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Atmospheric Thermodynamics 

Lecture 5: Vertical Thermodynamic Structure of the Atmosphere 

5.1 The Basic Change of Pressure and Temperature with Altitude  

- In atmospheric physics, we deal with cloud formation and precipitation for 

which moist air has to ascent, cool and condense to form clouds. Hence 

vertical movement of moist air is very much essential for the cloud formation. 

- Vertical change of temperature determine stability and mixing of air 

pollutants. 

- As altitude increases, the amount of gas molecules in the air decreases- the air 

becomes less dense than air nearer to sea level. Hence, the air pressure and 

density decreases with height.  

- As altitude increases, temperature decreases. Various factors are responsible 

for this, including air pressure and water-vapor content. Every 100 meters, the 

temperature drops by an average of 0.65°C. If the air is very dry, such as in 

an area of high pressure, the air can cool by almost 1°C per 100 meters. 

 

5.2 The Standard Atmosphere 

 Air is ideal dry gas. 

 The physical constants are: 

- Mean Sea Level (MSL) of mean molecular weight is 28.966 kg mol-1 

- MSL variables are: atmospheric pressure P0=1013.25 mb, air temperature 

T0=288.15 K , air density 𝜌 = 1.25 𝑘𝑔 𝑚−3 

- Universal gas constant     𝑅 = 8.314 𝐽 𝑚𝑜𝑙−1𝐾−1  
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5.3 Hydrostatic Equilibrium  

Atmospheric air pressure at any height in the atmosphere is due to the force per unit 

area exerted by the weight of all of the air lying above that height. Consequently, 

atmospheric pressure decreases with increasing height above the ground. 

Newton’s law requires that the upward force acting on thin a layer of air from the 

decrease of pressure with height is generally closely balanced by the downward force 

due gravity (as in the figure). The hydrostatic equation is then: 

𝜕𝑝

𝜕𝑧
= −𝑔𝜌         (5.1) 

Typically, deviations from the hydrostatic balance occur locally, e.g. in updrafts and 

downdrafts or when the air hits a small obstacle. In contrast to the hydrostatic 

balance, then an air particle undergoes acceleration: 

𝑑𝑤

𝑑𝑡
= −

1

𝜌

𝑑𝑝

𝑑𝑧
− 𝑔        (5.2) 

The atmosphere is in hydrostatic balance essentially everywhere except in core 

regions of significant storms such as hurricanes and thunderstorms. 

another expression of (5.1) is: 

𝑑𝑃 + 𝜌 𝑑𝑧 𝑔 = 0             (5.3) 

The equation above is the desired basic equation that can be used for obtaining the 

pressure at any height. 
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 For incompressible fluids, density is independent of pressure. Integrating 

the Equation above, we get 

𝑑𝑃 + 𝜌 𝑑𝑧 𝑔 = 0              

∫ 𝑑𝑃 + 𝜌 𝑔 ∫ 𝑑𝑧 = 0              

𝑃 + 𝑧 𝜌𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡             (5.4)    

The equation above shows that the pressure reaches its maximum level at the base. 

This is true for the column or container of the fluid. The pressure decreases as we 

move up the column. 

Consider that the pressure at the bottom of the column is 𝑝1, where 𝑧 = 0, and the 

pressure at any height 𝑧 above the base is 𝑝2 such that 𝑝1  >  𝑝2, then 

∫ 𝑑𝑝
𝑝1

𝑝2

= 𝜌 𝑔 ∫ 𝑑𝑧
𝑧

0

           (5.5)   

Integrating the above equation, we get 

(𝑝1 − 𝑝2) = 𝜌 𝑔 𝑧             (5.6) 

where 𝑝1and 𝑝2 are expressed in N/m2 , 𝜌 is in kg/m3 , 𝑧 is in m in SI Units. 

The above equation helps in obtaining the pressure difference in a fluid. This can be 

done by measuring the height of the vertical column of the fluid between any two 

points. 

 For compressible fluids, density changes with pressure. 

For an ideal gas, the density is given by the following relation: 

𝜌 =
𝑝𝑀

𝑅𝑇
         (5.7) 

Here, 

p represents pressure. 

M indicates the molecular weight of the gas. 

R stands for the universal gas constant (=8.3145 J mol-1 K-1). 

T signifies the temperature. 
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Putting the value of 𝜌 from the ideal gas law equation into the equation of 

Hydrostatic equilibrium, 

𝑑𝑝 + 𝑔
𝑝𝑀

𝑅𝑇
 𝑑𝑧 = 0 

Rearranging Equation, 

𝑑𝑝

𝑝
+ 𝑔

𝑀

𝑅𝑇
 𝑑𝑧 = 0 

Integrating Equation, we get 

𝑙𝑛 𝑝 + 𝑔
𝑀

𝑅𝑇
 𝑑𝑧 = 0 

Integrating the above equation between two heights z1 and z2 where the pressures 

acting are p1 and p2, we get 

𝑙𝑛 
𝑝2

𝑝1
= −𝑔

𝑀 (𝑧2 − 𝑧1)

𝑅𝑇
 

𝑝2

𝑝1
= 𝑒

− 𝑔 𝑀(𝑧2−𝑧1)
𝑅𝑇                (5.8) 

The equation above is known as the Barometric Equation. It gives us the idea of 

pressure distribution within an ideal gas for isothermal conditions. 

Now, by writing eq. (5.8) using the notation 𝑝0 for the pressure at zero altitude, 

and the 𝑝 for the pressure at any upper altitude (ℎ),  

𝑝 = 𝑝0 𝑒
−𝑀 𝑔 ℎ

𝑅𝑇 = 𝑝0 𝑒
− ℎ

𝐻           (5.9)   

where H is the Scale Height (𝐻 =
𝑅𝑇

𝑀𝑔
=

𝑁𝐴𝑘 𝑇

𝑀 𝑔
 , 𝑁𝐴 is Avogadro’s number= 6.023 ×

1023, k is Boltzmann’s constant =  1.38 × 10−23 𝐽/𝐾). 

It was found that the scale height at sea level is between 4 and 8 km depending on 

the temperature.  

The scale height is a very useful concept because it is the height at which the 

atmosphere would extend if it were all compressed into one of constant density. At 

this height the real atmosphere has a density of 1/e or 0.37 of its density at the 

reference level. The scale height is also a measure of the atmospheric density 

gradient - a lower scale height implies a higher gradient. 

Homework: Calculate the scale height of the atmosphere? (Consider N2 gas only) 
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5.4 Special Hypothetical Atmospheres 

A. Homogeneous Atmosphere 

It is A hypothetical atmosphere in which the density is constant with height.  

𝜌 = 𝜌𝑜 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡               (where 𝜌𝑜 is the air density at the surface) 

From the hydrostatic equation   
𝑑𝑝

𝑑𝑧
= −𝑔𝜌𝑜 

∫ 𝑑𝑝
𝑝

𝑝𝑜

= −𝑔𝜌𝑜 ∫ 𝑑𝑧
𝑧

0

 

𝑝 − 𝑝𝑜 = −𝑔 𝜌𝑜 𝑧 

𝑝 = 𝑝𝑜 − 𝑔𝜌𝑜𝑧                 (5.10) 

Where 𝑝𝑜 is pressure at  𝑧 = 0 

The homogeneous atmosphere has a finite height H,  

when p=0  (at the top of the atmosphere),   z=H 

0 = 𝑝𝑜 − 𝜌𝑜𝑔𝐻 

∴ 𝐻 =
𝑝𝑜

𝜌𝑜𝑔
 

from the hydrostatic equation and the equation of state ( 𝑝𝑜 = 𝜌𝑜 𝑅 𝑇𝑜) we get: 

𝐻 =
𝜌𝑜 𝑅 𝑇𝑜

𝜌𝑜 𝑔
 

At  𝑇𝑜 = 283𝑜𝐾 , 𝑅 = 287 ,   𝑔 = 9.8 𝑚𝑠−2 ⇒ 𝐻 ≈ 8000 𝑚  
 

Homework: solve for To = 293, 300, 310, 320, 330 oK 
 

We may define a temperature in the homogeneous atmosphere from gas equation: 

𝑝 = 𝜌𝑜𝑅 𝑇  

𝑇 =
𝑝

𝜌𝑜𝑅
          (5.11) 

Put eqn. (5.10) in eqn. (5.11) 

𝑇 =
𝑝𝑜 − 𝜌𝑜 𝑔 𝑧

𝜌𝑜 𝑅
     ⇒     𝑇 =

𝑝𝑜

𝜌𝑜𝑅
−

𝜌𝑜 𝑔 𝑧

𝜌𝑜𝑅
 

 

𝑇 = 𝑇𝑜 −
𝑔

𝑅
𝑧          (5.12) 

This equation shows that T decreases linearly with height in a homogeneous 

atmosphere. 
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Question:  From the atmospheric model (homogeneous atmosphere) show that the 

lapse rate 𝛾 =
𝑑𝑇

𝑑𝑍
= −

𝑔

𝑅
= −3. 4  𝑜𝐾/100𝑚 (such an atmosphere is known as the 

auto convective lapse rate) 

B. The Isothermal Atmosphere 

In this model we have  𝑇 = 𝑇𝑜 = 𝑐𝑜𝑛𝑠𝑡.   (where 𝑇𝑜 is the temperature at the surface) 

From the hydrostatic Equation we get: 

𝑑𝑝 = −𝜌𝑔 𝑑𝑧 

Recall that   𝜌 =
𝑝

𝑅𝑇𝑜
        

𝑑𝑝 =
𝑝

𝑅𝑇𝑜
𝑔 𝑑𝑧 

∫
𝑑𝑝

𝑝
= −

𝑔

𝑅𝑇𝑜
∫ 𝑑𝑧

𝑧

0

𝑝

𝑝𝑜

 

ln
𝑝

𝑝𝑜
= −

𝑔

𝑅𝑇𝑜
𝑧 

Taking exponential to both sides 

𝑝

𝑝𝑜
= 𝑒

− 
𝑔

𝑅𝑇𝑜
𝑧
 

This equation shows that the isothermal atmosphere is of infinite extent because 𝑝 →

0 when 𝑧 → ∞ 

 

The scale height for an isothermal atmosphere is often defined as the height at which 

the pressure has decreased to 𝑒−1 of the surface pressure. 

𝑧 = 𝐻𝑠 

𝑝 = 𝑝𝑜 𝑒
− 

𝑔
𝑅𝑇𝑜

 𝐻𝑠
 

𝑝 = 𝑝𝑜  𝑒−1 

𝑝𝑜𝑒
− 

𝑔
𝑅 𝑇𝑜

 𝐻𝑠 = 𝑝𝑜 𝑒−1 

− 
𝑔

𝑅𝑇𝑜
𝐻𝑠 = −1 

∴ 𝐻𝑠 =
𝑅 𝑇𝑜

𝑔
= 8000 𝑚 

𝑝 = 𝑝𝑜𝑒
− 

𝑔

𝑅𝑇𝑜
𝑍

       (5.13) 
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Or, that the scale height is equal to the height of the homogeneous atmosphere 

having the same surface temperature as the isothermal atmosphere. 

The density in the isothermal atmosphere can be calculated from gas equation 

𝑝𝑜 = 𝜌𝑜 𝑅 𝑇𝑜   ,   𝑝 = 𝜌 𝑅 𝑇𝑜 : 

𝑝 = 𝑝𝑜𝑒
− 

𝑔
𝑅𝑇𝑜

 𝑍
 

𝜌 𝑅 𝑇𝑜 = 𝜌𝑜 𝑅 𝑇𝑜 𝑒
− 

𝑔
𝑅𝑇𝑜

 𝑧
 

∴ 𝜌 = 𝜌𝑜 𝑒
− 

𝑔
𝑅𝑇𝑜 

𝑧
 

Problem 1: Show that a homogeneous atmosphere (density independent of height) 

has a finite height that depends only on the temperature at the lower boundary. 

Compute the height of a homogeneous atmosphere with surface temperature T0 = 

273K and surface pressure 1000 hPa. (Use the ideal gas law and hydrostatic 

balance.) 

Problem 2: Show that in an atmosphere with uniform lapse rate γ (where  𝛾 ≡  −
𝑑𝑇

𝑑𝑧
) 

the geopotential height at pressure level 𝑝1 is given by 

𝑍 =  
𝑇0

𝛾
[1 − (

𝑝0

𝑝1
)

−𝑅𝛾/𝑔

] 

where 𝑇0 and 𝑝0 are the sea level temperature and pressure, respectively. 

(Hint: Use the hydrostatic equation and the ideal gas law.) 

5.5 Hypsometric Equation  

Consider a column of atmosphere that is 1 m by 1 m in area and extends from sea 

level to space.  

Let’s isolate the part of this column that extends between 

the 1000 hPa surface and the 500 hPa surface. How much 

mass is in the column? 

 

 

 

𝑀𝑎𝑠𝑠 = (1000 − 500)ℎ𝑃𝑎 × (
100 𝑁𝑚−2

ℎ𝑃𝑎
) × 1 𝑚 × (

1

9.81 𝑚 𝑠−2
) = 510204 𝑘𝑔 
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From the hydrostatic equation  

𝑑𝑝

𝑑𝑧
= −𝑔 𝜌 

From the ideal gas law 

 𝑝 = 𝜌 𝑅 𝑇 

Substitute ideal gas law into hydrostatic equation 

𝑑𝑧 = −
𝑅 𝑇

𝑔
 
𝑑𝑝

𝑝
 

Integrate this equation between two levels (𝑝2, 𝑧2) and (𝑝1, 𝑧1) 

 

∫ 𝑑𝑧
𝑧2

𝑧1

= − ∫
𝑅 𝑇

𝑔
 
𝑑𝑝

𝑝

𝑝2

𝑝1

 

∫ 𝑑𝑧
𝑧2

𝑧1

= ∫
𝑅 𝑇

𝑔
 𝑑 ln 𝑝

𝑝1

𝑝2

 

Problem: T varies with altitude. To perform the integral on the right we have to consider 

the pressure weighted column average temperature given by: 

 

 

This equation is called the Hypsometric Equation. It relates the thickness of a layer of air 

between two pressure levels to the average virtual temperature of the layer. 

5.6 Geopotential Height 

We can express the hypsometric (and hydrostatic) equation in terms of a quantity called 

the geopotential height. 

Geopotential (∅): Work (energy) required to raise a unit mass a distance dz above sea level. 

𝑑∅ = 𝑔 𝑑𝑧 

 

 

Meteorologists often refer to “geopotential height” because this quantity is directly 

associated with energy to vertically displaced air. 

𝐺𝑒𝑜𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐻𝑒𝑖𝑔ℎ𝑡 (𝑍) =
∅

𝑔0

=
𝑔 𝑧

𝑔0

 

𝑔0 is the globally averaged value of gravity at sea level. 

For practical purposes, Z and z are about the same in the troposphere 

𝑧2 − 𝑧1 =
𝑅 𝑇̅

𝑔
ln  

𝑝1

𝑝2

 

 

∆∅ = 𝑅𝑇̅ ln
𝑝1

𝑝2

 

 


