 $R_2 \ o \ R_1 = \{(a,c) \in A \times C \mid \exists \ b \in B \ \text{such that}(a,b) \in R_1 \ \text{and} \ (b,c) \in R_2\}$

Remark 3.2.18. Let $R_1(A, B)$, $R_2(B, C)$ and $R_3(C, D)$ are relations. Then,

(i)
$$(R_3 \circ R_2) \circ R_1 = R_3 \circ (R_2 \circ R_1)$$
.

(ii)
$$(R_2 \circ R_1)^{-1} = R_1^{-1} \circ R_2^{-1}$$
.

(iii) Let
$$R^{-1} = \{(b, a) | (a, b) \in R\} \subseteq B \times A$$
. Then

$$(a,b) \in R \ o \ R^{-1} \iff (b,a) \in R \ o \ R^{-1}.$$

Proof. Exercise.

Example 3.2.19.

Let sets $A = \{a, b, c\}$, $B = \{d, e, f\}$, $C = \{g, h, i\}$ and relations

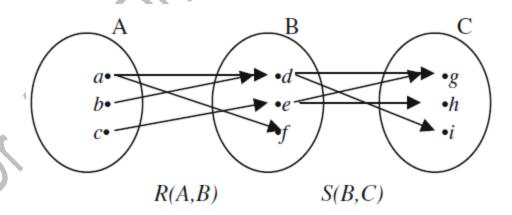
$$R(A,B) = \{(a,d), (a,f), (b,d), (c,e)\}$$

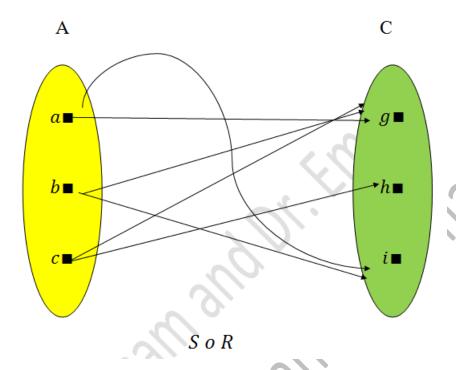
and

$$S(B,C) = \{(d,g), (d,i), (e,g), (e,h)\}.$$

Then we graph these relations and show how to determine the composition pictorially $S \circ R$ is determined by choosing $x \in A$ and $y \in C$ and checking if there is a route from x to y in the graph. If so, we join x to y in $S \circ R$.

$$S \circ R = \{(a,g), (a,i), (b,g), (b,i), (c,g), (c,h)\}.$$





For example, if we consider a and g we see that there is a path from a to d and from d to g and therefore (a, g) is in the composition of S and R.

Definition 3.2.19. Union and Intersection of Relations

(i) The union of two relations $R_1(A,B)$ and $R_2(A,B)$ is subset of $A \times B$ and defined as

$$(a,b) \in R_1 \cup R_2$$
 if and only if $(a,b) \in R_1$ or $(a,b) \in R_2$.

(ii) The intersection of two relations $R_1(A,B)$ and $R_2(A,B)$ is subset of $A \times B$ and defined as

$$(a,b) \in R_1 \cap R_2$$
 if and only if $(a,b) \in R_1$ and $(a,b) \in R_2$.

Remark 3.2.20.

- (i) The relation R_1 is a subset of R_2 ($R_1 \subseteq R_2$) if whenever $(a, b) \in R_1$ then $(a, b) \in R_2$.
- (ii) The intersection of two equivalence relations R_2 , R_1 on a set X is also equivalence relation on X.
- (iii) In general, the union of two equivalence relations R_1 , R_2 on a set X need not to be an equivalence relation on X.

Proof. Exercise.

(2023-2024)

Example 3.2.21. Let $X = \{a, b, c\}$. Define two relations on X as follows:

$$R_1(X,X) = \{(a,a), (b,b), (c,c), (a,b), (b,a)\},\$$

$$R_2(X,X) = \{(a,a), (b,b), (c,c), (a,c), (c,a)\}.$$

Let $R = R_1 \cup R_2$. Here, R is not an equivalence relation on X since it is not transitive relation, because (b, a) and $(a, c) \in R$ but $(b, c) \notin R$.