

Week 5 Logic Design

18

Boolean Algebra and Logic Gates

1 Definition

 Useful mathematical system for specifying and transforming logic functions. We study

Boolean algebra as the foundation for designing and analyzing digital systems.

Boolean Function Evaluation

A binary variable can take the value of 0 or 1. A Boolean function is an expression

formed with binary variable, the two binary operators OR and AND, the NOT operator,

parentheses, and equal sign. The value of a function maybe 0 or 1, depending on the

values of variables present in the Boolean function or expression. For example, if a

Boolean function is expressed algebraically as: F = AB′C

Then, when A = 1, B = 0, and C = 1, the value of F will be 1. For other values of A, B,

and C, the value of F is 0.

Boolean functions can also be represented by truth tables. A truth table is the

the tabular form of the values of a Boolean function according to all possible values of its

variables. For an n number of variables, 2n combinations of 1s and 0s are listed (from 0

to 2n - 1), and one column represents function values according to the different

combinations. For example, for three variables, the Boolean function (F = AB + C) truth

table can be written as shown below:

For example, the following Boolean functions:-

The truth table for the above functions:

The Boolean function can be transformed to logic diagram

composed of AND, OR and NOT gates.

Week 5 Logic Design

19

2 Rule of Boolean Algebra

Rule 1: X + 0 = X

Rule2: X + 1 = 1

X X +1

0 0 +1=1

1 1+1 =1

Rule3: X + X= X

X X +X

0 0+0 =0

1 1+1 =1

Rule 4: X + ��= 1

X X + ��

0 0+1=1

1 1+0=1

 Rule5: �� = X

X �� ��

0 1 0

1 0 1

Rule6: X . 1= X

X X . 1

0 0 .1=0

1 1 .1 =1

Rule7: X . 0 = 0

X X . 0

0 0 .0=0

1 1 .0=0

Rule8: X . X= X

X X . X

0 0 .0=0

1 1 .1 =1

Rule9: X . ��= 0

X X . ��

0 0 .1=0

1 1 .0 =0

Rule10: X⊕ 0= X

X X⊕ 0

0 0 ⊕ 0=0

1 1 ⊕ 0 =1

X X+0

0 0+0=0

1 0+1=1

Week 5 Logic Design

20

Rule11: X⊕ 1= ��

X X⊕ 1

0 0 ⊕1=1

1 1 ⊕1 =0

Rule12: X⊕ X= 0

X X⊕ X

0 0 ⊕ 0=0

1 1 ⊕ 1=0

Rule13: X⊕ ��= 1

X X⊕ ��

0 0 ⊕ 1=1

1 1 ⊕ 0=1

 Prove that X+X=X

X + X = (X+X).1

 = (X+X).(X + ��) rule 4

 = X + X ��

 =X + 0 rule 9

 =X

3 Laws of Boolean Algebra

The manipulation of algebraic expressions is based on fundamental laws. Some of these

laws extend to the manipulation of Boolean expressions. For example, the commutative

law of algebra which states that the result of an operation is the same regardless of the

order of operands holds true for Boolean algebra too.

Commutative law X + Y= Y + X X.Y= Y.X

Associative law (X+Y)+Z= Y+(X+Z) (X.Y).Z= Y.(X.Z)

Distributive law X(Y+Z)=X.Y+X.Z X+YZ=(X+Y).(X+Z)

Many students of algebra are frustrated by problems requiring simplification. Sometimes

it feels as if extrasensory perception is required to see where the best path to

simplification lies. Unfortunately, Boolean algebra is no exception. There is no substitute

for practice. Therefore, this section provides a number of examples of simplification in

the hope that seeing them presented in detail will give you the tools you need to simplify

the problems on your own.

1) X + 0 = X 9) X . ��= 0

2) X + 1 = 1 10) X⊕ 0= X

3) X + X= X 11) X⊕ 1= ��

Week 5 Logic Design

21

4) X + ��= 1 12) X⊕ X= 0

5) �� = X 13) X⊕ ��= 1

6) X . 1= X 14) X+XY=X

7) X . 0 = 0 15) X. ���=X+Y

8) X . X= X 16) (X+Y).(X+Z)=X+YZ

Boolean Expression of three-variable of the XOR

A⨁B⨁C � AB� � A�B�C� � AB� � A�B�C

 � AB�C� � A�BC� � AB�C � A�BC

The truth table for �⨁�⨁�

A B C A⊕B (A⊕B)⊕C

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 0

1 0 0 1 1

1 0 1 1 0

1 1 0 0 0

1 1 1 0 1

Prove that: �� � �� � �� � �

A� � AB � A�1 � B� � AB

 � A� � A�B � AB

 =A� � �A� � ��

 =A� � �

Prove that: � � ��� � � � �

A � A�B � A1 � B� � A�B

 � A � AB � A�B

 � A � BA � A��

 � A � B

Week 5 Logic Design

22

Example: Prove that A + A·B = A

Solution

A + A·B = A·1 + A·B Rule: A · 1

 = A·(1 + B) Distributive Law

 = A·(B + 1) Commutative Law

 = A·1 Rule: A + 1 = 1

 = A Rule: A · 1 = A

Remember also that rules of Boolean algebra can be proven using a truth table. The

example below uses a truth table to derive another rule.

Example: Prove A + A�. B = A + B

The truth table below goes step-by-step through both sides of the expression to prove.

A B A� A�. B A+A�. B A+B

0 0 1 0 0 0

0 1 1 1 1 1

1 0 0 0 1 1

1 1 0 0 1 1

Example: Prove (A + B)·(A + C) = A + B·C

Solution

(A + B)·(A + C) = (A + B)·A + (A + B)·C Distributive Law

= A·A + B·A + A·C + B·C Distributive Law

= A + B·A + A·C + B·C Rule: A·A = A

 = A + A·B + A·C + B·C Commutative Law

= A + A·C + B·C Rule: A + A·B = A

= A + B·C Rule: A + A·B = A

Now that you have a taste for the manipulation of Boolean expressions, the next section

will show examples of how complex expressions can be simplified.

Example: prove AB + A�C + BC = AB + A� C

Solution

= AB + A� C + 1 · BC rule 1.X=X

 = AB +A� C + (A + A�) · BC rule X+��=1

= AB +A� C +ABC+A�BC Distributive Law

=AB+ABC+A� C+A�BC Commutative Law

=AB(1+C)+ A� C(1+B) Distributive Law

= AB+A� C rule 1+X=1

Week 5 Logic Design

23

Example: Show that X+ Y + �.� �� = 1

X+ Y + X.� Y.� = (X+Y+X�) (X+Y+Y�) (Distributive Law) X + YZ = (X + Y)(X + Z)

 =(X+X� � �) (X+Y+Y�) (Commutative Law) X + Y = Y + X

 =(1+Y)(X+1) Rule 4

 =1.1 Rule2

 =1 Rule8

Example: Show (X+ Y). �.� �� =0

(X+ Y). X.� Y� = X. X.� Y� � Y. X.� Y�) (Distributive Law) X + YZ = (X + Y)(X + Z)

 =(X. X.� Y� + Y. Y � . X�) (Commutative Law) X + Y = Y + X

 =(0. Y� + 0. X�)

= (0 + 0)

= 0

Example: determine the truth table and logic diagram AB+ A (B+C)+ B(B+C)

AB+ A (B+C)+ B(B+C) = AB+AB+AC+BB+BC

 =AB+AB+AC+B+BC

 = AB+AC+B(1+C)

 = AB+B + AC

 =B(A+1)+AC

 = B+AC

4 Simplification

When a Boolean expression is implemented with logic gates, each literal in the

function is designated as input to the gate. The literal may be a primed or unprimed

variable. Minimization of the number of literals and the number of terms leads to

less complex circuits as well as less number of gates, which should be a designer’s

aim. There are several methods to minimize the Boolean function. In this lecture,

simplification or minimization of complex algebraic expressions will be shown with the

help of postulates and theorems of Boolean algebra.

Week 5 Logic Design

24

Example: Simplify F= (A.B+C)(A.B+D)

From the rules of Boolean algebra, we know that (A + B)(A + C) = A + BC. Substitute

A·B for A, C for B, and D for C and we get: (A·B + C)(A·B + D) = A·B + C·D

Example: Simplify F= ��.(X+��.Y)

=Y�.X+Y.� X�.Y Distributive Law

=Y�.X+X.� Y�.Y Associative Law

=Y�.X+X.� 0 Anything AND'ed with its inverse is 0

=Y�.X

=X.Y�

Example: Simplify the Boolean function F=AB+ BC + B′C.

Solution. F = AB + BC + B′C

 = AB + C (B + B′)

 = AB + C

Example: Simplify the Boolean function F= A + A′B.

Solution. F = A+ A′B

 = (A + A′) (A + B)

 = A + B

Example : Simplify the Boolean function F= A′B′C + A′BC + AB′.

Solution. F = A′B′C + A′BC + AB′

 = A′C (B′+B) + AB′

 = A′C + AB′

H.W:Use Boolean algebra to simplify the following Boolean functions:

1. F = AB + (AC)′ + AB′C(AB + C) (Ans: F=1)

2. F = ((XY′ + XYZ)′ + X(Y + XY′))′ (Ans: F=0)

3. F = XYZ + XY′Z + XYZ′ (Ans: F=X(Y+Z))

4. F = (X�+Y).(X+Y�)s

5. � � X�.Y�.Z� + X�.Y�.Z +X�.Y. Z�+X�.Y.Z

Week 5 Logic Design

25

5 Demorgan's Theorem

The complement of the function F is F� and is obtained from an interchange of 0’s for 1’s

and 1’s for 0’s in the value of F. the complement of a function may be derived

algebraically through DeMorgan's theorem . There are two theorem of DeMorgan:

�. ������ � �� � ��

X Y �. ������ �� � ��

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

 � � ��������� � �� . ��

X Y � � ��������� ��. ��

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

Complementing Functions:

Use DeMorgan's Theorem to complement a function:

1. Interchange AND and OR operators

2. Complement each constant value and literal

Ex: Fined the complement of the following functions?

Canonical and Standard Forms

Any Boolean function can be expressed in a canonical form, canonical form

includes:-

1- Sum of minterms (SOM) also known as Sum of products (SOP).

2- Product of Maxterms (POM) also known as Product of sum (POS).

Product Term: An AND function is referred to as a product term. The variables in a

product term can be either in true form or in complemented form. For example,

ABC′ is a product term.

Sum Term: An OR function is referred to as a sum term. Variables in a sum term can

also be either in true form or in complemented form. For example:

A + B + C′ is a sum term.

Week 5 Logic Design

26

Example: Express the following complement of product as sum of complement using

Demorgan’s theorem:

1- ��������� � �̅ � �� � �̅

2- ���"�������� � �̅ � �� � �̅ � "�

3- ���#����������� � �̅ � �� � �̅ � "� � #� � ��

4- � � � � �������������� � �̅���̅

5- � � � � � � "������������������� � �̅���̅"�

6- � � � � � � # � ������������������������� � �̅���̅"�#���

Example: Prove that � � ���������$ � ��� � ��� � $�

 � X.� Y.� Z � X. Y� (DeMorgan’s Law)

 = Y�(X.� Z + X) (Distributive Law)

 = Y�(X� + X)(Z + X) (Distributive Law)

 = Y�. 1(Z + X) Rule 4

 = Y�(Z + X)

Example: Simplify the following Boolean Expression �� + �%������������ + ����%

Step1: apply DeMoragn’s theorem to the first term.

 (AB����). (AC����) + A�B�C

Step2: apply DeMoragn’s theorem to each term in parentheses.

 (A� + B�)(A� + C�) + A�B�C

Step3: Apply the distributive law to the two terms in parentheses.

A�A� + A�C� + A�B� + B�C� + A�B�C

Step4:Apply Boolean Rules A�A� = A� , A�B� + A�B�C = A�B�(1 + C) = A�B�

A� + A�C� + A�B� + B�C�

Step5: Apply Boolean Rule A� + A�C� = A�(1 + C�) = A� to the first and second terms

A� + A�B� + B�C�

Step6: Apply Boolean Rule A� + A�B� = A�(1 + B�) = A� to the first and second terms

A� + B�C�

6 Sum of Product (SOP) and Product of Sum (POS)

A sum-of-products (SOP) expression is a Boolean expression in a specific format. The

term sum-of-products comes from the expression's form: a sum (OR) of one or more

products (AND). It is basically an OR operation on AND operated variables. For

example, F = AB + BC + AC or F = A′B + BC + AC′ are sum of products expressions.

As a digital circuit, an SOP expression takes the output of one or more AND gates and

OR's them together to create the final output. The inputs to the AND gates are either

Week 5 Logic Design

27

inverted or non-inverted input signals. This limits the number of gates that any input

signal passes through before reaching the output to an inverter, an AND gate, and an OR

gate.

A�BCD� + AB�D + CD� + AD�

This also means that an SOP expression cannot have more than one variable combined in

a term with an inversion bar.

Example for Sum of Product (SOP): X=AB+BCD+AC

Example Sum of product

 F=��B+A��

The product-of-sums (POS) format of a Boolean expression is much like the SOP

format with its two levels of logic (not counting inverters). The difference is that the

outputs of multiple OR gates are combined with a single AND gate which outputs the

final result. It is an AND operation on OR operated variables. For example, F = (A + B +

C) (A + B′ + C) (A + B + C′) or F = (A + B + C) (A′ + B′ + C′) are product of sums

A B X F

0 0 0

0 1 1 ��B

1 0 1 A��

1 1 0

Week 5 Logic Design

28

expressions. The expression below adheres to the format of a POS expression.

(A�+B+C+D�)(A+B�+D)(C+D�)(A+D�)

As with SOP expressions, a POS expression cannot have more than one variable

combined in a term with an inversion bar. For example, the following is not a POS

expression:

(A + B + C�������������+D)(A+B�+D)(C+D�)(A+D�)

Example of Product of Sum (POS): (A+B)(B+C+D)(A+C)

Example:

F=(��+��)(A+B)

Standard form: In this form, the terms form the function may contain one, two, or any

number of literals. There are two types of standard form: sum of the products (SOP)

or product of the sums (POS) fashion. For examples; F = AB + BC + AC or F = (A +

B + C) (A + B′ + C) (A + B + C′) are the standard forms.

However, Boolean functions are also sometimes expressed in nonstandard forms like

F = (AB + CD) (A′B′ + C′D′), which is neither a sum of products form nor a product

A B X F

0 0 0 ��+��

0 1 1

1 0 1

1 1 0 A+B

Week 5 Logic Design

29

of sums form. However, the same expression can be converted to a standard form with

help of various Boolean properties, as

F = (AB + CD) (A′B′ + C′D′) = A′B′CD + ABC′D′

The following is not an SOP expression:

(AB����)CD� + AB�D + CD� + AD�

This is because the first term has A and B passing through a NAND gate before being

AND'ed with C and D thereby creating a third level of logic. To fix this problem, we

need to break up the NAND using DeMorgan's Theorem.

(AB����)CD� + AB�D + CD� + AD�

(A�+B�)CD� + AB�D + CD� + AD�

A�CD�+B�CD� + AB�D + CD� + AD�

7 Minterms and Maxterms for three Binary variables A Product term which contains

each of variables as factor in either complemented or uncomplemented forms is called a

minterm. A sum which contains each of n variables complemented or not is called

maxterm.

In other words, A product term containing all n-variables of the function in either true

(1) or complemented (0) form is called the Minterm. In Minterm, we look for the

functions where the output results in “1” (F=0).

A sum term containing all n variables of the function in either true or

complemented form is called the Maxterm. In Maxterm we look for function where

the output results in “0” (F=0).

Week 5 Logic Design

30

Week 5 Logic Design

31

Week 5 Logic Design

32

Week 5 Logic Design

33

H.W.

1. Obtain the canonical product of the sum form of the following function.

F (A, B, C) = A + B′C

2. Obtain the canonical product of the sum form of the following function.

F (A, B, C) = (A + B′) (B + C) (A + C′)

3. Obtain the canonical sum of product form of the following function.

F (A, B) = A + B

4. Prove the following using Boolean theorems:

(a) (A + C)(A + D)(B + C)(B + D) = AB + CD

(b) (X + Y) ⊕ (X + Z) = X′ (Y ⊕ Z).

5. Find the Boolean expression for F, when F is 1 only if A is 1 and B is 1, or

if A is 0 and B is 0.

6. Convert F = ABCD + A′BC + B′C′ into a sum of minterms by algebraic method.

7. Convert F = AB + B′CD into a product of maxterms by algebraic method.

