
1

11 .Numerical analysis and curve fitting

11.1 Solving equations

 we have learnt to program functions, we are able to use Matlab’s numerical analysis

and curve fitting tools. Here, we describe how to numerically solve equations and find

local minimum points, as well as how to perform numerical integration.

Numerical analysis

2nd Class

2

11 .Numerical analysis and curve fitting

3

 For a given set of X- and Y-values, it is also easy to add markers at specific values, for
example at a function minimum. When using the min() function with two output
arguments, it supplies both the minimum value and the location of that number

>> [minVal,minLoc] = min(y)

minVal =

 -0.99091

minLoc =

 79

 Since the X- and Y-values are paired, the X-value that corresponds to the

minimum Y-value must be in the same location in x. We can then put a red o-

marker in the correct spot by issuing

11 .Numerical analysis and curve fitting

4

>> hold on; plot(x(minLoc),y(minLoc),'ro')

11 .Numerical analysis and curve fitting

5

 Define that as a user defined function, and then solve it (i.e., find the point where the

function equals zero).

 We write the function, named waveFunction, such that we supply an X-value and

then get back the corresponding Y-value. For such a simple function, this is

easily done.

function y = waveFunction(x)

y = sin(x) + exp(-x);

11 .Numerical analysis and curve fitting

6

 To start searching for a solution, we need a starting value. Looking at Figure 7-3, we
see that the function equals zero where x is roughly equal to 3. Then we issue the
command fzero() as

>> x_zero = fzero('waveFunction',3)

x_zero =

 3.1831

 The first input to fzero() is the name of the function we want to solve, within

single quotes.

 And the second is a “best guess” where a solution will be found.

11 .Numerical analysis and curve fitting

7

11 .Numerical analysis and curve fitting

11.2 Finding a function minimum point

 It is equally easy to find a local minimum of a function. We see in Figure 7-3 that

there should be a local minimum where the red circle marker is, somewhere

between 4 and 5. The command for finding a minimum between two values on

the X-axis is fminbnd().

>> [x_min,fval] = fminbnd('waveFunction',4,5)

x_min =

 4.7213

fval =

 -0.99106

8

11 .Numerical analysis and curve fitting

11.2 Finding a function minimum point

 The second and third input arguments are the end values of the region along

the X-axis where we want to search for a minimum. One is found at 4.7213,

and the corresponding Y-value, fval, at that point is -0.99106. (Note that, this

is slightly smaller than the value we found when plotting the minimum point in

the figure in Section 7.3. The difference depends mainly on how fine grained

the x-vector was there.)

9

11 .Numerical analysis and curve fitting

11.3 integration

 To numerically integrate our function between -1 and 2π (i.e., the plotted

region), there are several different methods to choose from. For instance, we

can issue

>> area = quad('waveFunction',-1,2*pi)

area =

 2.2567

The area beneath the function is approximately 2.2567.

10

11 .Numerical analysis and curve fitting

11.4 Curve fitting

Matlab also has a convenient tool for curve fitting. If we have two vectors, x

and y, with paired observations, we can approximate the functional relation

between them with a polynomial of some degree.

 If the degree is 1, the relation is linear;

 if it is 2, the relation is quadratic, etc.

 This can be done with the function polyfit().

