11.5 Characteristic Polynomial and Roots

- Polynomial comes from the Greek <u>poly</u>, "many" and medieval Latin <u>binomium</u>, "binomial".
- Forming a sum of several terms produces a polynomial. For example, the following is a polynomial:

 $3x^2 - 5x + 4$

term term term

□ It consists of three terms: the first is degree two, the second is degree one, and the third is degree zero.

Numerical analysis

11.6 Polynomials in MATLAB

□ Represented by a row vector in which the elements are the coefficients as

 $[a_n \ a_{n-1} \dots \ a_2 \ a_1 \ a_0]$

The a_i elements of this vector are the coefficients of the polynomial in descending order.
 Must include all coefficients, even if 0:

Examples:-

The polynomial

1)
$$s^3 - 6s^2 - 72s - 27$$
 is represented in MATLAB software as :

2) 8x + 5 , >>p = [8 5]

3) $6x^2 - 150$, $>>h = [6 \ 0 \ -150]$

Numerical analysis

11.7 Roots of Polynomials

□ We can find the roots of any polynomial with the roots(p) function where p is a row vector containing the polynomial coefficients in descending order.

Example1:

Find the roots of the polynomial

$$p_1(x) = x^4 - 10x^3 + 35x^2 - 50x + 24$$

Solution:

The roots are found with the following two statements. We have denoted the polynomial as p1, and the roots as roots_p1.

>> p1=[1 -10 35 -50 24] % Specify the coefficients of p1(x) P1=

1 -10 35 -50 24

Numerical analysis

11.7 Roots of Polynomials

```
>> roots_p1=roots(p1) % Find the roots of p1(x)
roots_p1 =
```

4.0000

- 3.0000
- 2.0000

1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a column vector.

Numerical analysis

11.7 Roots of Polynomials

Example2:

Find the roots of the polynomial

$$p_2(x) = x^5 - 7x^4 + 16x^2 - 25x + 52$$

Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the statements below where we have defined the polynomial as p2, and the roots of this polynomial as roots_ p2. >> p2=[1 -7 0 16 25 52] P2= 1 -7 0 16 25 52 >> roots_ p2=roots(p2) roots_ p2 =

Numerical analysis

11.7 Roots of Polynomials

>> roots_ p2=roots(p2)
roots_ p2 =

6.5014

2.7428

-1.5711

-0.3366 + 1.3202i

-0.3366 - 1.3202i

The result indicates that this polynomial has three real roots, and two complex roots.

Numerical analysis

11.8 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the poly(r)

function where r is a row vector containing the roots.

Example3:

It is known that the roots of a polynomial are 1,2,3 and 4. Compute the coefficients of

this polynomial.

Solution:

We first define a row vector, say r3, with the given roots as elements of this vector;

then, we find the coefficients with the poly(r) function as shown below.

Numerical analysis

11.8 Polynomial Construction from Known Roots

>>r3=[1 2 3 4] % Specify the roots of the polynomial r3 =

1 2 3 4

>>poly_r3=poly(r3) % Find the polynomial coefficients

poly_r3 =

1 -10 35 -50 24

We observe that these are the coefficients of the polynomial p1(x) of Example1.

Numerical analysis

11.8 Polynomial Construction from Known Roots

Example4:

It is known that the roots of a polynomial are -1, -2, -3, 4 + j5, and 4 - j5. Find the

coefficients of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with the poly(r) function as shown below.

>> r4=[-1 -2 -3 4+5j 4-5j]

Numerical analysis

11.8 Polynomial Construction from Known Roots

Example4:

```
>> r4=[ -1 -2 -3 4+5j 4-5j ]
```

r4 =

```
Columns 1 through 4
```

-1.0000 + 0.0000i -2.0000 + 0.0000i -3.0000 + 0.0000i 4.0000 + 5.0000i

Column 5

4.0000 - 5.0000i

>> poly_r4=poly(r4)

Numerical analysis

11.8 Polynomial Construction from Known Roots

Example4:

>> poly_r4=poly(r4)

poly_r4 =

1 -2 4 164 403 246

Therefore, the polynomial is

$$P_4(x) = x^5 + 14x^4 + 100x^3 + 340x^2 + 499x + 246$$

Numerical analysis

11.9 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial P(x) at some specified value of the independent variable x.

Example5:

Evaluate the polynomial

$$P_5(x) = x^6 - 3x^5 + 5x^3 - 4x^2 + 3x + 2$$

at x = -3.

Solution:

>>p5=[1 -3 0 5 -4 3 2]; % These are the coefficients

Numerical analysis

11.9 Evaluation of a Polynomial at Specified Values

$$P_5(x) = x^6 - 3x^5 + 5x^3 - 4x^2 + 3x + 2$$

at x = -3.

Solution:

>>p5=[1 -3 0 5 -4 3 2]; % These are the coefficients >> val_minus3=polyval(p5, -3) % Evaluate p5 at x=-3. val_minus3 =

1280

Numerical analysis

11.10 Relations with Polynomials: conv , deconv , polyder , polyint

conv(a,b) – multiplies two polynomials a and b

[q,r]=deconv(c,d) – divides polynomial **c** by polynomial **d** and displays the quotient **q** and remainder **r**.

polyder(p) – produces the coefficients of the derivative of a polynomial **p**.

polyint(p) – produces the coefficients of the integral of a polynomial **p**.

Numerical analysis

11.10 Relations with Polynomials: conv , deconv , polyder , polyint

Example6:

Let
$$P_1(x) = x^5 - 3x^4 + 5x^2 + 7x + 9$$

 $P_2(x) = 2x^6 - 8x^4 + 4x^2 + 10x + 12$

Compute the product p1.p2 with the conv(a,b) function.

Solution:

```
>> p1=[1 -3 0 5 7 9];
```

```
>> p2=[2 0 -8 0 4 10 12];
```

>> p1p2=conv(p1,p2)

p1p2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108

Numerical analysis

11.10 Relations with Polynomials: conv, deconv, polyder, polyint

```
>> p1p2=conv(p1,p2)
```

p1p2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108

Therefore,

$$P1.P2_{1} = 2x^{11} - 6x^{10} - 8x^{9} + 34x^{8} - 18x^{7} - 24x^{6} - 74x^{5} - 88x^{4} + 78x^{3} + 166x^{2} + 174x + 108$$

Numerical analysis

11.10 Relations with Polynomials: conv , deconv , polyder , polyint

Example7: Let $P_3(x) = x^7 - 3x^5 + 5x^3 + 7x + 9$ $P_4(x) = 2x^6 - 8x^2 + 4x^2 + 10x + 12$

Compute the quotient p3/p4 using the deconv(p,q) function.

Solution:

>> p3=[1 0 -3 0 5 7 9]; p4 = [2 -8 0 0 4 10 12]; [q,r] = deconv(p3,p4)

q =

0.5

r =

0 4 -3 0 3 2 3

Numerical analysis

11.10 Relations with Polynomials: conv , deconv , polyder , polyint

Example8: Let $p_5 = 2x^6 - 8x^4 + 4x^2 + 10x + 12$

Compute the derivative dp_5/dx using the polyder(p) function.

Solution:

```
>> p5=[2 0 -8 0 4 10 12];
```

```
>>der_p5=polyder(p5)
```

der_p5 =

12 0 -32 0 8 10

Therefore,

$$dp_5/dx = 12x^5 - 32x^3 + 8x + 10$$

Numerical analysis

11.10 Relations with Polynomials: conv , deconv , polyder , polyint

Example9:

Let
$$p_6 = 6x^2$$

Compute the integral $\int p_6 dx$ using the polyint(p) function.

Solution:

```
>> p6=[6 0 0];
```

```
>>der_p6=polyint(p5)
```

int_p6 =

2 0 0 0

Therefore,

$$\int p_6 \, dx = 2x^3$$

Numerical analysis

11.11 Curve fitting

Matlab also has a convenient tool for curve fitting. If we have two vectors, x and y, with paired observations, we can approximate the functional relation between them with a polynomial of some degree.

 \Box If the degree is 1, the relation is linear;

 \Box if it is 2, the relation is quadratic, etc.

□ This can be done with the function polyfit().

Numerical analysis

Numerical analysis 2nd Class 11 .Numerical analysis and curve fitting

The following script estimates the coefficients of polynomials of order 1, 2, and 3, for a given set of observations, and plots the results in three graphs. clc,clear all

```
x = [1 2 3 4 5 6 7 8 9]; y = [2 3 3 5 7 8 8 9 7];
```

```
x_val = linspace(0,10,100);
```

```
for degree=1:3
```

```
poly = polyfit(x,y,degree);
```

```
disp(['Coeff., case ' num2str(degree) ': ' num2str(poly)])
```

```
y_val = polyval(poly,x_val);
```

```
subplot(3,1,degree)
```

```
plot(x,y,'r*'), axis([0 10 0 10])
```

hold on

```
plot(x_val,y_val)
```

```
ylabel(['Degree: ' num2str(degree)])
```


end

Numerical analysis

2nd Class

11.11 Curve fitting: poly = polyfit(x,y,degree)

The output is:

- Coeff., case 1: 0.85 1.5278 Coeff., case 2: -0.12229 2.0729 -0.71429 Coeff., case 3: -0.053872 0.68579 -1.3318 2.8413
- □ The first two inputs to polyfit() are the vectors of X- and Y-values, and the third is the degree of the polynomial (i.e., the highest value of the exponent).

poly = polyfit(x,y,degree);

□ The function responds with a matrix that holds one more element than the degree.

The elements of the matrix are the coefficients of the estimated polynomial.
 For example, in the third case above

 $y = -0.053872x^3 + 0.68579x^2 - 1.3318x + 2.8413$

Numerical analysis 2nd Class 11.Numerical analysis and curve fitting 11.11 Curve fitting: poly = polyfit(x,y,degree) The function polyval() uses a matrix of coefficients, poly above, and returns Y-values for given X-values. y_val = polyval(poly,x_val);

Figure 11-1 shows the resulting three plots. The red markers are the same in all three cases, but the curves correspond to the fitted polynomials.

Numerical analysis