Equivalent weight (Eq.wt):- also known as gram equivalent or equivalent mass, is the formula weight divided by the number of reacting units. الوزن المكافئ (Eq.wt): المعروف أيضًا بالجرام المكافئ أو الكتلة المكافئة، هو صيغة الوزن مقسومة على عدد الوحدات المتفاعلة

Equivalent weight (Eq.wt) =
$$\frac{\text{formula weight}}{\text{no. of reacting units}}$$

Reacting units:

- (H⁺ or OH-) for acid and base
- Number of electrons for oxidation-reduction reaction
- Number of cations or anions multiplied by charge of ion.

$$(Eq. wt)(\frac{g}{Eq}) \ for \ acid - base \ reaction = \frac{formula \ weight \ (F. \ wt)}{(No. \ of \ H^+ \ or \ OH^-) react}$$

$$(Eq. \ wt)(\frac{g}{Eq}) \ for \ redox \ reaction = \frac{formula \ weight \ (F. \ wt)}{No. \ of \ electron}$$

$$(Eq. \ wt)(\frac{g}{Eq}) \ for \ salt \ reaction = \frac{formula \ weight \ (F. \ wt)}{No. \ of \ (cation \ or \ anion) \ * \ charge \ of \ ion}$$

Example (1):-Calculate the equivalent weight of the following substances: (a) NH₃, (b) H₂SO₄, (c) H₂C₂O₄ (in reaction with NaOH), (d) KMnO₄ [Mn⁷⁺ is reduced to Mn^{2+}], and (e) $Al_2(SO_4)_3$

Solution:

(a) Base NH₃

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

Eq wt =
$$\frac{\text{Mwt}}{\text{No. of H}^+ \text{ or OH}^-} = \frac{17.03}{1} = 17.03 \frac{\text{g}}{\text{Eq.}}$$

(b) Strong acid H₂SO₄

$$H_2SO_4 \longrightarrow 2H^+ + SO_4^{-2}$$

Eq wt =
$$\frac{98}{2}$$
 = 49 $\frac{g}{Eq}$.

(C) Weak acid H₂C₂O₄ (in reaction with NaOH)

$$H_2C_2O_4 + NaOH \longrightarrow Na_2C_2O_4 + 2H_2O$$

Eq wt =
$$\frac{90.04}{2}$$
 = 45.02 $\frac{g}{Eq}$.

(d) $KMnO_4$ $[Mn^{7+}$ is reduced to $Mn^{2+}]$

$$MnO_4^- + 8H^+ + 5e = Mn^{+2} + 4H_2O$$

Eq wt =
$$\frac{\text{M. wt}}{\text{No. of electron}} = \frac{158.04}{5} = 31.608 \frac{\text{g}}{\text{Eq.}}$$

(e) Salt Al₂(SO₄)₃

$$Al_2(SO_4)_3 \longrightarrow 2Al_3^+ + 3SO_4^{2-}$$

Eq wt =
$$\frac{\text{formula weight (F. wt)}}{\text{No. of (cation or anion)} * \text{charge of ion}} = \frac{342}{2*3} = 57 \frac{\text{g}}{\text{Eq.}}$$

Homework: Example (2):-Calculate the equivalent weight of the following substances: (a) Na2CO3, (b) Ba(OH)2.

Analytical Chemistry Lecture 3

Dr. Ruba Fahmi Abbas

Normality (N): Normal concentration: Number of equivalent solute in solution volume in litre.

التركيز النورمالي (العيارية): وهي صيغة اخرى من صيغ التركيز: هو عدد الأوزان المكافئة للمذاب في واحد لتر من المحلول

عدد المكافئات No. of Eq= $\frac{wt}{Eq.wt}$
الوزن المكافيء $\mathbf{Eq.wt} = rac{Mwt}{n}$
$N = rac{ ext{Oc.of equivalent(Eq)}}{ ext{Solution Volumn (L)}}$
No. of Eq. $N \times V(L)$
No. of Eq= N ×V(L) $N = \frac{wt}{Eq. wt} \times \frac{1}{V(L)}$
$N = \frac{1}{Fa \text{ wt}} \times \frac{1}{V(I)}$
وحدات حجم مل
No of aguivalent (mag)
N —
Solution Volumn (ml)
No. of meq= $N \times V(mI)$
No. of meq= N ×V(ml) $N = \frac{wt}{Eq. wt} \times \frac{1000}{V (mL)}$
$N = (\frac{Eq.}{L}) = (\frac{meq.}{mL})$
قانون تحويل نورمالية الى مولارية وبالعكس N=nM

ملاحظات مفيدة بالحل:

1- الحوامض 3 انواع هي

- $_{\bullet}$ الحوامض المعدنية (تكون $_{+}^{+}$ بالبداية) مثل $_{+}^{+}$ و $_{+}^{+}$
 - $CH_3COO_{\mathbf{H}}$ الحوامض العضوية (تكون H^+ بالإخير) مثل
 - الحوامض العضوية متعدد البروتون مثل حامض الاوكز اليك

CH2-COOH CH2-COOH

 $Bi(OH)_2$, $Mg(OH)_2$, NaOH مثل OH^- مثل عد تنتهی دائما ب 3 - الاملاح: الأملاح تتكون من أيونات موجبة (كاتيونات) على اليسار وأيونات سالبة (أنيونات) على اليمين مثال NaCl (الصوديوم على اليسار ايون موجب والكلور على اليمين ايون سالب)

4- في معادلات الاكسدة والاختزال يجب ان يتم موازنه المعادلة ثم ايجاد عدد الالكترونات المفقودة او

Example(3):-Calculate the normality of the solutions containing the following: (a) 5.300gm/L Na₂CO₃ (when the CO₃⁻² reacts with two protons), (b) 5.267 gm/L K₂Cr₂O₇ (the Cr⁶⁺ is reduced to Cr³⁺).

Solution:(a)

M.wt Na₂CO₃ =
$$(23*2)+12+(16*3)=106\frac{g}{mol}$$

$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^-$$

$$Eq. wt = \frac{formula \ weight \ (F. \ wt)}{No. \ of \ (cation \ or \ anion) \ * \ charge \ of \ ion}$$

Eq. wt =
$$\frac{106}{2*1}$$
 = 53

$$N = \frac{wt}{Eq. wt} \times \frac{1}{V(L)}$$

نقوم بترتيب القانون لان اعطى بالسؤال الوزن بوحدات 5.300 g/L

$$N = \frac{\text{wt}(g)}{V(L)} \times \frac{1}{Eq. \text{ wt}}$$

$$N = 5.3 \frac{g}{L} \times \frac{1}{53} = 0.10 \text{ Eq/L}$$

(b) M.wt
$$K_2Cr_2O_7 = (39*2) + (5282) + (16*7) = 294 \frac{g}{mol}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$(Eq.\,wt)(\frac{g}{Eq})\,\,for\,\,redox\,\,\,reaction = \frac{formula\,\,weight\,(F.\,wt)}{No.\,of\,\,electron}$$

Eq. wt =
$$\frac{294}{6}$$
 = 49

$$N = \frac{wt}{Eq. wt} \times \frac{1}{V(L)}$$

نقوم بترتيب القانون لان اعطى بالسؤال الوزن بوحدات 5.267 gm/L

$$N = \frac{wt}{V(L)} \times \frac{1}{Eq. wt}$$

$$N = 5.267 \frac{g}{L} \times \frac{1}{49} = 0.1074 \text{ Eq/L}$$

Example (4):-How many millilitres of a 0.25M solution of H₂SO₄ will react with 10mL of a 0.25N solution of NaOH.

Solution:

$$N = nM$$
 (n = No. of equivalent, H^+ , OH^- , or electron)

$$H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$$

$$N_{H_2SO_4} = 2 \times 0.25 = 0.5 N$$

$$h_2SO_4 + 2NaOH$$
 \longrightarrow $2H_2O + Na_2SO_4$ \longrightarrow $Meq H_2SO_4 = Meq NaOH$ $(N \times V)_{H_2SO_4} = (N \times V)_{NaOH}$ $(0.5 \times V) H_2SO_4 = (0.25 \times 10 \text{ mL}) NaOH$

Example(5):-A solution of sodium carbonate is prepared by dissolving 0.212 gm Na₂CO₃ and diluting to 100mL. Calculate the normality of the solution (a) if it is used as a monoacidic base, and (b) if it is used as a diacidic base.

 $V_{H_2SO_4} = 5.0 \text{ mL}$

Solution:(a)

M.wt Na₂CO₃ = (23*2)+ 12+(16*3)=
$$106 \frac{g}{mol}$$

$$N = \frac{wt}{Eq. wt} \times \frac{1000}{V (mL)} = \frac{0.212}{\frac{106.0}{1}} \times \frac{1000}{100} = 0.020 \text{ meq/mL}$$
(b)

$$N = \frac{0.212}{\frac{106.0}{2}} \times \frac{1000}{100} = 0.040 \text{ meq/mL}$$

Example(6):-Iodine (I_2) is an oxidizing agent that in reactions with reducing agent is reduced to iodide (I). How many grams I₂ would you weigh out to prepare 100mL of a 0.10N I₂ solution?

Solution : (M.Wt I2= 254 g/mol)

$$I_2 + 2e \rightarrow 2I^-$$

$$N = \frac{wt}{Eq.wt} \times \frac{1000}{V (mL)}$$
 0. $1 = \frac{wt}{\frac{254}{2}} \times \frac{1000}{100}$

$$wt = 1.27g$$

Analytical Chemistry Lecture 3 Dr. Ruba Fahmi Abbas

Example (7):-Calculate the normality of a solution of 0.25 g/L $H_2C_2O_4$, both as an acid and as a reducing agent.(M.wt $H_2C_2O_{4=}$ 90 g/mol) *Solution:*

$$H_2C_2O_4 \to 2CO_2 + H_2O$$

$$N = \frac{wt}{Eq. wt} \times \frac{1}{V(L)}$$

$$0.25~{
m g/L}$$
 نقوم بترتیب القانون لان اعظی بالسؤال الوزن بوحدات $N = {{
m wt(g)} \over {
m V(L)}} imes {1 \over {
m Eg.~wt}}$

$$N = 0.25 \frac{g}{L} \times \frac{1}{\frac{90}{2}} = 0.00555 \text{ meq./mL}$$

Example(8):-How many milliequivalents (meq) are involved in 43.50 mL of 0.1379N K₂Cr₂O₇?

Solution:

no. of milliequivalents = $N \times V$

$$meq = N \times V(ml)$$

$$= 0.1379 \frac{\text{meq.}}{\text{mL}} \times 43.50 \text{ mL}$$

Example (9): What is normality of 0.3 M H₃PO₄ when it undergoes the following reaction?

$$H_3PO_4 + 2OH^- \longrightarrow HPO_4^{2^-} + 2H_2O$$

Solution:

Normality = molarity x 2 = 0.3 x 2 = 0.6 N

Homework: What is normality of 0.3 M H₃PO₄?

Solution:

$$H_3PO_4 \longrightarrow 3H^+ + PO_4^{-3}$$

Normality = molarity x = 0.3 x = 0.9 N

Example (10): Calculate the number of $\frac{1}{1}$ mg present in 1 ml of 0.3 N H₂SO₄ (Mwt = 98 g/mol) solution.

Solution:

$$H_{2}SO_{4} \longrightarrow 2H^{+} + SO_{4}^{2-}$$

$$Eq \text{ wt} = \frac{98}{2} = 49 \frac{g}{Eq.}$$

$$N = \frac{\text{wt}}{Eq. \text{ wt}} \times \frac{1000}{V \text{ (mL)}}$$

$$0.3 = \frac{\text{wt}}{49} \times \frac{1000}{1} = 0.0147 \text{ g}$$

$$(g=1000 \text{ mg})$$

$$wt= 0.0147 *1000=14.7 \text{ mg}$$

Exercise

- 1. Calculate the normality of the solution obtained by dissolving 0.321 g of the salt sodium carbonate (Na_2CO_3) in 250 mL water. (Assuming the salt solution is being used in a complete neutralisation by a strong acid).
- 2. What is the normality of a- 0.138 M NaOH, b-0.052 M H_3PO_4 and c-0.34 M $Ca_3(PO_4)_2$?
- **3.** Determine the normality for each of the following solutions:
 - 0.44 mol of CoCl₂ in 0.654 L of solution

Analytical Chemistry Lecture 3 Dr. Ruba Fahmi Abbas

- b. 0.87 g of phosphoric acid, H₃PO₄, in 1.00 L of solution (dibasic reaction)
- c. 0.23 g of calcium hydroxide, Ca(OH)₂, in 48.00 mL of solution
- d. 9 kg of Na₂SO₄·10H₂O in 15.34 L of solution
- **4.** In the following reaction, calculate and find the normality when it is $1.0 \text{ M H}_3\text{PO}_4$: $\text{H}_3\text{AsO}_4 + 2\text{NaOH} \rightarrow \text{Na}_2\text{HASO}_4 + 2\text{H}_2\text{O}$
- 5. What is the molar concentration of aluminium in a 3.0 N solution of aluminium sulfate $(Al_2(SO_4)_3)$?
- **6.** What volume of a 0.20 N of K_2SO_4 solution contains 57 g of K_2SO_4 ?