

## Foundation of Mathematics 2

# CHAPTER 3 RATIONAL NUMBERS AND GROUPS 

Dr. Amer Ismal, Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana

## 1. Construction of Rational Numbers

Consider the set

$$
V=\{(r, s) \in \mathbb{Z} \times \mathbb{Z} \mid r, s \in Z, s \neq 0\}
$$

of pairs of integers. Let us define an equivalence relation on $V$ by putting

$$
(r, s) L^{*}(t, u) \Leftrightarrow r u=s t \text {. }
$$

This is an equivalence relation. (Exercise).
Let

$$
[r, s]=\left\{(x, y) \in V \mid(x, y) L^{*}(r, s)\right\}
$$

denote the equivalence class of $(r, s)$ and write $[r, s]=\frac{r}{s}$. Such an equivalence class $[r, s]$ is called a rational number.

## Example 3.1.1.

(i) $(2,12) L^{*}(1,6)$ since $2 \cdot 6=12 \cdot 1$,
(ii) $(2,12) \ell^{*}(1,7)$ since $2 \cdot 7 \neq 12 \cdot 1$.
(iii) $[0,1]=\{(x, y) \in V \mid 0 y=x 1\}=\{(x, y) \in V \mid 0=x\}=\{(0, y) \in V \mid y \in \mathbb{Z}\}$ $=\{(0, \pm 1),(0, \pm 2), \ldots\}=[0, y]$.
(iv) $(x, 0) \notin V \quad \forall x \in \mathbb{Z}$

## Definition 3.1.2. (Rational Numbers)

The set of all equivalence classes $[r, s]$ (rational number) with $(r, s) \in V$ is called the set of rational numbers and denoted by $\mathbb{Q}$. The element $[0,1]$ will denoted by 0 and $[1,1]$ by 1 .

### 3.1. 3. Addition and Multiplication on $\mathbb{Q}$

Addition: $\oplus: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$;

$$
[r, s] \oplus[t, u]=[r u+t s, s u], s, u \neq 0
$$

Multiplication: $\odot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$;

$$
[r, s] \odot[t, u]=[r t, s u] s, u \neq 0
$$

Remark 3.1.4. The relation $i: \mathbb{Z} \longrightarrow \mathbb{Q}$, defined by $i(n)=[n, 1]$ is $1-1$ function, and
$i(n+m)=i(n) \oplus i(m)$,
$i(n \cdot m)=i(n) \odot i(m)$.

## Theorem 3.1.5.

(i) $n \oplus m=m \oplus n$, $\forall n, m \in \mathbb{Q}$.
(ii) $(n \oplus m) \oplus c=n \oplus(m \oplus c), \forall n, m, c \in \mathbb{Q}$.
(Commutative property of $\oplus$ )
(iii) $n \odot m=m \odot n, \forall n, m \in \mathbb{Q}$.
(Associative property of $\oplus$ )
(iv) $(n \odot m) \odot c=n \odot(m \odot c), \forall n, m, c \in \mathbb{Q}$. (Associative property of $\odot$ )
(v) $(n \oplus m) \odot c=(n \odot c) \oplus(m \odot c)$
(Distributive law of $\odot$ on $\oplus$ )
(vi) If $c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}$ and $c \neq[0,1]$, then $c_{1} c_{2} \neq 0$.
(vii) (Cancellation Law for $\oplus$ ).
$m \oplus c=n \oplus c$, for some $c \in \mathbb{Q} \Leftrightarrow m=n$.

## (viii) (Cancellation Law for $\odot$ ).

$m \odot c=n \odot c$, for some $c(\neq 0) \in \mathbb{Q} \Leftrightarrow m=n$.
(ix) $[0,1]$ is the unique element such that $[0,1] \oplus m=m \oplus[0,1]=m, \forall m \in \mathbb{Q}$.
( $\mathbf{x}$ ) $[1,1]$ is the unique element such that $[1,1] \odot m=m \odot[1,1]=m, \forall m \in \mathbb{Q}$.

## Proof.

(vii) Let $m=\left[m_{1}, m_{2}\right], n=\left[n_{1}, n_{2}\right], c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}, m_{i}, n_{i}, c_{i} \in \mathbb{Z}, i=1,2$.

$$
\begin{array}{ll}
m \oplus c=n \oplus c & \\
\leftrightarrow\left[m_{1}, m_{2}\right] \oplus\left[c_{1}, c_{2}\right]=\left[n_{1}, n_{2}\right] \oplus\left[c_{1}, c_{2}\right] & \\
\leftrightarrow\left[m_{1} c_{2}+c_{1} m_{2}, m_{2} c_{2}\right]=\left[n_{1} c_{2}+c_{1} n_{2}, n_{2} c_{2}\right] & \text { Def. of } \oplus \text { for } \mathbb{Q} \\
\leftrightarrow\left(m_{1} c_{2}+c_{1} m_{2}, m_{2} c_{2}\right) L^{*}\left(n_{1} c_{2}+c_{1} n_{2}, n_{2} c_{2}\right) & \text { Def. of equiv. cla } \\
\leftrightarrow\left(m_{1} c_{2}+c_{1} m_{2}\right) n_{2} c_{2}=\left(n_{1} c_{2}+c_{1} n_{2}\right) m_{2} c_{2} & \text { Def. of } L^{*} \\
\leftrightarrow\left(\left(m_{1} n_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}\right) c_{2}=\left(\left(n_{1} m_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}\right) c_{2} & \text { Properties of }+ \\
\leftrightarrow\left(m_{1} n_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}=\left(n_{1} m_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1} & \text { in } \mathbb{Z} \\
\leftrightarrow\left(m_{1} n_{2}\right) c_{2}=\left(n_{1} m_{2}\right) c_{2} & \text { Cancel. law for } \cdot \\
\leftrightarrow\left(m_{1} n_{2}\right)=\left(n_{1} m_{2}\right) & \text { Cancel. law for }+ \\
\leftrightarrow\left(m_{1}, m_{2}\right) L^{*}\left(n_{1}, n_{2}\right) & \text { Cancel. law for } \\
\leftrightarrow\left[m_{1}, m_{2}\right]=\left[n_{1}, n_{2}\right] & \text { Def. of } L^{*} \\
\text { Def. of equiv. cla }
\end{array}
$$

Def. of equiv. class

$$
\text { Def. of } L^{*}
$$

$$
\text { Properties of }+ \text { and }
$$ in $\mathbb{Z}$

Cancel. law for $\cdot$ in $\mathbb{Z}$
Cancel. law for + in $\mathbb{Z}$
(viii) Let $m=\left[m_{1}, m_{2}\right], n=\left[n_{1}, n_{2}\right], c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}, m_{i}, n_{i}, c_{i} \in \mathbb{Z}$ and $c \neq[0,1]) i=1,2$.
$m \odot c=n \odot c$
$\leftrightarrow\left[m_{1}, m_{2}\right] \odot\left[c_{1}, c_{2}\right]=\left[n_{1}, n_{2}\right] \odot\left[c_{1}, c_{2}\right]$
$\leftrightarrow\left[m_{1} c_{1}, m_{2} c_{2}\right]=\left[n_{1} c_{1}, n_{2} c_{2}\right]$
Def. of $\odot$ for $\mathbb{Q}$
$\leftrightarrow\left(m_{1} c_{1}, m_{2} c_{2}\right) L^{*}\left(n_{1} c_{1}, n_{2} c_{2}\right)$
$\leftrightarrow\left(m_{1} c_{1}\right)\left(n_{2} c_{2}\right)=\left(n_{1} c_{1}\right)\left(m_{2} c_{2}\right)$
$\leftrightarrow\left(m_{1} n_{2}\right)\left(c_{1} c_{2}\right)=\left(m_{2} n_{1}\right)\left(c_{1} c_{2}\right)$
$\leftrightarrow\left(m_{1} n_{2}\right)=\left(m_{2} n_{1}\right)$
$\leftrightarrow\left(m_{1}, m_{2}\right) L^{*}\left(n_{1}, n_{2}\right)$
$\leftrightarrow\left[m_{1}, m_{2}\right]=\left[n_{1}, n_{2}\right]$

Def. of equiv. class
Def. of $L^{*}$
Asso. and comm. of + and $\cdot$ in $\mathbb{Z}$
$c_{1} c_{2} \neq 0$ and Cancel. law for $\cdot$ in $\mathbb{Z}$
Def. of $L^{*}$
Def. of equiv. class
(i),(ii),(iii),(iv)(v),(vi),(ix),(x) Exercise.

## Definition 3.1.6.

(i) An element $[n, m] \in \mathbb{Q}$ is said to be positive element if $n m>0$. The set of all positive elements of $\mathbb{Q}$ will denoted by $\mathbb{Q}^{+}$.
(ii) An element $[n, m] \in \mathbb{Q}$ is said to be negative element if $n m<0$. The set of all positive elements of $\mathbb{Q}$ will denoted by $\mathbb{Q}^{-}$.

Remark 3.1.7. Let $[r, s]$ be any rational number. If $s<-1$ or $s=-1$ we can rewrite this number as $[-r,-s]$; that is, $[r, s]=[-r,-s]$.

Definition 3.1.8. Let $[r, s],[t, u] \in \mathbb{Q}$. We say that $[r, s]$ less than $[t, u]$ and denoted by
$[r, s]<[t, u] \Leftrightarrow r u<s t$, where $s, u>1$ or $s, u=1$.

Example 3.1.9.
$[2,5],[7,-4] \in \mathbb{Q}$.
$[2,5] \in \mathbb{Q}^{+}$, since $2=[2,0], 5=[5,0]$ in $\mathbb{Z}$ and $2 \cdot 5=[2 \cdot 5+0 \cdot 0,2 \cdot 0+5 \cdot 0]$ $=[10,0]=+10>0$.
$[-4,7] \in \mathbb{Q}^{-}$, since $7=[7,0],-4=[0,4]$ in $\mathbb{Z}$ and

$$
\begin{aligned}
7 \cdot(-4) & =[7 \cdot 0+0 \cdot 4,7 \cdot 4+0 \cdot 0] \\
& =[0,32]=-32<0
\end{aligned}
$$

$[-4,7]<[2,5]$, since $-4 \cdot 5<2 \cdot 7$.
$[7,-4]<[2,5]$, since $[7,-4]=[-7,-(-4)]=[-7,4]$, and $-7 \cdot 5<2 \cdot 4$.

