Cloud Physics Lab LAB 2: Thermodynamics Properties of Air

Introduction:

You will be required to calculate saturated water vapor over water and ice and determine Lifted Condensation Level (LCL) using Clausius-Clapeyron equation.

Objective:

- a) Calculate and plot saturated water vapor over water and ice using Clausius-Clapeyron Equation
- b) Calculate the LCL using Clausius-Clapeyron Equation for different temperatures and mixing ratios.

Theory:

The Clausius-Clapeyron equation gives the saturation vapor pressure over a plane surface of water as a function of temperature:

$$e_{s} = e_{so} \exp\left[\frac{L_{\nu}}{R_{\nu}}\left(\frac{1}{T_{o}} - \frac{1}{T}\right)\right]$$
(1)

where:

es: is saturation water vapor pressure over water,

*e*_{so}: 6.11 hPa

 $T_o = 273.15 \text{ K}$

T: is a temperature,

 L_{ν} : is latent heat of vaporization (2.501×10⁶ J/kg),

 R_v : is water vapor gas constant (461.5 J kg⁻¹ K⁻¹).

The Clausius-Clapeyron equation also gives the saturation vapor pressure over ice as a function of temperature:

$$e_{s_i} = e_{so} \exp\left[\frac{L_s}{R_v} \left(\frac{1}{T_o} - \frac{1}{T}\right)\right]$$
(2)

where:

esi: is saturation water vapor pressure over ice,

*e*_{so}: 6.11 hPa

 $T_o = 273.15 \text{ K}$

T: is a temperature,

 L_s : is the specific latent heat of sublimation (2.834×10⁶ J/kg),

 R_v : is water vapor gas constant (461.5 J kg⁻¹ K⁻¹).

LCL

The LCL is the pressure level a parcel of air reaches saturation by lifting the parcel from a particular pressure level. A rising parcel of air cools, thus the Relative Humidity (RH) increases inside a rising unsaturated parcel. Once the RH first reaches 100% in the parcel, the LCL occurs there.

Materials and Procedures:

- 1. Run the Matlab script **Lab2a.m** to calculate and plot the saturation water vapor over water as a function of temperature.
- 2. Run the Matlab script **Lab2b.m** to calculate and plot the saturation water vapor over water and ice as a function of temperature.
- 3. Run the Matlab script **Lab2c.m** to determine the LCL for the following conditions. Assume surface pressure is 1000 hPa:

Surface air temperature (oC)	Surface mixing ratio (kg/kg)	LCL (m)
20	0.005	
	0.007	
	0.010	
25	0.005	
	0.007	
	0.010	

Note: The mixing ratio is defined as the ratio of the mass of water vapor to the mass of dry air.

Analysis and Conclusions:

- 1. Explain the profile of the saturated water vapor over water for temperature ranges of -30 to +40 $^{\circ}$ C (fig 1).
- 2. Explain the profile of the saturated water vapor over water and ice for temperature ranges of -30 to 0 °C (fig 2).
- 3. Explain how LCL varies with surface air temperature and surface mixing ratio.

Questions:

- 1. What did you learn about saturation vapor pressure by completing the activity?
- 2. Why saturated vapor pressure over water is higher than saturated vapor pressure over ice at the same temperature.
- 3. Why LCL is important?