## Lecture 3 <br> Complements

Hussein Alsheakh, PhD

Quiz1

## Convert(716.25)8 $\rightarrow$ (X) 16 ?

## Sol: <br> $(716.25) 8=(111001110.010101) 2$ <br> $(000111001110.01010100) 2=(1 C E .54) 16$

## Converting to Other Systems

- ( X ) $5 \rightarrow(\mathrm{X}) 8$ or $(\mathrm{X}) 2 \rightarrow(\mathrm{X}) 7$
في هذه الحالة يتم التحويل المى النظّام الصُّري اولا ثُم يحول الرقم الناتج الىى النظام المطوب.
$\underline{\text { Ex }}$ Convert $\left.\left(\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 0\end{array}\right)_{2} \rightarrow(X)\right)_{7}$ ?
Sol:

$$
\begin{aligned}
& 1-(110110)=0 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2}+0 \times 2^{3}+1 \times 2^{4}+1 \times 2^{5} \\
& =0+2+4+0+16+32=(54)_{10} \\
& 2 \text { - Rem. } \\
& 54 \div 7=7 \\
& 7 \div 7=1 \\
& 1 \div 7=0 \\
& \left.\begin{array}{l}
5 \\
0 \\
1
\end{array} \right\rvert\, \\
& (110110)_{2}=(54)_{10}=\left(\begin{array}{lll}
1 & 0 & 5
\end{array}\right)_{7}
\end{aligned}
$$

## Binary arithmetic operations

## Binary Division

| Addition | Subtraction | Multiplication | Division |
| :--- | :--- | :--- | :--- |
| $0+0=0$ | $0-0=0$ | $0 \times 0=0$ | $0 \div 0=0$ |
| $0+1=1$ | $1-0=1$ | $0 \times 1=0$ | $0 \div 1=0$ |
| $1+0=1$ | $0-1=1$ borrow 1 | $1 \times 0=0$ | $1 \div 1=1$ |
| $1+1=0$ carry 1 | $1-1=0$ | $1 \times 1=1$ | $1 \div 0=$ Overflow |

- Perform the following operations:
- 1 -( 1111 ) $2 \div(101) 2$
- $2-(11001) 2 \div(101) 2$
-3-(10110)2 $\div(10) 2$
-4-(11011)2 $\div(100) 2$
-5-(11101)2 $\div(1100) 2$
-6-(10010001)2 $\div(1011) 2$
-7-(1010.01)2 $\div(1.1) 2$


0101
101
..............
000


## Exercises

- Convert the following
- Ex Perform the following operations:-
$1-(471) 8+(635) 8=(1326) 8$
$2-(2 A 4) 16+(C B 4) 16=(F 58) 16$
3-(405)8-(267)8=(116)8
4-(A85) 16-(5D4) 16
$5-(652) 12-(480) 12$
6-(145A2) $16 \times(1.3) 16$
$7-(342) 8+(12) 10$
8-( 322 . 2) $5-(43.4) 5$
10-( 537.4 ) $10+(11000.11) 2$
11- ( 5 A 4 ) 11 X ( 2.3 ) 11
12-(10011.01)2-(1011.11)2
14-(1 A B.8) 16-(253.9) 10
15-(111.01)2X(1.01)2
numbers from a given base to the base indicated?
1- (1 1010 1) $2 \rightarrow(X) 3$
2- (A77.C5)16 $\rightarrow(\mathrm{X}) 2$
3- (101011) $2 \rightarrow(X) 7$
4- (6 A. 20 5) $16 \rightarrow(X) 8$
5- (1 2 3) $4 \rightarrow(X) 5$
6-( 6701.254 ) $8 \rightarrow(X) 16$
7- (325.14)8 $\rightarrow(\mathrm{X}) 10$
8- (1A. 4) $16 \rightarrow(X) 10$
9-(67.33)10 $\rightarrow$ (X)2


## Counting in number systems:-

The counting in any system is done by starting with the first digit in the system ( 0 ) until the maximum digit of the system is reached, and then the counting is continued using 2 digits, and so on. Ex Write the first 17 digits in base 8?

## Sol:

( $0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20$ )

Ex Write the first 30 digits in a Hexadecimal system?
Sol:
( $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F, 10,11,12,13,14,15,16,17,18$, 19,1A, 1B,1C, 1D)

Ex Write 10 digits in base 8 starting with decimal 5 .

## Sol:

( $5,6,7,10.11,12,13,14,15,16$ )

## Complements

- Complements are used in digital computer for simplifying the subtraction operation and for logical manipulations. There are two types of complements for each base-r system:
- Radix complement (r's complement). ( $r^{n}-N$ )
- Diminished radix complement ( $r^{n}-1$ ) - $N$ 's complement.
- Radix Complement - r's Complement
- Ex: Find the r's comp. of the following numbers:
$1-(52520) 10 \quad 2-(3267) 103-(25.639) 10$
4-(101100)2 5-(8765)116-(A 090 )16
- Sol:
- 1- The 10's comp. of (5 252 0)10 is (47 480 )
- 2- The 10's comp. of (3 267 )10 is (6 73 )
- 3- The 10's comp. of (25.639)10 is (74.361)
- 4- The 2's comp. of (101100)2 is (0 10100 )
- 5 - The 11's comp. of ( 875 ) 11 is (2 346 )
- 6 - The 16's comp. of (A 090 ) 16 is ( 5 F 7 )


## Complements

- Complements are used in digital computer for simplifying the subtraction operation and for logical manipulations. There are two types of complements for each base-r system:
- Radix complement (r's complement). ( $r^{n}-N$ )
- Diminished radix complement $(r-1)$ 's complement.
- Diminished Radix Complement - (r-1)'s Complement
- Given a number $N$ in base $r$ having $n$ digits, the ( $r-1$ )'s complement of $N$ is defined as:

$$
\left(r^{n}-1\right)-N
$$

- Example for 6-digit decimal numbers:
- 9's complement is $\left(r^{n}-1\right)-N=\left(10^{6}-1\right)-N=999999-N$
- 9's complement of 546700 is $999999-546700=453299$
- Example for 7-digit binary numbers:
- 1 's complement is $\left(r^{n}-1\right)-N=\left(2^{7}-1\right)-N=1111111-N$
- 1's complement of 1011000 is $1111111-1011000=0100111$
- Observation:
- Subtraction from ( $r^{n}-1$ ) will never require a borrow
- Diminished radix complement can be computed digit-by-digit
- For binary: $1-0=1$ and $1-1=0$


## The ( $r-1$ )' s complement.

- Ex: Find the ( $r-1$ )'s comp. of the following numbers:

1 - (52520)10 2-(3267)103-(25.639)10
$4-(101100) 2 \quad 5-(8765) 116-(\mathrm{A} 090) 16$

- Sol:
- 1- The 9's comp. of ( 52520 ) 10 is ( 47479 )
- 2 The 9's comp. of (3 267 ) 10 is (6 73 2)
- 3 - The 9's comp. of (25.639)10 is (74.360)
- 4 - The 1's comp. of (101100)2 is (0 1001 1)
- 5 - The 10's comp. of (8765)11 is (2 345 )
- 6 - The 15 's comp. of (A 090 ) 16 is ( 5 F 6 F )

Ex Find the 1's and 2's comp. of (10110.100)2?

## Complements

- Complements are used in digital computers to simplify the subtraction operation and for logical manipulation.
-1's Complement (Diminished Radix Complement)
- All '0's become ' 1 's
- All '1's become '0's

Example (10110000) ${ }_{2}$ $\Rightarrow(01001111)_{2}$
If you add a number and its 1's complement ...

## 10110000 <br> $+01001111$

11111111

## 1's Complement (Diminished Radix Complement)

- Binary numbers Complement:
- 1 's complement $=\left(r^{n}-1\right)-N$
- where
n : number of bits
N : binary number
$r$ : system base


## Decimal numbers Complement:

$\left(r^{n}-1\right)-N$
In base 10: Finding 5 digits the 9's complement of 1357 .

We have $n=5 ; r=10, N=1357$.
Result $=\left(10^{5}-1\right)-1357=98642$

- Simply the 1's complement of binary number is the number we get by changing each bit ( 0 to 1 ) and ( 1 to 0 ).
- Example: the first complement of (101100)2
- Solution:
binary number 101100
1's complement 010011


## 2's Complement (Radix Complement)

- Binary numbers Complement
- The equation is:
- 2 's complement $=r^{n}-N$
- Simply the 2 's complement is equal to 1 's complement added by one.


## Decimal numbers Complement

- Radix complement
- Defined as $\mathrm{r}^{\mathrm{n}}$ - N ;
- In base 10: Finding 5 digits the 10 's complement of 1357.
- Example: find the 2's complement of (101101)2 . Result $=\mathbf{1 0}^{\mathbf{5}} \mathbf{- 1 3 5 7}=98643$
- Solution:
binary number 101101

1's complement 010010
2's complement 010010
$+\quad 1$

010011

## Unsigned vs Signed Numbers

- Unsigned
- All bits are used to show the magnitude of the number.
- All numbers are considered to be positive
- Signed
- Positive and Negative


## Signed Numbers

- There are three basic ways to designate the sign of a number.
- Sign and magnitude
- Radix complement ( 1's complement )
- Radix-1's complement ( 2 's complement )

Why use complement?
-simplifying the subtraction operation by adding a complement of that number instead of subtraction for that number
$1510-410=1510$-(complement of 410 ) $=11_{10}$
$A-B=A+(-B)$ more simple fore Hardware design

## Sign and Magnitude

- What is taught in school.
- A value with a sign in front of it
- How does it work in Binary?
- Pretty much the same way as Decimal
- By convention a sign bit is used.
- $0-\rightarrow$ positive
- $1-\rightarrow$ negative
$\underline{\text { Ex: }}$ Represent $(+12)_{10},(-12)_{10}$ in signmagnitude, 1 's and 2 's complement?
Sol:

Or $-\rightarrow$ a =-7 (if signed).


## Subtraction with Complements

- The subtraction of two $n$-digit unsigned numbers $M-N$ in base $r$ can be done as follows:

1. Find the r comp. of N .
2. Add $M$ to the result of step 1.
3. Inspect the result obtained in step 2 for an end carry:-
a. If an end carry occurs, discard it.
b. If an end carry does not occur, take the r's comp. of the number obtained in step 2 and place negative sign in front it.

Ex Subtract (72532-3250)10
using 10's comp.?
Sol: $M=72532, N=03250$
1 - The 10 s comp. of N is ( 96750 )
2-72532

+ 96750
169282
3 - The result is (69282)10

Ex: Subtract (3250-72532) ${ }_{10}$ using r's comp?
Sol : M=03250 , N=72532
1- The 10 s comp. of N is ( 27468 )
2- 03250 $+27468$

30718 there is no carry
3- The 10's comp .of ( 30718 ) is ( 6928 )
The result is $(-69282)_{10}$

## Complements

- Example

| $M$ | $=72532$ |
| ---: | ---: |
| 10 's complement of $\quad 32-3250$. |  |
| Sum | $=\frac{+96750}{169282}$ |
| Discard end carry $10^{5}$ | $=\frac{-100000}{2}$ |
| Answer | $=69282$ |
| $r^{\wedge} \mathrm{n}$ |  |

- Example
- Using 10's complement, subtract 3250-72532.

10's complement of \begin{tabular}{rrr}

M \& $=$\begin{tabular}{r}
03250 <br>
N

$=$

+27468 <br>
<br>
Sum
\end{tabular}$=\frac{30718}{}$

\end{tabular}

There is no end carry.

Therefore, the answer is rus(10's.somplement of 30718) $=-69282$.

Computer Science @ Mustansiriyah University

## Subtraction using $(r-1)$ 's complement

Example Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction (a) $X-Y$; and (b) $Y-X$, by using 1's complement.


There is no end carry, Therefore, the answer is $\mathrm{Y}-$ $\mathrm{X}=-$ (1's complement of $1101110)=-0010001$.

## Subtraction using $(r-1)$ 's complement

- The procedure for subtracting two numbers $(\mathrm{M}-\mathrm{N})$ with ( $r-1$ ) s comp. is done as follow:

1. Find the ( $r-1$ )'s comp. of $N$.
2. Add $M$ to the result of step 1
3. Inspect the result obtained in step 2 for an end carry:-
a. If an end carry occurs, add 1 to the least significant digit.
b. If an end carry does not occur, take the ( $r-1$ )'s comp. of the number obtained in step 2 and place negative sign in front it.

Ex Subtract (3250-72532) ${ }_{10}$ using 9's comp?
Ex Find 83-27 using 1's comp?
Sol: $\mathrm{M}=83=\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 1\end{array} 1\right) 2 \quad, \mathrm{~N}=27=\left(\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & 1\end{array} 1\right) 2$
1- The 1 s comp .of N is $(1100100)$
2- 1010011 1100100
+1011011
10110111 there end carry
3- $\quad 0110111$
$\frac{1}{+\quad 0111000}$ the result is 111000

Ex: Perform the operation (A B C E F) 16-(48F9 D) ${ }_{16}$ using (r - 1 )'s comp.?
Sol: M=ABCEF ,N=48F9D
1- The 15 s comp. of N is ( B 7062 )
2- ABCEF
$\frac{+\mathrm{B} 7062}{\text { 1 } 62 \mathrm{D} 51}$ there is end carry
3- 62 D 51
$\frac{+\quad 1}{62 \mathrm{D} 52}$ the result is (62 D 52$)_{16}$

## Complements

- Example
- Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction (a) $X-Y$; and (b) $Y-X$, by using 2's complement.

| (a) | $\mathrm{X}=$ | 1010100 |
| :---: | :---: | :---: |
|  | 2's complement of $Y=$ | +0111101 |
|  | Sum $=$ | 10010001 |
|  | Discard end carry $2^{7}=$ | -10000000 |
|  | Answer. $\mathrm{X}-\mathrm{Y}=$ | 0010001 |
| (b) | $\mathrm{Y}=$ | 1000011 |
|  | 2's complement of $\mathrm{X}=$ | + $\underline{0101100}$ |
|  | Sum $=$ | 1101111 |

There is no end carry.
Therefore, the answer is $\mathrm{Y}-\mathrm{X}=-$ (2's complement of 1101111) $=-0010001$.

## Practice

- Finding 8 digits the 1 's complement of 01111000.
- Answer: ?
- Finding 8 digits the 2's complement of 01111000.
- Answer: ?


## Practice

- Finding 8 digits the 1 's complement of 01111000.
- Answer: 10000111
- Finding 8 digits the 2's complement of 01111000.
- Answer: 1000 0111+


## 1 = <br> 10001000



## Complements Summary

- The complement of the complement returns the original number
- If there is a radix point
- Calculate the complement as if the radix point was not there.
- Used in computers to perform subtraction
-1's complement
- Is the interim step towards 2's complement
- Problem: Two values of 0 .
-     + 0: 0000 0000, let's flip all bits
- 0: 11111111
- 2's complement
- Most CPU's today use 2's complement.
- Only one value 0: 0000000


## Assignment 1

Write a report to show the difference between Digital and Analog in term of concept, Applications, Why, When, What?

