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1. Definitions and Examples of Rings
Definition(1-1):
A ring is an ordered triple  consisting of a non-empty set  and two binary operations  and  on  such that 
i.  is a commutative group,
ii.  is a semigroup (satisfies the axioms  i , ii of group),
iii. The two operations are related by  the distributive laws
,
.
Definition(1-2):
A commutative ring is a ring in which  is a commutative.
Examples(1-3):
1. Each one of the following is a commutative ring:
.
2. The set  is a commutative ring with identity.
     ,
     
     .
3. Let  denote the set of all functions . The sum  and product  of two functions  are defined as usual, by the equations 
,
.
     The triple  is a commutative ring with identity.
4. The triple  is not a ring.
The left distributive law .
5. Let  be an arbitrary commutative group and Hom   be the set of all homomorphisms from  into itself. (Hom  is a semigroup with identity, then the triple  (Hom  forms a ring with identity.

(Hom  is a commutative group.

,
So that .

.
Therefore,.
6. The triple  is a commutative ring with identity.
7. Consider the set  of ordered pairs of real numbers. We define addition and multiplication  in  by the formulas
.
 is a commutative ring with identity.
8. The triple  is a commutative ring with identity.
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	



	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


Here, we have  , the product of nonzero elements being zero. Note also that , yet it is clearly not true that  . The multiplicative semigroup  does not satisfy the cancellation law.
9. The triple  is a commutative ring with identity.
10.  The triple  is a ring with identity, but not commutative.
11.  The triple  is not ring, since the sum of two odds equal into even number.
2. Basic Properties of Rings
Theorem(2-1): If  be a ring, then
(1) 
(2)  ,    
(3)  
Proof: (1) 

Substitute   in  , we get  
.
Proof: (2) Substitute  in  and by using , we have
 
.
Proof: (3) Substitute  in , we get 



Corollary(2-2): If  be a ring with identity and , then , 
Proof: since , suppose that 
, but  by assumption, thus  
To prove 

Corollary(2-3): If  be a ring, if  has an identity element, then it is a unique.
Proof: let  are two identity elements of , then 
Corollary(2-4): If  are two inverses of   in a ring with identity,   then 
Proof: 
Theorem(2-5): If  be a ring with identity and  be a set of units of , then is a group.
Proof: , since 
Let 



This means  
Since   is associative, then  is associative (since  )
Therefore,  is a group.
3. Subrings, Examples and Properties
Definition(3-1): Let   be a ring and   be a nonempty subset of . If the triple   is itself a ring, then  is said to be a subring of  .
Theorem(3-2): Let   be a ring and  . Then the triple  is a subring of   if and only if 
(1)   (closed under differences),
(2)   (closed under multiplication).
Proof:  let  be a subring of   is a subgroup of 

Since  is a subring of .
 let  is a subgroup of 
Since the operation of addition is a commutative on , 
 the operation of addition is a commutative on 
 is an abelian subgroup of 
Also, similarly the associative and distributed the multiplication on addition are true on   since.
 is a subring of .
Examples(3-3):
(1)  Every ring  has two trivial subrings; for, if  denotes the zero element of the ring , then both  and  are subrings of .
(2) In the ring of integers , the triple  is a subring, while  is not.
(3) Consider  the ring of integers modulo. If , then , whose operation tables are given at the below, is a subring of .
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	



	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	



(4) Let . Then  is a subring of , since for , we get 
,
.
(5) The triple  is a subring of  .
(6)  Let the set, then the triple  is a subring of .
(7)  is a subring of .
(8)  is a subring of .
(9) Let  be a ring and , then  is a subring of .
(10)  is a subring of . We note that , but .
(11) Give example to ring with identity and subring with different identity.
Take  and 
The identity of  is 
The identity of  is 

4. Characteristic of the Ring and Related Concepts
Definition(4-1): Let  be an arbitrary ring. If there exists a positive integer such that for all, then the least positive integer with this property is called the characteristic of the ring. If no such positive integer exists (that is, for all implies ), then we say  has characteristic zero.
Example(4-2): the rings of integers, rational numbers and real numbers are standard examples of characteristic zero.
Example(4-3): the ring  is of characteristic two.
Since 
 for every subset  of .
Theorem(4-4): Let be a ring with identity. Then  has characteristic  if and only if  is the least positive integer for which .
Proof: if the ring  is of characteristic , it follows trivially that  . If, where , then 

For every element . This would mean the characteristic of   is less than , an obvious contradiction. The converse is established in much the same way.
Example(4-5): the characteristic of the  ring  is zero.
Example(4-6): the characteristic of the  ring  is .
Example(4-7): the characteristic of the  ring  is .
5. Ideals and their Properties
Definition(5-1): A subring  of the ring  is an ideal of   if and only if   and  imply both  and .
Definition(5-2): Let  be a ring and  a nonempty subset of . Then  is an ideal of  if and only if 
(1)  imply ,
(2)  and  imply both  and .
Example(5-3): In any ring , the trivial subrings  and  are both ideals.
Remark(5-4): A ring which contains no ideals except these two is said to be simple. Any ideal different from  is a proper.
Example(5-5): The subring  is an ideal of  , the ring of integers modulo.
Example(5-6): For a fixed integer , let  denote the set of all integral multiples of, that is,

The following relations show the triple  to be an ideal of the ring of integers :
,
,  .
Example(5-7): , the ring of even integers  is an ideal of .
Example(5-8): Suppose   is the commutative ring of functions  . The sum  and product  of two functions  are defined as usual, by the equations 
,
.
Define 
.
For functions  and , we have

And also
.
Since both  and   belong to ,  is an ideal of .
Example(5-9): Let  be a ring, then  is a left ideal of , but it is not right ideal of .

Let and 


Therefore,  is a left ideal of  
 is not right ideal of  , since
 and  
But 
Example(5-10): Let  be the set of all functions on , then   is an ideal of  .
Example(5-11): Prove or disprove, the triple  is an ideal of .
Theorem(5-12): If  is a proper ideal of a ring  with identity, then no element of  has a multiplicative inverse; that is, .
Proof: suppose  exists
 (since  is closed under multiplication)
Thus, , but  this is contradiction. ( a proper).
Theorem(5-13): If  is an arbitrary indexed collection of ideals of the ring , then so also is .
Proof: 
Let  and  and 
 and 
Therefore,  is an ideal of .
Note(5-14): Consider  be a ring and. Define the set
.
, since 
Theorem(5-15): The triple  is an ideal of the ring , known as the ideal generated by the set .
Theorem(5-16): If  is a commutative ring with identity and  , then the principle ideal  generated by  is such that .
Theorem(5-17): If   is an ideal of the ring , then  for some nonnegative integer .
Proof: If , the theorem is trivially true, for the zero ideal  is the principal ideal generated by . 
Let , suppose   the least positive integer in 
Thus,  , any integer  where 
Since 
Thus every member of  is a multiple of .
Theorem(5-18): Let  be nonzero element of a principal ideal ring . Then , where  is a least common multiple of .
Proof:  is an ideal of .
But every ideal of  is a principle ideal; 
Since  for some .
So,  is a common multiple of .
Let  any common multiple of , say
If , then 
Therefore,  and  must be a multiple of , thus  is a least common multiple of .
Example(5-19): Consider the principal ideal  and  generated by the integers  and in the ring .Then  , where  is the least common multiple of  and.
6. Quotient Ring and Related Concepts.
Notes(6-1): Let  is an ideal of the ring , then
(1)  ,
(2)   ,
(3)   .
Theorem(6-2): If  is an ideal of the ring , then  is a ring, known as the quotient ring of  by .
The zero element of  is the cose, while .
Example(6-3): In the ring  of integers, consider the principal ideal , where  is a nonnegative integer. The coset of  in  take the form


Example(6-4): The triple  is an ideal of the ring  , then 

is a ring with an identity.
Example(6-5): Let  be a ring and  is an ideal of the ring , then  is a commutative ring with identity.


7. Homomorphisms of Ring.  Examples and Properties
Definition(7-1): Let  and  be two rings and  a function from  into ; in symbols, . Then  is said to be a ring homomorphism from  into  if and only if 


for every pair of elements .
Example(7-2): Let  and  be arbitrary rings and   be the function that maps each element of  onto the zero element of . 
,
.
As with the case of groups, this mapping is called the trivial homomorphism.
Example(7-3): The mapping  defined by  is not a homomorphism from  into , 

but

Example(7-4): Consider , the ring of integers, and , the ring of integers modulo . Define  by taking ; that is, map each integer into the congruence class containing it. Then 
,
,
so that   is a homomorphism mapping.
Example(7-5): Let  be any ring with identity. For each invertible element , the function  given by 

is a homomorphism from   into itself. Indeed, if  , we see that
,
,
Theorem(7-6): Let  be a homomorphism from the ring  into the ring . Then the following hold:
(1)  , where  is the zero element of .
(2)   for all .
(3) The triple  is a subring of  .
(4) .
(5)  for each invertible element .
Proof: 


Proof:  


Theorem(7-7): If  is a  homomorphism from the ring  into the ring , then the triple ker is an ideal of .
Proof: 
, since 
Let 

If .
Thus,ker is an ideal of . 
Example(7-8): Consider an arbitrary ring  with identity element  and the mapping  given by . Then  is a homomorphism from the ring of integers  into the ring :
,
.
Theorem(7-9):  That   for some nonnegative integer .
Definition(7-10): A ring  is embedded in a ring  if there exists some subring  of  such that .
Theorem(7-11): Any ring can be embedded in a ring with identity.
Proof: Let   be an arbitrary ring and

Define 
,
,
The triple   forms a ring. This ring has multiplicative identity, namely the pair  ; for 
,
.
Next, consider the subset  of  consisting of all pairs of the form . Since 

Therefore,   is a subring of  .
The proof  is completed by showing  is isomorphic to the given ring . To this end, define the function  by taking 
.
The function  is a one-to-one mapping of   onto the set .
,
.
Thus, .
8. Fundamental Theorems of Homomorphisms of Rings.
Theorem(8-1): (The first fundamental theorem of homomorphism of ring)

Proof: let  defined by 
To prove that  is well define 



To prove that  is a homomorphism 


Also 


To prove  is an onto
If 

To prove   is an one-to-one 



Example(8-2): Let  be a function defined by .

The operation tables for the quotient ring  are as shown:
	
	
	

	
	
	

	
	
	



	
	
	

	
	
	

	
	
	



Therefore, 
Theorem(8-3): (The second fundamental theorem of homomorphism of ring)
Let  be a ring,  be an ideal of and  be a subring of, then 

Proof: Let  defined by 
To prove that  is a homomorphism

Also 

To prove that  is an onto


By the first theorem, we get 



Therefore, .
Theorem(8-4): Let  be a ring with identity and  be a homomorphism from  into , then
(1)   is an identity of .
(2)   is an inverse  in .
Proof: (1) if 



Thus,  is an identity element of 
Proof: (2) 

Hence,  is an inverse of  in .
Theorem(8-5): (The third fundamental theorem of homomorphism of ring)
If  be two ideals in  with , then  .
Proof: let  defined by 
To show that   is a homomorphism 


    Also


 To prove  
Let 

Let 
Hence, .
9. Properties of Ideals and Quotient Ring by Using Homomorphisms.
Theorem(9-1): Let  be two ideals in a ring , then  is an ideal in a ring .
Proof: 





Therefore,  is an ideal in a ring .
Theorem(9-2): Let  be two ideals in a ring , then  is an ideal in a ring .
Proof: 




Hence,  is an ideal in a ring .
Theorem(9-3): Let  be two ideals in a ring , then  is an ideal in a ring .
Proof: 






Thus,  is an ideal in a ring .
Theorem(9-4): Let  be two ideals in a ring , then  is an ideal in a ring .
Proof:  




Hence,  is an ideal in a ring .
Theorem(9-5): Let  be a commutative ring, then  is an ideal in  contains .
Proof: 



To show 

Example(9-6): Let  be ideals in a ring  with , then

Solution: let 


Also 


Let 





10.  Zero Divisors Elements and Integral Domains.
Definition(10-1): A ring   is said to have divisors of zero if there exist nonzero elements  such that the product .
Theorem(10-2): A ring  is without divisors of zero if and only if the cancellation law holds for multiplication.
Proof: Assume  contains no divisors of zero.
let , then

Since  has no zero divisors,  or 
 suppose that the cancellation law holds and 
If , then  .

This shows  is free of divisors of zero.
Corollary(10-3): Let   be a ring with identity which has no zero divisors. Then the only solutions of the equation  are  and .
Proof: if , with , then .
Definition(10-4): An integral domain is a commutative ring with identity which does not have divisors of zero.
Corollary(10-5): In an integral domain, all the nonzero elements have the same additive order, which is the characteristic of the domain.
Proof: suppose the integral domain  has positive characteristic .
Any  will then possess a finite additive order, with .
But  , since   is free of zero divisors.
Corollary(10-6): The characteristic of an integral domain  is either zero or a prime number.
Proof: let  be of positive characteristic  and assume that  is not a prime.
      with  .
.
    Since  is without zero divisors, either  or  .
    But this is contradiction,   the least positive integer such that .
    Hence, we are led to conclude that the characteristic must be prime.
Example(10-7): Let  be a ring. Then  is a right zero divisor and  is a left zero divisor in .
Solution: 

Example(10-8): The number  is a zero divisor in a ring  and the numbers  are zero divisors in a ring .  (check)
Example(10-9): Let  be a commutative ring with identity and define 


The identity element with   is , and the identity with  is .
Also,  is a zero divisor, since

.
Example(10-10): The triple   is an integral domain, since   is a commutative with identity .
 or  .
Example(10-11): Let  be a ring, where  is a prime number, then  is an integral domain.
Solution: the triple  is a commutative with  identity  .
To show  has no zero divisors.
Let 
But  is a prime number,  or   or  .
Example(10-12):  is not an integral domain, since it is not commutative ring.
Example(10-13): Solve the equation   in a ring .
Solution: 
But, in , we have

Since 

So, 


Hence,  is a set of solution of  in .
Example(10-14): Let  is an integral domain with  and . Show that .
Solution: If .
Let 

Since,  is an integral domain and 


By , we get 

Corollary(10-15): Let  be a ring with identity and  is an invertible, then  is not zero divisor.
Proof: let 

Also,

.
11.  Fields and their properties
Definition(11-1): A ring  is said to be a field provided the pair  forms a commutative group.
Example(11-2): Both  and  are fields. (check)
Example(11-3): The triple   is a field.



Example(11-4): The triple , is a field.  Where 
,
.
The pair  is the multiplicative identity and is the zero element of the ring.
Now, suppose , either  or , so that ; thus


Example(11-5): The field  contains a subring which is isomorphic to the ring of real numbers.

It follows that  via the mapping  defined by 
 (check)
Example(11-6): The triple  is a field.
Let 



 is a multiplicative inverse of  .
Example(11-7): The triple  is a field. (check)
Corollary(11-8): In a field , with , then there exist a unique element  satisfies  .
Proof:  is an abelian group, then 

Example(11-9): The triple  is a field, where are defined by 
 (check)
Theorem(11-10): If  is a field and  with , then either  or  .
Proof: if  , the theorem is already established.
Suppose that and prove that .

.
12.  More Results of Fields and Integral Domains.
Theorem(12-1): Any finite integral domain  is a field.
Proof: suppose and   
 are all distinct, for if   , then   by the cancellation law. So each element of  is of  the form   . In particular, ; since multiplication is commutative, we have . This shows that every nonzero element of  is invertible, so  is a field.
Example(12-2): Prove or disprove, every integral domain is a field.(check)
Example(12-3): Prove or disprove, every ring is a field.(check)
Example(12-4): Prove or disprove, every ring is an integral domain.(check)
Theorem(12-5): The ring  of integers modulo  is a field if and only if   is a prime number.
Proof: We first show that if  is not prime, then  is not a field.
Thus assume , where  and  .
,
Both . This means that  is not an integral domain, and hence not a field.
Suppose that  is a prime number. To show that  is a field.
Let , where  . 
,
Showing the congruence class  to be the multiplicative inverse of .
Therefore,   is a field.
Theorem(12-6): Let  be a commutative ring with identity. Then  is a field if and only if  has no nontrivial ideals.
Proof:  Assume first that   is a field. We wish to show that the trivial ideals   and   are its only ideals.
Let  be nontrivial ideal of and  
, since  is a field  
But, this is contradiction.
 suppose that   has no nontrivial ideals.
Let , consider the principal idea  generated by:

Now  cannot be the zero ideal, since , with .
If : that is, , since 

Hence each nonzero element of  has a multiplicative inverse in.
Theorem(12-7): Let   be a homomorphism from the field  onto the field  . Then either  is the trivial homomorphism or else  and  are isomorphic.
Proof: since  is an ideal of  , either  or .
If  is a one-to-one, in which case   via  .
If  , then each element of   must map  onto zero; that is,  is the trivial homomorphism.
Definition(12-8): By a subfield of the field  is meant any subring  of  which is itself a field.
Example(12-9): The ring  is a subfield of the field .
Theorem(12-10): The triple  is a subfield of   if and  only if  the following hold:
(1)   is a nonempty subset of   with at least one nonzero element.
(2)  implies  .
(3) , where , implies .
Theorem(12-11): Let the integral domain  be a subring of the field  . If the set  is defined by 
,
then the triple   forms a subfield of  such that . In fact, is the smallest subfield containing .
Proof: if   with 
Since 
Let , we have 


If ,

Note(12-12): Let  be an integral domain and  the set of ordered pairs,
.

Theorem(12-13): The relation  is an equivalence relation in .(check 1,2)
That is to say
(1) ,
(2)  If , then ,
(3)  If  and  , then .
The least obvious statement is (3). In this case, the hypothesis  and   implies that
.
Multiplying the first of these equations by  and the second by , we obtain
,
and, from the commutativity of multiplication, . Since , this factor may be cancelled to yield . But then .
Note(12-14): We label those elements which are equivalent to the pair  by the symbol ; in other words,

.
,
.
let  and . From the equations

it follows that 



Thus, by the definition of equality of classes,
,
Proving addition to be well-defined. In much the same way, one can show that 
.
Lemma(12-15): The triple   is a field, generally known as the field of quotients  of  the integral domain.
Proof: the multiplicative identity , where  is any nonzero element is

with  in .
 as the zero element while  is the negative of .
To show  has an inverse under multiplication.
.
Since ,  is the identity element, so that .
Theorem(12-16): The integral domain  can be embedded in its field of quotients .
Proof: Consider the subset  of   consisting of all element of the form ,
Where  is the multiplicative identity of :

Let  be the onto mapping defined by 

Since  implies  or  , we see that  is a one-to-one function.
,
.
Therefore, .
Note(12-17): Any member  of   can be written in the form 
.
Note(12-18): It should also be observed that for any , we have
.
Note(12-19): The field of quotients constructed from the integral domain  is, of course, the rational number field .
Definition(12-20): A field which does not have any proper subfields is called a prime field.
Example(12-21): The field of rational numbers, , is a prime field.
To see this, suppose  is a subfield of    and let .
Since  is a subfield, it must contain the product .
: in other words,  contains all the integers. It follows then that every rational number , also belongs to , so that .
Example(12-22): For every prime , the field  of integers modulo  is a prime field. The reasoning here depends on the fact that the additive group  of  is a finite group of prime order, and therefore has no nontrivial subgroups.
Theorem(12-23): Any prime field  is isomorphic either to , the field of rational numbers, or to one of the fields , where  is a prime number.
Proof: let  be the identity element of  and define the mapping  by 

Then  is a homomorphism from  onto the subring  consisting of integral multiples of , we see that
.
But the triple  is an ideal of   a principal  ideal ring,  for some nonnegative integer . if , then  must in fact be a prime. Suppose where . Since ,
,
yielding the contradiction  that the field   has divisors of zero. 
Therefore,  is the characteristic of  and as such must be prime. So
(1)   for some prime , or
(2)  .
Suppose first that   the subring  must itself be a field. But contains no proper subfield.  and .
Next, , the subring  is an integral domain, but not a field. The hypothesis    is a prime field, then implies 

.
The fields  and   are isomorphic under the mapping .
Corollary(12-24): Every field contains a subfield which isomorphic either to the field    or to one of the fields  ,  a prime.

13.  Maximal Ideals. Examples, Properties and Results.
Definition(13-1): An ideal  of the ring   is a maximal ideal provided  and whenever  is an ideal of  with  , then .
Theorem(13-2): Let  be the ring of integers and . Then the principal ideal  is maximal if and only if   is a prime number.
Proof:  suppose  is a maximal ideal of  . If the integer  is not prime, then, where . This implies the ideals   and  are such that

contrary  to the maximality of 
 assume that  is prime.
If the ideal  is not maximal in , then either  or else there exists some proper ideal  with . The first case is immediately ruled out by the fact that  is not a multiple of a prime number.
The alternative possibility  means  for some integer  ; this also is untenable, since  is prime, not composite. We therefore conclude that  is a maximal ideal.
Example(13-3): Let  denote the collection of all functions . For two such functions  and , we have 

.
Then  is a commutative ring with identity. Consider 
.
The triple  forms an ideal of ; we observe that it is a maximal ideal.
Zorns Lemma(13-4): Let  be a nonempty family of subsets of some fixed set with the property that for each chain  in , the union  also belongs to . Then  contains a set which is maximal in the sense that it is not properly contained in any member of.
Theorem(13-5): (Krull-Zorn). In a commutative ring with identity, each proper ideal is contained in a maximal ideal.
Proof: let  be any proper ideal of . Define 
is a proper ideal of.
, since . Let a chain  in . Notice that , since  for any .
Let  and  for which 
The collection  forms a chain, either  or else ; say, for definiteness,  . But  is an ideal, so . For the same reason , . This shows the triple  to be a proper ideal of the ring . , hence .
Thus, on the basis of Zorns Lemma,  contains a maximal element . The triple  is a proper ideal of the ring  with.  is a maximal ideal. To see this, suppose  is any ideal of  for which . Since  is a maximal element of , the set , the ideal  must be improper, which implies . We therefore conclude  is a maximal ideal of .
Corollary(13-6): An element is invertible if and only if it belongs to no maximal ideal.
Theorem(13-7): In a ring  having exactly one maximal ideal , the only idempotent elements are  and .
Proof: assume the theorem is false; that is, suppose there exists an idempotent  with . The relation  implies , so that  and  are zero divisors. Hence, neither the element  nor  is invertible in  . But this means the principle ideals  and  are both proper ideals of the ring .  As such, they must be contained in :  and , both  and  lie in , 

This leads at once to the contradiction .
Theorem(13-8): Let  be a proper ideal of the ring . Then  is a maximal ideal if and only if the quotient ring  is a field.
Proof:  let  be a maximal ideal of . Since  is a commutative ring with identity, the quotient ring  also has these properties. If , then . The ideal  generated by  and  must be the whole ring :
.
The identity element , 
,
. Hence  is a field.
 suppose  is a field and  is any ideal of  such that  . Since  is a proper subset of , there exists an element with . The coset .  is a field, 

for some coset  .  . But  .
Example(13-9): Consider the ring of even integers , a commutative ring without identity. In this ring, the principle ideal  generated by the integer  is a maximal ideal.
Solution: if  is any element not in , then  is an even integer not divisible by ; the greatest common divisor of  and  must be . We have
,
This reasoning shows that there is no ideal of  contained between  and .
Now note that in ,
.
The ring  therefore has divisors of zero and cannot be a field.
14. Prime Ideals. Examples, Properties and Results.
Definition(14-1): An ideal  of the ring  is a prime ideal if for all  implies either  or  .
Example(14-2): The prime ideals of the ring  are precisely the ideals , where  is a prime number, together with the trivial ideals  and  .
Example(14-3): A commutative ring with identity  is an integral domain if and only if the zero ideal  is a prime ideal.
Theorem(14-4): Let  be a proper ideal of the ring . Then  is a prime ideal if and only if the quotient ring  is an integral domain.
Proof:  take  is a prime ideal. Since  is a commutative ring with identity, so is the quotient ring . Assume that 

. Since  is a prime ideal,  or  . But this means either  or  , hence  is without zero divisors.
 suppose  is an integral domain and .
.
By hypothesis,  contains no divisors of zero, so that either   or  . So   or   , therefore  is a prime ideal.
Theorem(14-5): In a commutative ring with identity, every maximal ideal is a prime ideal.
Proof: Assume is a maximal ideal of the ring  and that  with .  is a maximal implies that . Hence there exist elements  for which 
.
Since both  and  are in , we conclude 
,
from  which it is clear that  is a prime ideal.
Example(14-6): The ring , where  forms a maximal ideal which is not prime.
Theorem(14-7): Let  be a principal ideal domain. A (nontrivial) ideal of  is prime if and only if it is a maximal ideal.
Proof:  suppose  is any ideal with . Since  is a principal ideal ring, there exists  for which . Now , hence . But  is a prime ideal, so either  or  .  leads to the contradiction . Therefore , which implies , or . Since  and  is an integral domain, we have . This means , or . Since no ideal lies between  and , we conclude that  is a maximal ideal.
 from theorem (14-5).
Corollary(14-8): A nontrivial ideal of the ring  is prime if and only if it is maximal.
Definition(14-9): A nonzero element  of the ring  is called a prime element of  if  is not invertible and in every factorization  with , either  or  is invertible.
Theorem(14-10): Let  be a principal ideal domain. The ideal  is a prime (maximal) ideal of  if and only if  is a prime element of .
Proof:  suppose  is a prime element of  and  is any ideal for which . By hypothesis,  is a principal ideal ring, so there is  with . As  for some . Since  is a prime element that either  or   is invertible. , which implies , an obvious contradiction. The element  must be invertible, so that . This argument shows that  is a maximal ideal of  and prime.
 Let  be a prime ideal of . Assume that  is not a prime element of . Then  where , and neither  nor  is invertible. Now if , and . From the cancellation law, . But this contradiction that  is invertible. By the same reasoning, if  lies in , then , with ,  is a prime ideal. Hence our supposition is false and  must be a prime element of .
Definition(14-11): The radical of a ring , denoted by rad , is the set 
rad  is a maximal ideal of.
If  rad , then we say  is a ring without radical or is a  semisimple ring.
Example(14-12): The ring of integers  is a semisimple ring.
Solution: the maximal ideals of  are the principal ideals , where  is a prime; that is, 
rad a prime number.
Since no nonzero integer is divisible by every prime, rad .
Theorem(14-13): Let   be an ideal of the ring. Then the set  if and only if each element of the coset  has an inverse in .
Proof:  assume that  and that there is , for which  is not invertible. The element  must belong to some maximal ideal  of the ring . Since , , and therefore . But this means , which is clearly impssible.
 suppose each element of the coset  has an inverse in , but . There exist a maximal ideal  of  with . If , .

Let , , so that  possesses an inverse. The conclusion is untenable, since no proper ideal contains an invertible element.
Theorem(14-14): In any ring  an element  if and only if  has an inverse for each .
Corollary(14-15): An element  is invertible in the ring  if and only if  the coset  is invertible in the quotient ring .
Proof: assume the coset  has an inverse in , so that 

for some . Then . With , to conclude that  is invertible: this means  has an inverse.
 (check)
Corollary(14-16): The only idempotent in the radical of the ring  is .
Proof: let rad with . Taking  in the preceding theorem, we see that  has an inverse in ; say


Corollary(14-17): Let  denote the set of all noninvertible elements of . Then the triple  is an ideal of the ring  if and only if  .
Proof:   clearly holds. Suppose .  is an ideal of the ring , then . , for otherwise

So must be invertible, . This shows , then .
 is clear.
Theorem(14-18): For any ring , the quotient ring  is semisimple.
Proof: suppose 

is invertible in  for each . There exists a coset , such that



has an inverse . But

so that   is invertible in . .

15. Polynomials Rings. Examples and Basic Properties.
Definition(15-1): For an arbitrary ring . The set of polynomials over   may be regarded as the set 
poly  
 and 
.

,
Where 

Theorem(15-2): The triple  forms a ring, known as the ring of polynomials over . Furthermore, the ring  is commutative with identity if and only if  is a commutative ring with identity.
Definition(15-3): If  is a nonzero polynomial in (the set of ), we call the coefficient  the leading coefficient of  and the integer , the degree of the polynomial.
Theorem(15-4): Let  be an integral domain and  be two nonzero elements of . Then
(1) [bookmark: _GoBack]deg degdeg, and
(2) either  or  deg  degdeg.
Example(15-5): Consider . Taking


we then have  , so that 
deg  .
Theorem(15-6): (Division Algorithm). Let  be a commutative ring with identity and  be polynomials in, with the leading coefficient of   an invertible element. Then there exist unique polynomials  such that 
,
where either   or  deg    deg  .
Theorem(15-7): (Remainder Theorem). Let  be a commutative ring with identity. If  and , then there is a unique polynomial  in  such that .
Proof: Applying the division algorithm to  and , we obtain
,
where  or deg  deg . It follows in either case that  is a constant polynomial . Substituting  for , we have 
.
Corollary(15-8): (Factorization Theorem). The polynomial  is divisible by  if and only if  is a root of .
Proof: since  if and only if .
Theorem(15-9): Let  be an integral domain and  be a nonzero polynomial of degree . Then  has at most  distinct roots in .
Proof: when deg, the result is trivial, since  cannot have any roots. If deg, say , then  has at most one root; indeed, if  is invertible,  is only root of . Now, suppose the theorem is true for all polynomials of degree , and let deg . If  has a root , then
,
where the polynomial  has degree . Any root  of  distinct from  must be a root of , for, by substitution

and, since  has no zero divisors, .  has at most  distinct roots. As the only roots of  are  and those of  cannot have more than  distinct roots in .
Corollary(15-10): Let  and  be nonzero polynomials of degree  over the integral domain . If there exist  distinct elements  for which, then .
Proof: the polynomial  is such that deg   and has at least  distinct roots in . This is impossible unless , or .
Example(15-11): Consider the polynomial , where  is a prime number. Since the nonzero elements of  form a cyclic group, under multiplication, of order , we must have  or  for every. But the last equation clearly holds when , so that every element of is a root of the polynomial .
Theorem(15-12): Let  be the field of complex numbers. If  is a polynomial of positive degree, then  has at least one root in .
Corollary(15-13): If  is a polynomial of degree , then  can be expressed in  as a product of  (not necessarily distinct) linear factors.
Theorem(15-14): If  is a field, then the ring  is a principal ideal domain.
Proof:  is an integral domain. To see that any ideal  of  is principal. If , the result is trivially true, since. Otherwise, there is some nonzero polynomial  of lowest degree in . For each polynomial , we may use the Division Algorithm to write , where either  or deg  deg . Now,  lies in ; if the degree of  were less than that of , a contradiction to the choice of . and ; hence, . But the opposite inclusion clearly holds, so that .
Corollary(15-15):  A nontrivial ideal of  is maximal if and only if it is a prime ideal.
Definition(15-16): A nonconstant polynomial   is said to be irreducible in  if and only if  cannot be expressed as the product of two polynomials of positive degree. Otherwise,  is reducible in .
Example(15-17): Any linear polynomial , is irreducible in . Indeed, since the degree of a product of two nonzero polynomials  is the sum of the degree of the factors, it follows that a representation 
,
with   deg  deg   is impossible. Thus, every reducible polynomial has degree at least .
Example(15-18): The polynomial  is irreducible in , where  is the field of rational numbers. Otherwise, we have

,
where the coefficients . Accordingly,
,
 . Substituting in the relation , we obtain

Thus, , or  , which is impossible because  is not a rational number. 
Theorem(15-19): If  is a field, the following statements are equivalent:
(1)  is an irreducible polynomial in .
(2) The principal ideal  is a maximal (prime) ideal of .
(3) The quotient ring  is a field.
Theorem(15-20): (Unique Factorization Theorem). Each polynomial  of positive degree is the product of a nonzero element of  and irreducible monic polynomial of .
Corollary(15-21): If  is of positive degree, then  can be factored into linear and irreducible quadratic factors.
Theorem(15-22): (Kronecker). If  is an irreducible polynomial in , then there is an extension field of  in which  has a root.
Corollary(15-23): If the polynomial  is of positive degree, then there exists an extension field of  containing a root of .
Example(15-24): Consider , the field of integers modulo , and the polynomial . Since neither of the elements  or is a root of  is irreducible in . Thus, the existence of an extension of , specifically the field

in which the given polynomial has a root. Denoting this root by , the discussion above tells us that 

,
where, of course,  .




with solution ; therefore, .
Finally, note that  factors completely into linear factors in  and has the three roots , and :
.
Example(15-25): The quadratic polynomial  is irreducible in . For, If  were reducible, it would be of the form 
,
where . It follows at once that  and 
therefore , and 

or, , which is impossible.
The extension field  is described by 




Theorem(15-26): If  is a polynomial of positive degree, then there exists an extension field  of  in which  factors completely into linear polynomials.
Corollary(15-27): Let  with deg  . Then there exists an extension of  in which  has  roots.
Example(15-28): Let us consider the polynomial  over the field  of rational numbers. 
We first extend  to the field , where 

and obtain the factorization 


 does not factor completely, since the polynomial  is irreducible in . For, suppose  has a root in , say , with . Substituting, we find that 


This equation implies that either  or ; but neither  nor  can be zero, since otherwise we would have   or  , which is impossible. Thus  remains irreducible in .
In order to factor into linear factors, it is necessary to extend the coefficient field further. We therefore constant the extension , where 

The elements of  may be expressed in the form 



Observe that the four roots all lie in .

