2. Binary Operation

Definition 3.2.1. Let A be a non empty set. The relation $*: A \times A \to A$ is called a (closure) binary operation if $\boxed{*(a,b) = a*b \in A, \ \forall a,b \in A}$; that is, * is function.

Definition 3.2.2. Let A be a non empty set and $*, \cdot$ be binary operations on A. The pair (A,*) is called **mathematical system with one operation**, and the triple $(A,*,\cdot)$ is called **mathematical system with two operations.**

Definition 3.2.3. Let * and \cdot be binary operations on a set A.

- (i) * is called **commutative** if $a * b = b * a, \forall a, b \in A$.
- (ii) * is called **associative** if $(a*b)*c = a*(b*c), \forall a, b, c \in A$
- (iii) · is called **right distributive over** * if

$$(a*b)\cdot c = (a\cdot c)*(b\cdot c), \forall a,b,c \in A$$

(iv) · is called **left distributive over** * if

$$a \cdot (b * c) = (a \cdot b) * (a \cdot c), \forall a, b, c \in A.$$

Definition 3.2.4. Let * be a binary operation on a set A.

(i) An element $e \in A$ is called an identity with respect to * if

$$a * e = e * a = a, \forall a \in A.$$

(ii) If A has an identity element e with respect to * and $a \in A$, then an element b of A is said to be an inverse of a with respect to * if

$$a * b = b * a = e$$

Example 3.2.5. Let *X* be a non empty set.

(i) $(P(X), \bigcup)$ formed a mathematical system with identity \emptyset .

- (ii) $(P(X), \cap)$ formed a mathematical system with identity X.
- (iii) $(\mathbb{N}, +)$ formed a mathematical system with identity 0.
- (iv) $(\mathbb{Z}, +)$ formed a mathematical system with identity 0 and -a an inverse for every $a \neq 0 \in \mathbb{Z}$.
- (iv) $(\mathbb{Z}\setminus\{0\},\cdot)$ formed a mathematical system with identity 1.

Theorem 3.2.6. Let * be a binary operation on a set A.

- (i) If A has an identity element with respect to *, then this identity is unique.
- (ii) Suppose A has an identity element e with respect to * and * is associative. Then the inverse of any element in A if exist it is unique.

Proof.

(i) Suppose e and \hat{e} are both identity elements of A with respect to *.

(1)
$$a * e = e * a = a, \forall a \in A$$
 (Def. of identity)

(2)
$$a * \hat{e} = \hat{e} * a = a, \forall a \in A$$
 (Def. of identity)

(3)
$$\hat{\boldsymbol{e}} * \boldsymbol{e} = \boldsymbol{e} * \hat{\boldsymbol{e}} = \hat{\boldsymbol{e}}$$
 (Since (1) is hold for $a = \hat{\boldsymbol{e}}$)

(4)
$$e * \hat{e} = \hat{e} * e = e$$
 (Since (2) is hold for $a = e$)

(5)
$$e = \hat{e}$$
 (Inf. (3) and (4))

(ii) Let $a \in A$ has two inverse elements say b and c with respect to *. To prove b = c.

(1)
$$a * b = b * a = e$$
 (Def. of inverse (b inverse element of a))

(2)
$$a * c = c * a = e$$
 (Def. of inverse (c inverse element of a))

(3)
$$b = b * e$$
 (Def. of identity)

$$= b * (a * c)$$
 (From (2) Rep(e : $a * c$))

$$= (b * a) * c$$
 (Since * is associative)

$$= e * c$$
 (From (i) Rep $(b * a : e)$) and $= c$ (Def. of identity).

Therefore; b = c.

Definition 3.2.7. A mathematical system with one operation, (G,*) is said to be

- (i) semi group if $(a*b)*c = a*(b*c), \forall a, b, c \in G$. (Associative law)
- (ii) group if
- (1) (Associative law) $(a*b)*c = a*(b*c), \forall a,b,c \in G$
- (2) (Identity with respect to *) There exist an element e such that a*e=e* $a=a, \forall a\in A$.
- (3) (Inverse with respect to *) For all $a \in G$, there exist an element $b \in G$ such that a*b=b*a=e.
- (4) If the operation * is commutative on G then the group is called **commutative** group; that is, $a*b=b*a, \forall a,b \in G$.

Example 3.2.8. (i) Let G be a non empty set. $(P(G), \bigcup)$ and $(P(G), \bigcap)$ are not group since it has no inverse elements, but they are semi groups.

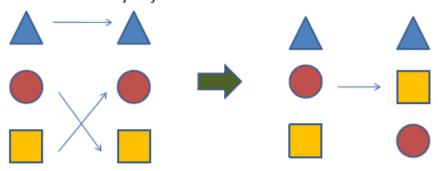
- (ii) $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) and (\mathbb{Z}, \cdot) , are not groups since they have no inverse elements, but they are semi groups.
- (iii) $(\mathbb{Z}, +)$, $(\mathbb{Q}\setminus\{0\},\cdot)$, are commutative groups.

Symmetric Group 3.2.9.

Let $X = \{1,2,3\}$, and $S_3 =$ Set of All permutations of 3 elements of the set X.

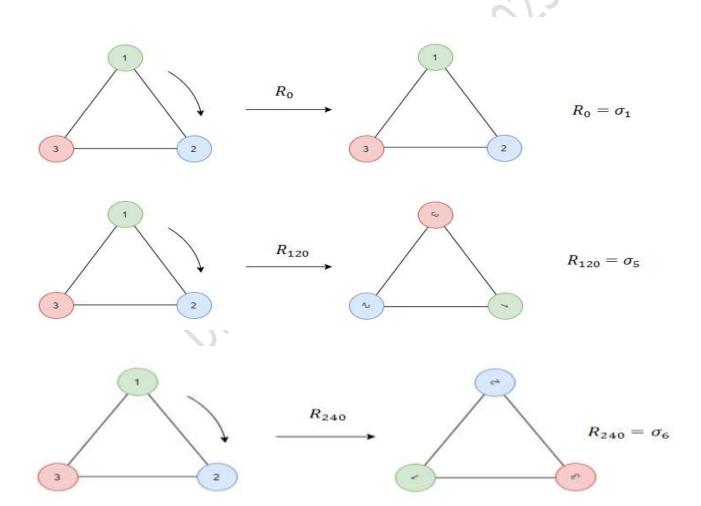
3	2	1

There are 6 possiblities and all possible permutations of X as follows:

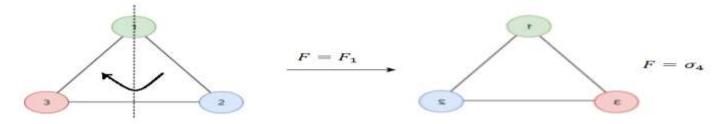

1				2			3			4			5			6		
	1	2	3	1	3	2	2	1	3	2	3	1	<mark>3</mark>	1	2	<mark>3</mark>	2	1

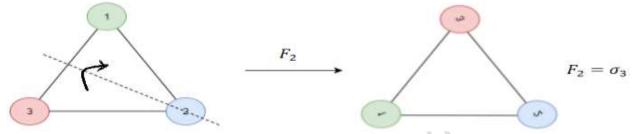
Let $\sigma_i: X \to X$, i = 1, 2, ... 6, defined as follows:

$\sigma_1(1) = 1$	$\sigma_2(1) = 2$	$\sigma_3(1) = 3$
$\sigma_1(2) = 2$	$\sigma_2(2) = 1$	$\sigma_3(2) = 2$
$\sigma_1(3) = 3$	$\sigma_2(3) = 3$	$\sigma_3(3) = 1$
$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = ()$	$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (12)$	$\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13)$
$\sigma(1) = 1$	- (1) 2	- (1) 2
$\sigma_4(1) = 1$	$\sigma_{5}(1) = 2$	$\sigma_6(1) = 3$
$ \begin{aligned} \sigma_4(1) &= 1 \\ \sigma_4(2) &= 3 \end{aligned} $	$ \begin{aligned} \sigma_5(1) &= 2 \\ \sigma_5(2) &= 3 \end{aligned} $	$ \begin{aligned} \sigma_6(1) &= 3 \\ \sigma_6(2) &= 1 \end{aligned} $
<u> </u>		

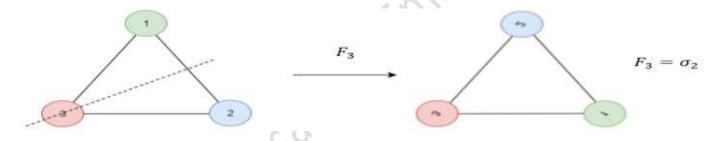

$$S_3 = {\sigma_1 = () = e, \sigma_2 = (12), \sigma_3 = (13), \sigma_4 = (23), \sigma_5 = (123), \sigma_6 = (132)}.$$

- X={
- · Define an arbitrary bijection


$$\sigma_4 = (23) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$


Note that $R_{240} = R_{120} \circ R_{120} = R_{120}^2$.

Draw a vertical line through the top corner \mathbf{i} , i = 1,2,3 and flip about this line.


1- If i = 1 call this operation $F = F_1$.

2- If i = 2 call this operation F_2 .

3- If i = 3 call this operation F_3 .

Note that $F^2 = F \circ F = \sigma_1$, representing the fact that flipping twice does nothing.

 \clubsuit All permutations of a set X of 3 elements form a group under composition \circ of functions, called the **symmetric group** on 3 elements, denoted by S_3 . (Composition of two bijections is a bijection).

				Right			
	o	$\sigma_1 = e$	$\sigma_2 = (12)$	$\sigma_3 = (13)$	$\sigma_4 = (23)$	$\sigma_5 = (123)$	σ_6 =(132)
	$\sigma_1 = e$	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
eft	$\sigma_2 = (12)$	σ_2	e	σ_6	σ_5	σ_4	σ_3
L	$\sigma_3 = (13)$	σ_3	σ_5	e	σ_6	σ_2	σ_4
	$\sigma_4 = (23)$	σ_4	σ_6	σ_5	e	σ_3	σ_2
	$\sigma_5 = (123)$	σ_5	σ_3	σ_4	σ_2	σ_6	e
	$\sigma_6 = (132)$	σ_6	σ_4	σ_2	σ_3	e	σ_5

$$\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$\sigma_{2} \circ \sigma_{3} \qquad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\sigma_{5} \circ \sigma_{2} \qquad \sigma_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\sigma_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$\sigma_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

\mathbb{Z}_n modulo Group 3.2.10.

Let \mathbb{Z} be the set of integer numbers, and let n be a fixed positive integer. Let \equiv be a relation defined on \mathbb{Z} as follows:

$$a \equiv b \mod(n) \Leftrightarrow b - a = kn, \quad \text{for some } k \in \mathbb{Z}$$

$$a \equiv_n b \Leftrightarrow b - a = kn, \quad \text{for some } k \in \mathbb{Z}$$

Equivalently,

$$a \equiv b \mod(n) \iff b = a + kn, \text{ for some } k \in \mathbb{Z}$$
.

This relation \equiv is an equivalence relation on \mathbb{Z} . (Exercise).

The equivalence class of each $a \in \mathbb{Z}$ is as follows:

$$[a] = \{c \in \mathbb{Z} | c = a + kn, for some \ k \in \mathbb{Z} \} = \overline{a}.$$

The set of all equivalence class will denoted by \mathbb{Z}_n .

1- If n = 1.

$$[a] = \{c \in \mathbb{Z} | c = a + k. 1, for some \ k \in \mathbb{Z} \} = \{c \in \mathbb{Z} | c = a + k, for some \ k \in \mathbb{Z} \}.$$

$$[0] = \{c \in \mathbb{Z} | c = 0 + k, for \ some \ k \in \mathbb{Z} \} = \{c \in \mathbb{Z} | c = k, for \ some \ k \in \mathbb{Z} \}.$$

$$[0] = {\dots, -2, -1, 0, 1, 2, \dots}.$$

Therefore, $\mathbb{Z}_1 = \{[0]\} = \{\overline{0}\}.$

2- If n = 2.

$$[a] = \{c \in \mathbb{Z} | c = a + k.2, for some \ k \in \mathbb{Z}\} = \{c \in \mathbb{Z} | c = a + 2k, for some \ k \in \mathbb{Z}\}.$$

$$[0] = \{c \in \mathbb{Z} | c = 0 + 2k, for some \ k \in \mathbb{Z} \} = \{c \in \mathbb{Z} | c = 2k, for some \ k \in \mathbb{Z} \}.$$

$$[0] = {\dots, -4, -2, 0, 2, 4, \dots} = \overline{0}.$$

$$[1] = \{c \in \mathbb{Z} | c = 1 + 2k, for some \ k \in \mathbb{Z} \}$$

$$[1] = {\dots, -3, -1, 1, 3, 5, \dots} = \overline{1}.$$

Therefore, $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}.$

3- If n = 3.

$$[a] = \{c \in \mathbb{Z} | c = a + k.3, for some \ k \in \mathbb{Z}\} = \{c \in \mathbb{Z} | c = a + 3k, for some \ k \in \mathbb{Z}\}.$$

$$[0] = \{c \in \mathbb{Z} | c = 0 + 3k, for \ some \ k \in \mathbb{Z} \} = \{c \in \mathbb{Z} | c = 3k, for \ some \ k \in \mathbb{Z} \}.$$

$$[0] = {\dots, -6, -3,0,3,6, \dots} = \overline{0}.$$

$$[1] = \{c \in \mathbb{Z} | c = 1 + 3k, for \ some \ k \in \mathbb{Z} \}$$

$$[1] = {\dots, -5, -2, 1, 4, 7, \dots} = \overline{1}.$$

$$[2] = \{c \in \mathbb{Z} | c = 2 + 3k, for some \ k \in \mathbb{Z} \}$$

$$[2] = {..., -4, -1, 2, 5, 8, ...} = \overline{2}.$$

Thus,
$$\mathbb{Z}_3 = \{\bar{0}, \bar{1}, \bar{2}\}.$$

Remark 3.2.11. $\mathbb{Z}_n = \{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}, ..., \overline{n-\mathbf{1}}\}$ for all $n \in \mathbb{Z}^+$.

Operation on \mathbb{Z}_n 3.2.12.

Addition operation $+_n$ on \mathbb{Z}_n

$$[a] +_n [b] = [a+b].$$

Multiplication operation \cdot_n on \mathbb{Z}_n

$$[a] \cdot_{\mathbf{n}} [b] = [a \cdot b].$$

 $(\mathbb{Z}_n, +_n)$ formed a commutative group with identity $\overline{0}$.

 (\mathbb{Z}_n, \cdot_n) formed a commutative semi group with identity $\overline{1}$.

Example 3.2.13.

If
$$\mathbf{n} = \mathbf{4}$$
. $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$.

+4	$\overline{0}$	1	$\bar{2}$	3
$\bar{0}$	$\bar{0}$	1	2	3
1	1	2	3	$\overline{0}$
2	2	3	$\overline{0}$	1
3	3	$\overline{0}$	1	2

$$\overline{3} + 4\overline{2} = [3 + 2] = [5] \equiv_4 [1] \text{ since } 5 = 1 + 4 \cdot 1.$$

•4	$\overline{0}$	1	2	3
$\overline{0}$	$\overline{0}$	$\bar{0}$	$\overline{0}$	$\bar{0}$
1	$\overline{0}$	1	2	3
2	$\overline{0}$	2	$\overline{0}$	2
3	$\bar{0}$	3	2	1

$$\bar{3} \cdot_4 \bar{2} = [3 \cdot 2] = [6] \equiv_4 [2] \text{ since } 6 = 2 + 4 \cdot 1.$$

Exercise 3.2.14. Write the elements of \mathbb{Z}_5 and then write the tables of addition and multiplication of \mathbb{Z}_5 .