Numerical analysis

11 .Numerical analysis and curve fitting

11.5 Characteristic Polynomial and Roots

Polynomial comes from the Greek poly, "many" and medieval Latin binomium, "binomial".
[Forming a sum of several terms produces a polynomial. For example, the following is a polynomial:

$$
\underbrace{3 x^{2}}_{\text {term term term }}-\underbrace{5 x}+\underbrace{4}
$$

It consists of three terms: the first is degree two, the second is degree one, and the third is degree zero.

Numerical analysis

11 .Numerical analysis and curve fitting

11.6 Polynomials in MATLAB

\square Represented by a row vector in which the elements are the coefficients as

$$
\left[\begin{array}{lllll}
a_{n} & a_{n-1} \ldots & a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

\square The a_{i} elements of this vector are the coefficients of the polynomial in descending order.

- Must include all coefficients, even if 0 :

Examples:-

The polynomial

1) $s^{3}-6 s^{2}-72 s-27$ is represented in MATLAB software as :

$$
\gg p=\left[\begin{array}{llll}
1 & -6 & -72 & -27
\end{array}\right]
$$

2) $8 x+5 \quad, \quad \gg p=[85]$
3) $6 x^{2}-150, \quad \gg h=\left[\begin{array}{lll}6 & 0 & -150\end{array}\right]$

Numerical analysis

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

We can find the roots of any polynomial with the roots(p) function where p is a row vector containing the polynomial coefficients in descending order.

Example1:

Find the roots of the polynomial

$$
p_{1}(x)=x^{4}-10 x^{3}+35 x^{2}-50 x+24
$$

Solution:

The roots are found with the following two statements. We have denoted the polynomial as p1, and the roots as roots_ p1.
>> $\mathrm{p} 1=\left[\begin{array}{lllll}1 & -10 & 35 & -50 & 24\end{array}\right] \%$ Specify the coefficients of $\mathrm{p} 1(\mathrm{x})$
P1=

$$
\begin{array}{lllll}
1 & -10 & 35 & -50 & 24 \\
\hline
\end{array}
$$

Numerical analysis

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

>> roots_p1=roots(p1) \% Find the roots of p1(x)
roots_p1 =
4.0000
3.0000
2.0000
1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a column vector.

Numerical analysis

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

Example2:

Find the roots of the polynomial

$$
p_{2}(x)=x^{5}-7 x^{4}+16 x^{2}-25 x+52
$$

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the statements below where we have defined the polynomial as p2, and the roots of this polynomial as roots_p2.
>> $\mathrm{p} 2=\left[\begin{array}{llllll}1 & -7 & 0 & 16 & 25 & 52\end{array}\right]$
P2=
$\begin{array}{llllll}1 & -7 & 0 & 16 & 25 & 52\end{array}$
>> roots_p2=roots(p2)
roots_p2 =

Numerical analysis

11 .Numerical analysis and curve fitting

11.7 Roots of Polynomials

>> roots_p2=roots(p2)
roots_p2 =

$$
\begin{aligned}
& 6.5014 \\
& 2.7428 \\
& -1.5711 \\
& -0.3366+1.3202 i \\
& -0.3366-1.3202 i
\end{aligned}
$$

The result indicates that this polynomial has three real roots, and two complex roots.

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the poly(r) function where r is a row vector containing the roots.

Example3:

It is known that the roots of a polynomial are 1,2,3 and 4. Compute the coefficients of this polynomial.

Solution:

We first define a row vector, say r3, with the given roots as elements of this vector; then, we find the coefficients with the poly(r) function as shown below.

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

r3 =
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
>>poly_r3=poly(r3) \% Find the polynomial coefficients
poly_r3 =
$\begin{array}{lllll}1 & -10 & 35 & -50 & 24\end{array}$
We observe that these are the coefficients of the polynomial p1(x) of Example1.

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

Example4:

It is known that the roots of a polynomial are $-1,-2,-3,4+j 5$, and $4-j 5$. Find the coefficients of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with the poly (r) function as shown below.
>> r4 4 [- 1 -2 -3 4+5j 4-5j]

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

Example4:
>> r4=[-1 -2 -3 4+5j 4-5j]
$r 4=$
Columns 1 through 4
$-1.0000+0.0000 i-2.0000+0.0000 i-3.0000+0.0000 i 4.0000+5.0000 i$
Column 5
4.0000-5.0000i
>> poly_r4=poly(r4)

Numerical analysis

11 .Numerical analysis and curve fitting

11.8 Polynomial Construction from Known Roots

Example4:

>> poly_r4=poly(r4)
poly_r4 =

$$
\begin{array}{llllll}
1 & -2 & 4 & 164 & 403 & 246
\end{array}
$$

Therefore, the polynomial is

$$
P_{4}(x)=x^{5}+14 x^{4}+100 x^{3}+340 x^{2}+499 x+246
$$

Numerical analysis

11 .Numerical analysis and curve fitting

11.9 Evaluation of a Polynomial at Specified Values

The polyval (p, x) function evaluates a polynomial $P(x)$ at some specified value of the independent variable x.

Example5:

Evaluate the polynomial

$$
P_{5}(x)=x^{6}-3 x^{5}+5 x^{3}-4 x^{2}+3 x+2
$$

at $x=-3$.

Solution:

>>p5=[14 $\left.-30 \begin{array}{lllll}1 & -4 & 3 & 2\end{array}\right] ;$ \% These are the coefficients

Numerical analysis

11 .Numerical analysis and curve fitting

11.9 Evaluation of a Polynomial at Specified Values

$$
P_{5}(x)=x^{6}-3 x^{5}+5 x^{3}-4 x^{2}+3 x+2
$$

at $x=-3$.
Solution:

>> val_minus3=polyval(p5, -3) \% Evaluate p5 at $x=-3$.
val_minus3 =
1280

Numerical analysis

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint
conv(a,b) - multiplies two polynomials a and b
$[\mathrm{q}, \mathrm{r}]=$ deconv(c,d) - divides polynomial c by polynomial d and displays the quotient q and remainder r.
polyder(p) - produces the coefficients of the derivative of a polynomial p.
polyint(p) - produces the coefficients of the integral of a polynomial p.

Numerical analysis

11 .Numerical analysis and curve fitting

nv ,polyder ,polyint

$$
\begin{aligned}
& \text { Example6: } \quad \begin{aligned}
& P_{1}(x)
\end{aligned}=x^{5}-3 x^{4}+5 x^{2}+7 x+9 \\
& P_{2}(x)
\end{aligned}=2 x^{6}-8 x^{4}+4 x^{2}+10 x+12 \text { }
$$

Compute the product p1.p2 with the conv(a,b) function.

Solution:

$$
\begin{aligned}
& \text { >> p1=[1 } 1-3005
\end{aligned} \text { 7 9]; }
$$

Numerical analysis

11 .Numerical analysis and curve fitting

nv ,polyder ,polyint
\gg p1p2 $=\operatorname{conv}(p 1, p 2)$
p1p2 $=$

$$
2-6-83418-24-74-8878166174108
$$

Therefore,

$$
\begin{aligned}
& P 1 . P 2_{1}=2 x^{11}-6 x^{10}-8 x^{9}+34 x^{8}-18 x^{7}-24 x^{6}-74 x^{5}-88 x^{4}+78 x^{3} \\
& +166 x^{2}+174 x+108
\end{aligned}
$$

Numerical analysis

11 .Numerical analysis and curve fitting

nv ,polyder ,polyint
Example7: Let $\quad P_{3}(x)=x^{7}-3 x^{5}+5 x^{3}+7 x+9$

$$
P_{4}(x)=2 x^{6}-8 x^{2}+4 x^{2}+10 x+12
$$

Compute the quotient $\mathrm{p} 3 / \mathrm{p} 4$ using the $\operatorname{deconv}(\mathrm{p}, \mathrm{q})$ function.

Solution:

$q=$
0.5
$r=$

$$
\begin{array}{lllllll}
0 & 4 & -3 & 0 & 3 & 2 & 3 \\
\hline
\end{array}
$$

Numerical analysis

11 .Numerical analysis and curve fitting

11.10 Relations with Polynomials: conv, deconv ,polyder ,polyint
$q=$

$$
0.5
$$

$r=$

$$
\begin{array}{lllllll}
0 & 4 & -3 & 0 & 3 & 2 & 3
\end{array}
$$

Therefore, the quotient $q(x)$ and remainder $r(x)$ are :

$$
\mathrm{q}(\mathrm{x})=0.5 \quad r(x)=4 x^{5}-3 x^{4}+3 x^{2}+2 x+3
$$

Numerical analysis

11 .Numerical analysis and curve fitting

onv ,polyder ,polyint

$$
\text { Example8: } \quad \text { Let } \quad p_{5}=2 x^{6}-8 x^{4}+4 x^{2}+10 x+12
$$

Compute the derivative $d \mathrm{p}_{5} / \mathrm{dx}$ using the $\operatorname{polyder}(\mathrm{p})$ function.

Solution:

>> p5=[20 $20-8041012] ;$
>>der_p5=polyder(p5)
der_p5 =

$$
\begin{array}{llllll}
12 & 0 & -32 & 0 & 8 & 10
\end{array}
$$

Therefore,

$$
d p_{5} / d x=12 x^{5}-32 x^{3}+8 x+10
$$

Numerical analysis

11 .Numerical analysis and curve fitting

nv ,polyder ,polyint

Example9:

$$
\text { Let } \quad p_{6}=6 x^{2}
$$

Compute the integral $\int p_{6} \mathrm{dx}$ using the polyint(p) function.

Solution:

>> p6=[[llll 600$] ;$
>>der_p6=polyint(p5)
int_p6 =

$$
2000
$$

Therefore,

$$
\int p_{6} d x=2 x^{3}
$$

Numerical analysis

11 .Numerical analysis and curve fitting

11.11 Curve fitting

\square Matlab also has a convenient tool for curve fitting. If we have two vectors, x and y, with paired observations, we can approximate the functional relation between them with a polynomial of some degree.

If the degree is 1 , the relation is linear;
if it is 2 , the relation is quadratic, etc.
This can be done with the function polyfit().

Numerical analysis

11 .Numerical analysis and curve fitting

\square The following script estimates the coefficients of polynomials of order 1, 2, and 3, for a given set of observations, and plots the results in three graphs.
clc,clear all
$x=[123456789$]; $y=[233578897$];
x_val = linspace(0,10,100);
for degree=1:3
poly = polyfit(x,y,degree);
disp(['Coeff., case ' num2str(degree) ': ' num2str(poly)])
y_val = polyval(poly,x_val);
subplot(3,1,degree)
plot(x,y,'r*'), axis([0 100 10])
hold on
plot(x_val,y_val)
ylabel(['Degree: ' num2str(degree)])

Numerical analysis

11 .Numerical analysis and curve fitting

11.11 Curve fitting: \quad poly $=$ polyfit $(x, y$, degree $)$

The output is:
Coeff., case 1: $0.85 \quad 1.5278$
Coeff., case 2: -0.12229 $2.0729-0.71429$
Coeff., case 3: -0.053872 0.68579 -1.3318 2.8413
\square The first two inputs to polyfit() are the vectors of X - and Y-values, and the third is the degree of the polynomial (i.e., the highest value of the exponent).
poly = polyfit(x,y,degree);
\square The function responds with a matrix that holds one more element than the degree.
The elements of the matrix are the coefficients of the estimated polynomial.
\square For example, in the third case above

$$
y=-0.053872 x^{3}+0.68579 x^{2}-1.3318 x+2.8413
$$

Numerical analysis

11 .Numerical analysis and curve fitting

11.11 Curve fitting: poly = polyfit(x,y,degree)

The function polyval() uses a matrix of coefficients, poly above, and returns Y values for given X-values.
y_val = polyval(poly,x_val);
\square Figure $11-1$ shows the resulting three plots. The red markers are the same in all three cases, but the curves correspond to the fitted polynomials.

Numerical analysis

11 .Numerical analysis and curve fitting

11.11 Curve fitting: \quad poly $=$ polyfit $(x, y$, degree $)$

Figure 11-1
Examples of curve fitting

