Ring Theory

References:

- Introduction to Modern Abstract Algebra, by David M. Burton.
- Contemporary abstract algebra, by Gallian and Joseph.
- Groups and Numbers, by R. M. Luther.
- A First Course in Abstract Algebra, by J. B. Fraleigh.
- Group Theory, by M. Suzuki.
- Abstract Algebra Theory and Applications, by Thomas W.
 Judson.
- Abstract Algebra, by I. N. Herstein.
- Basic Abstract Algebra, by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.
 - 1. Definitions and Examples of Rings

Definition(1-1):

A ring is an ordered triple $(R, +, \cdot)$ consisting of a non-empty set R and two binary operations + and \cdot on R such that

i. (R, +) is a commutative group,

- ii. (R,\cdot) is a semigroup (satisfies the axioms i, ii of group),
- iii. The two operations are related by the distributive laws

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c),$$

$$(b+c) \cdot a = (b \cdot a) + (c \cdot a) \forall a, b, c \in R.$$

Definition(1-2):

A commutative ring is a ring in which (R, \cdot) is a commutative.

Examples(1-3):

1. Each one of the following is a commutative ring:

$$(\mathbb{R},+,\cdot),(\mathbb{Q},+,\cdot),(\mathbb{Z},+,\cdot),(\mathbb{Z}_{e},+,\cdot).$$

2. The set $R = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$ is a commutative ring with identity.

$$(a + b\sqrt{3}) + (c + d\sqrt{3}) = (a + c) + (b + d)\sqrt{3} \in R,$$
$$(a + b\sqrt{3}) \cdot (c + d\sqrt{3}) = (ac + 3bd) + (ad + bc)\sqrt{3} \in$$
$$R, \forall a, b, c, d \in \mathbb{Z}$$

$$1 = 1 + 0\sqrt{3} \in R.$$

3. Let *R* denote the set of all functions $f : \mathbb{R} \to \mathbb{R}$. The sum f + g and product $f \cdot g$ of two functions $f, g \in R$ are defined as usual, by the equations

$$(f+g)(x) = f(x) + g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x), x \in \mathbb{R}$$

The triple $(R, +, \cdot)$ is a commutative ring with identity.

4. The triple $(R, +, \circ)$ is not a ring.

The left distributive law $f \circ (g + h) \neq (f \circ g) + (f \circ h)$.

5. Let (G,*) be an arbitrary commutative group and Hom G be the set of all homomorphisms from (G,*) into itself. (Hom G,\circ) is a semigroup with identity, then the triple (Hom $G, +,\circ$) forms a ring with identity.

$$(f+g)(x) = f(x) * g(x), x \in G$$

(Hom G, +) is a commutative group.

$$(f+g)(x*y) = f(x*y) * g(x*y) = f(x) * f(y) * g(x) * g(y)$$
$$= (f(x) * g(x)) * (f(y) * g(y)) = (f+g)(x) * (f+g)(y),$$

So that $f + g \in (\text{Hom } G, +)$.

$$[f \circ (g+h)](x) = f((g+h)(x)) = f(g(x) * h(x))$$
$$= f(g(x)) * f(h(x))$$
$$= (f \circ g)(x) * (f \circ h)(x) = (f \circ g + f \circ h)(x). \bullet$$

Therefore, $f \circ (g + h) = f \circ g + f \circ h$.

- 6. The triple $(Z_n, +_n, \cdot_n)$ is a commutative ring with identity.
- 7. Consider the set $R = \mathbb{R} \times \mathbb{R}$ of ordered pairs of real numbers. We define addition and multiplication in *R* by the formulas

$$(a,b) + (c,d) = (a + c, b + d), (a,b) \cdot (c,d) = (ac, bd).$$

 $(R, +, \cdot)$ is a commutative ring with identity.

8. The triple $(Z_4, +_4, \cdot_4)$ is a commutative ring with identity.

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

.

'4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Here, we have $2 \cdot_4 2 = 0$, the product of nonzero elements being zero. Note also that $2 \cdot_4 1 = 2 \cdot_4 3$, yet it is clearly not true that 1 = 3. The multiplicative semigroup (Z_4, \cdot_4) does not satisfy the cancellation law.

9. The triple $(\mathbb{C}, +, \cdot)$ is a commutative ring with identity.

- 10. The triple $(M_2(\mathbb{R}), +, \cdot)$ is a ring with identity, but not commutative.
- 11. The triple $(\mathbb{Z}_o, +, \cdot)$ is not ring, since the sum of two odds equal into even number.

2. Basic Properties of Rings

<u>Theorem(2-1)</u>: If $(R, +, \cdot)$ be a ring, then

(1) $a \cdot 0 = 0 \cdot a = 0$

(2)
$$(-c) \cdot a = -c \cdot a, \quad a(-c) = -a \cdot c$$

(3)
$$a \cdot b = (-a) \cdot (-b), \forall a, b \in R$$

Proof: (1) $a \cdot (b - c) = a \cdot b - a \cdot c \dots (*)$

 $(b-c) \cdot a = b \cdot a - c \cdot a, \quad \forall a, b, c \in R \dots (*)$

Substitute b = c in (*), we get $a \cdot (b - b) = a \cdot b - a \cdot b \Longrightarrow a \cdot 0 =$

$$0 \forall a \in R$$

 $(b-b) \cdot a = b \cdot a - b \cdot a \Longrightarrow 0 \cdot a = 0.$

Proof: (2) Substitute b = 0 in (*) and by using (1), we have

 $a \cdot (0 - c) = a \cdot 0 - a \cdot c \Longrightarrow a \cdot (-c) = -a \cdot c$

 $(0-c) \cdot a = -c \cdot a; \forall a, c \in R.$

Proof: (3) Substitute a = -a in (2), we get

$$a \cdot (-c) = -a \cdot c$$

$$(-a) \cdot (-c) = -(-a) \cdot c$$

$$(-a)\cdot(-c) = -(-a\cdot c) = a\cdot c$$

<u>Corollary(2-2)</u>: If $(R, +, \cdot)$ be a ring with identity and $R \neq \{0\}$, then $0 \neq 1, (-1) \cdot a = -a$

Proof: since $R \neq \{0\} \Longrightarrow \exists a \in R \ni a \neq 0$, suppose that 0 = 1

 $a = a \cdot 1 = a \cdot 0 = 0 \Longrightarrow a = 0$, but $a \neq 0$ by assumption, thus $0 \neq 1$

To prove $(-1) \cdot a = -a$

 $(-1) \cdot a = -(1 \cdot a) = -a$

<u>Corollary(2-3)</u>: If $(R, +, \cdot)$ be a ring, if *R* has an identity element, then it is a unique.

Proof: let 1, 1^{*} are two identity elements of *R*, then $1 = 1 \cdot 1^* = 1^*$

<u>Corollary(2-4)</u>: If a_1, a_2 are two inverses of a in a ring $(R, +, \cdot)$ with identity, then $a_1 = a_2$

Proof: $a_2 = a_2 \cdot 1 = a_2 \cdot (a \cdot a_1) = (a_2 \cdot a) \cdot a_1 = 1 \cdot a_1 = a_1$

Theorem(2-5): If $(R, +, \cdot)$ be a ring with identity and *U* be a set of units of *R*, then (U, \cdot) is a group.

Proof: $U \neq \emptyset$, since $\exists 1 \in U$

Let $a, b \in U \Longrightarrow \exists a^{-1}, b^{-1} \in U \ \ni a \cdot a^{-1} = a^{-1} \cdot a = 1$

 $b \cdot b^{-1} = b^{-1} \cdot b = 1$

 $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = a \cdot (b \cdot b^{-1}) \cdot a^{-1} = a \cdot 1 \cdot a^{-1} = a \cdot a^{-1} = 1$

$$(b^{-1} \cdot a^{-1}) \cdot (a \cdot b) = b^{-1} \cdot (a^{-1} \cdot a) \cdot b = b^{-1} \cdot 1 \cdot b = b^{-1} \cdot b = 1$$

This means $a \cdot b \in U$

Since (R,\cdot) is associative, then (U,\cdot) is associative (since $U \subseteq R$) Therefore, (U,\cdot) is a group.

3. Subrings, Examples and Properties

Definition(3-1): Let $(R, +, \cdot)$ be a ring and $S \subseteq R$ be a nonempty subset of R. If the triple $(S, +, \cdot)$ is itself a ring, then $(S, +, \cdot)$ is said to be a subring of $(R, +, \cdot)$.

<u>Theorem(3-2)</u>: Let $(R, +, \cdot)$ be a ring and $\emptyset \neq S \subseteq R$. Then the triple $(S, +, \cdot)$ is a subring of $(R, +, \cdot)$ if and only if

- (1) $a b \in S \forall a, b \in S$ (closed under differences),
- (2) $a \cdot b \in S \forall a, b \in S$ (closed under multiplication).

Proof: (\Rightarrow) let (S, +,·) be a subring of (R, +,·) \Rightarrow (S, +) is a subgroup of (R, +)

 $\Rightarrow x - y \in S \; \forall x, y \in S$

Since $(S, +, \cdot)$ is a subring of $(R, +, \cdot) \Longrightarrow x \cdot y \in S \quad \forall x, y \in S$.

(\Leftarrow) let $a - b \in S, a \cdot b \in S \forall a, b \in S \Rightarrow (S, +)$ is a subgroup of (R, +)

Since the operation of addition is a commutative on $R, S \subseteq R$

- \Rightarrow the operation of addition is a commutative on *S*
- \Rightarrow (*S*, +) is an abelian subgroup of (*R*, +)

Also, similarly the associative and distributed the multiplication on addition are true on *S* since $S \subseteq R$.

 \Rightarrow (*S*, +,·) is a subring of (*R*, +,·).

Examples(3-3):

- (1) Every ring $(R, +, \cdot)$ has two trivial subrings; for, if 0 denotes the zero element of the ring $(R, +, \cdot)$, then both $(\{0\}, +, \cdot)$ and $(R, +, \cdot)$ are subrings of $(R, +, \cdot)$.
- (2) In the ring of integers $(\mathbb{Z}, +, \cdot)$, the triple $(\mathbb{Z}_e, +, \cdot)$ is a subring, while $(\mathbb{Z}_o, +, \cdot)$ is not.
- (3) Consider $(\mathbb{Z}_6, +_6, \cdot_6)$ the ring of integers modulo 6. If $S = \{0, 2, 4\}$, then $(S, +_6, \cdot_6)$, whose operation tables are given at the below, is a subring of $(\mathbb{Z}_6, +_6, \cdot_6)$.

+6	0	2	4
0	0	2	4

Prof. Dr. Najm Al-Seraji, Ring Theory, 2025			
2	2	4	0
4	4	0	2
·6	0	2	4
0	0	0	0
2	0	4	2
4	0	2	4

(4) Let S = {a + b√3: a, b ∈ Z}. Then (S, +,·) is a subring of (ℝ, +,·), since for a, b, c, d ∈ Z, we get

 $(a + b\sqrt{3}) - (c + d\sqrt{3}) = (a - c) + (b - d)\sqrt{3} \in S,$

$$(a+b\sqrt{3})\cdot(c+d\sqrt{3})=(ac+3bd)+(bc+ad)\sqrt{3}\in S.$$

(5) The triple $(\mathbb{Z}, +, \cdot)$ is a subring of $(\mathbb{R}, +, \cdot)$.

(6) Let the set $n\mathbb{Z} = \{0, \pm n, \pm 2n, ...\}$, then the triple $(n\mathbb{Z}, +, \cdot)$ is a subring of $(\mathbb{Z}, +, \cdot)$.

(7)
$$(\mathbb{Z}[i] = \{a + ib: a, b \in \mathbb{Z}\}, +, \cdot)$$
 is a subring of $(\mathbb{C}, +, \cdot)$.

(8)
$$(S = \{a + b\sqrt{5} : a, b \in \mathbb{Z}\}, +, \cdot)$$
 is a subring of $(\mathbb{R}, +, \cdot)$.

- (9) Let $(R, +, \cdot)$ be a ring and $M = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in R \}$, then $(M, +, \cdot)$ is a subring of $(M_2(R), +, \cdot)$.
- (10) (S = {2a: a ∈ Z}, +,·) is a subring of (Z, +,·). We note that 1 ∈
 Z, but 1 ∉ S.
- (11) Give example to ring with identity and subring with different identity.

Take $(M_2(\mathbb{Z}), +, \cdot)$ and $(S = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbb{Z} \}, +, \cdot \}$

The identity of $(M_2(\mathbb{Z}), +, \cdot)$ is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

The identity of $(S = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbb{Z} \}, +, \cdot)$ is $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

4. Characteristic of the Ring and Related Concepts

Definition(4-1): Let $(R, +, \cdot)$ be an arbitrary ring. If there exists a positive integer n such that na = 0 for all $a \in R$, then the least positive integer with this property is called the characteristic of the ring. If no such positive integer exists (that is, na = 0 for all $a \in R$ implies n = 0), then we say $(R, +, \cdot)$ has characteristic zero.

Example(4-2): the rings of integers, rational numbers and real numbers are standard examples of characteristic zero.

Example(4-3): the ring $(P(X), \Delta, \cap)$ is of characteristic two.

Since $A\Delta B = (A - B) \cup (B - A)$

 $2A = A\Delta A = (A - A) \cup (A - A) = \emptyset$ for every subset A of X.

Theorem(4-4): Let $(R, +, \cdot)$ be a ring with identity. Then $(R, +, \cdot)$ has characteristic n > 0 if and only if n is the least positive integer for which $n \cdot 1 = 0$.

Proof: if the ring $(R, +, \cdot)$ is of characteristic n > 0, it follows trivially that $n \cdot 1 = 0$. If $m \cdot 1 = 0$, where 0 < m < n, then

$$ma = m(1 \cdot a) = (m1) \cdot a = 0 \cdot a = 0$$

For every element $a \in R$. This would mean the characteristic of $(R, +, \cdot)$ is less than n, an obvious contradiction. The converse is established in much the same way.

Example(4-5): the characteristic of the ring $(\mathbb{C}, +, \cdot)$ is zero.

Example(4-6): the characteristic of the ring $(Z_n, +_n, \cdot_n)$ is *n*.

Example(4-7): the characteristic of the ring $(Z_4 \times Z_6, \bigoplus, \bigotimes)$ is 12.

5. Ideals and their Properties

Definition(5-1): A subring $(I, +, \cdot)$ of the ring $(R, +, \cdot)$ is an ideal of $(R, +, \cdot)$ if and only if $r \in R$ and $a \in I$ imply both $r \cdot a \in I$ and $a \cdot r \in I$.

Definition(5-2): Let $(R, +, \cdot)$ be a ring and I a nonempty subset of R. Then $(I, +, \cdot)$ is an ideal of $(R, +, \cdot)$ if and only if

- (1) $a, b \in I \text{ imply } a b \in I,$
- (2) $r \in R$ and $a \in I$ imply both $r \cdot a \in I$ and $a \cdot r \in I$.

Example(5-3): In any ring $(R, +, \cdot)$, the trivial subrings $(R, +, \cdot)$ and $(\{0\}, +, \cdot)$ are both ideals.

<u>Remark(5-4)</u>: A ring which contains no ideals except these two is said to be simple. Any ideal different from $(R, +, \cdot)$ is a proper.

Example(5-5): The subring $(\{0,3,6,9\},+_{12})$ is an ideal of $(Z_{12},+_{12},\cdot_{12})$, the ring of integers modulo 12.

Example(5-6): For a fixed integer $a \in \mathbb{Z}$, let $\langle a \rangle$ denote the set of all integral multiples of *a*, that is,

$$\langle a \rangle = \{ na : n \in \mathbb{Z} \}$$

The following relations show the triple $(\langle a \rangle, +, \cdot)$ to be an ideal of the ring of integers $(\mathbb{Z}, +, \cdot)$:

$$na-ma=(n-m)a,$$

 $m(na) = (mn)a, n, m \in \mathbb{Z}.$

Example(5-7): $\langle 2 \rangle = \mathbb{Z}_e$, the ring of even integers $(\mathbb{Z}_e, +, \cdot)$ is an ideal of $(\mathbb{Z}, +, \cdot)$.

Example(5-8): Suppose $(R, +, \cdot)$ is the commutative ring of functions $f: \mathbb{R} \to \mathbb{R}$. The sum f + g and product $f \cdot g$ of two functions $f, g \in R$ are defined as usual, by the equations

$$(f + g)(x) = f(x) + g(x),$$
$$(f \cdot g)(x) = f(x) \cdot g(x), x \in \mathbb{R}$$

Define

$$I = \{ f \in R : f(1) = 0 \}.$$

For functions $f, g \in I$ and $h \in R$, we have

(f - g)(1) = f(1) - g(1) = 0 - 0 = 0

And also

$$(h \cdot f)(1) = h(1) \cdot f(1) = h(1) \cdot 0 = 0.$$

Since both f - g and $h \cdot f$ belong to I, $(I, +, \cdot)$ is an ideal of $(R, +, \cdot)$.

Example(5-9): Let $(M_2(\mathbb{R}), +, \cdot)$ be a ring, then $I = (\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbb{R} \}, +, \cdot)$ is a left ideal of $(M_2(\mathbb{R}), +, \cdot)$, but it is not right ideal of $(M_2(\mathbb{R}), +, \cdot)$.

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in I \implies \emptyset \neq I \subseteq M_2(\mathbb{R})$$

Let $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}, \begin{pmatrix} c & 0 \\ d & 0 \end{pmatrix} \in I$ and $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in M_2(\mathbb{R})$
 $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} - \begin{pmatrix} c & 0 \\ d & 0 \end{pmatrix} = \begin{pmatrix} a - c & 0 \\ b - d & 0 \end{pmatrix} \in I$
 $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} = \begin{pmatrix} ax + by & 0 \\ az + bw & 0 \end{pmatrix} \in I$

Therefore, $(I, +, \cdot)$ is a left ideal of $(M_2(\mathbb{R}), +, \cdot)$

 $(I, +, \cdot)$ is not right ideal of $(M_2(\mathbb{R}), +, \cdot)$, since

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{R}) \text{ and } \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \in I$$

But
$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \notin I$$

Example(5-10): Let $(R, +, \cdot)$ be the set of all functions on \mathbb{R} , then $I = {f \in R: f(3) = 0}$ is an ideal of $(R, +, \cdot)$.

Example(5-11): Prove or disprove, the triple $(\mathbb{Z}, +, \cdot)$ is an ideal of $(\mathbb{Q}, +, \cdot)$.

Theorem(5-12): If $(I, +, \cdot)$ is a proper ideal of a ring $(R, +, \cdot)$ with identity, then no element of *I* has a multiplicative inverse; that is, $I \cap R^* = \emptyset$.

Proof: suppose $0 \neq a \in I \ni a^{-1}$ exists

 $a^{-1} \cdot a = 1 \in I$ (since *I* is closed under multiplication)

Thus, $r \cdot 1 = r \ \forall r \in R \Longrightarrow R \subseteq I$, but $I \subseteq R \Longrightarrow I = R$ this is

contradiction. (I a proper).

Theorem(5-13): If $(I_i, +, \cdot)$ is an arbitrary indexed collection of ideals of the ring $(R, +, \cdot)$, then so also is $(\bigcap I_i, +, \cdot)$.

Proof: $0 \in I_i \implies 0 \in \cap I_i \implies \cap I_i \neq \emptyset$

Let $a, b \in \bigcap I_i$ and $r \in R \implies a, b \in I_i \implies a - b, r \cdot a$ and $a \cdot r \in I_i$

 $\Rightarrow a - b, r \cdot a \text{ and } a \cdot r \in \bigcap I_i$

Therefore, $(\bigcap I_i, +, \cdot)$ is an ideal of $(R, +, \cdot)$.

Example(5-14): Prove or disprove, the union of two ideals is an ideal.

Solution: In general, it is not true, for example, in $(Z_{12}, +_{12}, +_{12})$

 $\langle 4 \rangle = \{0,4,8\}, \langle 6 \rangle = \{0,6\} \Longrightarrow \langle 4 \rangle \cup \langle 6 \rangle = \{0,4,6,8\}$ is not ideal, since

 $6 - 4 = 2 \notin \langle 4 \rangle \cup \langle 6 \rangle$

<u>Note(5-15)</u>: Consider $(R, +, \cdot)$ be a ring and $\emptyset \neq S \subseteq R$. Define the set

$$\langle S \rangle = \bigcap \{I: S \subseteq I; (I, +, \cdot) \text{ is an ideal of } (R, +, \cdot) \}.$$

 $\langle S \rangle \neq \emptyset$, since $S \subseteq \langle S \rangle$

<u>Theorem(5-16)</u>: The triple $(\langle S \rangle, +, \cdot)$ is an ideal of the ring $(R, +, \cdot)$, known as the ideal generated by the set *S*.

Example(5-17): $(Z_{18}, +_{18}, \cdot_{18})$, find $\langle S \rangle$ where $S = \{0, 9\}$.

Theorem(5-18): If $(R, +, \cdot)$ is a commutative ring with identity and $a \in R$, then the principle ideal $(\langle a \rangle, +, \cdot)$ generated by a is such that $\langle a \rangle = \{r \cdot a : r \in R\}$.

<u>Theorem(5-19)</u>: If $(I, +, \cdot)$ is an ideal of the ring $(\mathbb{Z}, +, \cdot)$, then $I = \langle n \rangle$ for some nonnegative integer *n*.

Proof: If $I = \{0\}$, the theorem is trivially true, for the zero ideal

 $(\{0\}, +, \cdot)$ is the principal ideal generated by 0.

Let $0 \neq m \in I \implies -m \in I$, suppose *n* the least positive integer in *I*

Thus, $\langle n \rangle \subseteq I$, any integer $k \in I \Longrightarrow k = qn + r$ where $q, r \in \mathbb{Z}, 0 \le r < n$

Since $k, qn \in I \Longrightarrow k - qn = r \in I \Longrightarrow r = 0 \Longrightarrow k = qn$

Thus every member of *I* is a multiple of $n \Rightarrow I \subseteq \langle n \rangle \Rightarrow I = \langle n \rangle$.

<u>Theorem(5-20)</u>: Let $a_1, a_2, ..., a_n$ be nonzero element of a principal ideal ring $(R, +, \cdot)$. Then $(\bigcap \langle a_i \rangle, +, \cdot) = (\langle a \rangle, +, \cdot)$, where *a* is a least common multiple of $a_1, a_2, ..., a_n$.

Proof: $(\cap \langle a_i \rangle, +, \cdot)$ is an ideal of $(R, +, \cdot)$.

But every ideal of $(R, +, \cdot)$ is a principle ideal; $\exists a \in R \ni \langle a \rangle = \bigcap \langle a_i \rangle$

Since $\langle a \rangle \subseteq \langle a_i \rangle [i = 1, 2, ..., n]$, $a = r_i \cdot a_i$ for some $r_i \in R$.

So, *a* is a common multiple of $a_1, a_2, ..., a_n$.

Let *b* any common multiple of $a_1, a_2, ..., a_n$, say $b = s_i \cdot a_i$, $s_i \in R[i = 1, 2, ..., n]$

If $r \in R$, then $r \cdot b = r \cdot (s_i \cdot a_i) = (r \cdot s_i) \cdot a_i \in \langle a_i \rangle \Longrightarrow \langle b \rangle \subseteq \langle a_i \rangle$

Therefore, $\langle b \rangle \subseteq \cap \langle a_i \rangle = \langle a \rangle$ and *b* must be a multiple of *a*, thus *a* is a least common multiple of $a_1, a_2, ..., a_n$.

Example(5-21): Consider the principal ideal $(\langle 4 \rangle, +, \cdot)$ and $(\langle 6 \rangle, +, \cdot)$ generated by the integers 4 and 6 in the ring $(\mathbb{Z}, +, \cdot)$. Then $(\langle 4 \rangle \cap \langle 6 \rangle, +, \cdot) = (\langle 12 \rangle, +, \cdot)$, where 12 is the least common multiple of 4 and 6.

6. Quotient Ring and Related Concepts.

Notes(6-1): Let $(I, +, \cdot)$ is an ideal of the ring $(R, +, \cdot)$, then

(1)
$$a + I = \{a + i : i \in I\},\$$

(2)
$$(a+I) + (b+I) = (a+b) + I,$$

(3)
$$(a+I) \cdot (b+I) = (a \cdot b) + I.$$

<u>Theorem(6-2)</u>: If $(I, +, \cdot)$ is an ideal of the ring $(R, +, \cdot)$, then $(\frac{R}{I}, +, \cdot)$ is a ring, known as the quotient ring of *R* by *I*.

The zero element of $(\frac{R}{I}, +, \cdot)$ is the cose 0 + I = I, while -(a + I) =(-a) + I.

Example(6-3): In the ring $(\mathbb{Z}, +, \cdot)$ of integers, consider the principal ideal ($\langle n \rangle$, +,·), where *n* is a nonnegative integer. The coset of $\langle n \rangle$ in \mathbb{Z} take the form

$$a + \langle n \rangle = \{a + kn : k \in \mathbb{Z}\}$$

$$(Z_n, +_n, \cdot_n) \cong \left(\frac{\mathbb{Z}}{\langle n \rangle}, +, \cdot\right)$$

Example(6-4): The triple $(6\mathbb{Z}, +, \cdot)$ is an ideal of the ring $(2\mathbb{Z}, +, \cdot)$,

then

$$\frac{2\mathbb{Z}}{6\mathbb{Z}} = \{0 + 6\mathbb{Z}, 2 + 6\mathbb{Z}, 4 + 6\mathbb{Z}\}$$

is a ring with an identity.

Example(6-5): Let $(R = (\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{Z} \}, +, \cdot)$ be a ring and (I = a) $\left(\left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in \mathbb{Z} \right\}, +, \cdot \right)$ is an ideal of the ring $(R, +, \cdot)$, then $\left(\frac{R}{I}, +, \cdot \right)$ is a

commutative ring with identity.

$$\frac{R}{I} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} + I : a, b \in \mathbb{Z} \right\}$$

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} + I = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} : a, b, c \in \mathbb{Z} \}$$

7. Homomorphisms of Ring. Examples and Properties

Definition(7-1): Let $(R, +, \cdot)$ and $(R', +', \cdot')$ be two rings and f a function from R into R'; in symbols, $f: R \to R'$. Then f is said to be a ring homomorphism from $(R, +, \cdot)$ into $(R', +', \cdot')$ if and only if

$$f(a + b) = f(a) + f(b)$$
$$f(a \cdot b) = f(a) \cdot f(b)$$

for every pair of elements $a, b \in R$.

Example(7-2): Let $(R, +, \cdot)$ and $(R', +', \cdot')$ be arbitrary rings and $f: R \to R'$ be the function that maps each element of R onto the zero element 0' of $(R', +', \cdot')$.

$$f(a+b) = 0' = 0'+'0' = f(a)+'f(b),$$

$$f(a \cdot b) = 0' = 0' \cdot 0' = f(a) \cdot f(b), a, b \in R.$$

As with the case of groups, this mapping is called the trivial homomorphism.

Example(7-3): The mapping $f: \mathbb{Z} \to \mathbb{Z}_e$ defined by f(a) = 2a is not a homomorphism from $(\mathbb{Z}, +, \cdot)$ into $(\mathbb{Z}_e, +, \cdot)$,

$$f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)$$

but

$$f(a \cdot b) = 2(a \cdot b) \neq (2a) \cdot (2b) = f(a) \cdot f(b)$$

Example(7-4): Consider $(\mathbb{Z}, +, \cdot)$, the ring of integers, and $(Z_n, +_n, \cdot_n)$, the ring of integers modulo n. Define $f: \mathbb{Z} \to \mathbb{Z}_n$ by taking f(a) = [a]; that is, map each integer into the congruence class containing it. Then

$$f(a + b) = [a + b] = [a] +_n[b] = f(a) +_n f(b),$$
$$f(a \cdot b) = [a \cdot b] = [a] \cdot_n [b] = f(a) \cdot_n f(b),$$

so that f is a homomorphism mapping.

Example(7-5): Let $(R, +, \cdot)$ be any ring with identity. For each invertible element $a \in R^*$, the function $f_a \colon R \to R$ given by

$$f_a(x) = a \cdot x \cdot a^{-1}$$

is a homomorphism from $(R, +, \cdot)$ into itself. Indeed, if $x, y \in R$, we see that

$$\begin{aligned} f_a(x+y) &= a \cdot (x+y) \cdot a^{-1} = a \cdot x \cdot a^{-1} + a \cdot y \cdot a^{-1} = f_a(x) + \\ f_a(y), \end{aligned}$$

$$\begin{aligned} f_a(x \cdot y) &= a \cdot (x \cdot y) \cdot a^{-1} = (a \cdot x \cdot a^{-1}) \cdot (a \cdot y \cdot a^{-1}) = f_a(x) \cdot \\ f_a(y), \end{aligned}$$

Theorem(7-6): Let f be a homomorphism from the ring $(R, +, \cdot)$ into the ring $(R', +', \cdot')$. Then the following hold:

(1) f(0) = 0', where 0' is the zero element of $(R', +', \cdot')$.

(2)
$$f(-a) = -f(a)$$
 for all $a \in R$.

(3) The triple
$$(f(R), +', \cdot')$$
 is a subring of $(R', +', \cdot')$.

(4)
$$f(1) = 1'$$
.

(5)
$$f(a^{-1}) = f(a)^{-1}$$
 for each invertible element $a \in R$.

(6) If S is a subring in R, then
$$f(S)$$
 is a subring in R'.

- (7) If I is an ideal in R, then f(I) is an ideal in R'.
- (8) If T is a subring in R', then $f^{-1}(T)$ is a subring in R.
- (9) If J is an ideal in R', then $f^{-1}(J)$ is an ideal in R.

Proof: (1)f(0+0) = f(0)+'f(0)

f(0) = f(0) + f(0)

$$f(0)+'0' = f(0)+'f(0) \Longrightarrow f(0) = 0'$$

Proof: (2) a + (-a) = 0

 $f(a + (-a)) = f(0) \Longrightarrow f(a) + f(-a) = 0' \Longrightarrow f(-a) = -f(a)$

Theorem(7-7): If f is a homomorphism from the ring $(R, +, \cdot)$ into the ring $(R', +', \cdot')$, then the triple $(\ker(f), +, \cdot)$ is an ideal of $(R, +, \cdot)$.

Proof: $ker(f) = \{a \in R: f(a) = 0'\}$

 $0 \in ker(f)$, since $f(0) = 0' \Longrightarrow ker(f) \neq \emptyset$

Let
$$a, b \in ker(f) \Longrightarrow f(a) = 0' = f(b)$$

$$f(a-b) = f(a) - f(b) = 0' - 0' = 0' \Longrightarrow a - b \in ker(f)$$

If
$$r \in R$$
, $a \in ker(f) \Longrightarrow f(r \cdot a) = f(r) \cdot f(a) = f(r) \cdot 0' = 0'$.

Thus, $r \cdot a \in ker(f) \Longrightarrow (ker(f), +, \cdot)$ is an ideal of $(R, +, \cdot)$.

Theorem(7-8): If *f* is a homomorphism from the ring $(R, +, \cdot)$ into the ring $(R', +', \cdot')$, then *f* is a monomorphism iff ker $(f) = \{0\}$.

Example(7-9): Consider an arbitrary ring $(R, +, \cdot)$ with identity element 1 and the mapping $f: \mathbb{Z} \to R$ given by f(n) = n1. Then f is a homomorphism from the ring of integers $(\mathbb{Z}, +, \cdot)$ into the ring $(R, +, \cdot)$:

$$f(n+m) = (n+m)1 = n1 + m1 = f(n) + f(m),$$

 $f(n \cdot m) = (n \cdot m)1 = (n \cdot m)1^2 = (n1) \cdot (m1) = f(n) \cdot f(m).$

Theorem(7-10): That $ker(f) = \{n \in \mathbb{Z} : n1 = 0\} = \langle m \rangle$ for some nonnegative integer *m*.

Definition(7-11): A ring $(R, +, \cdot)$ is embedded in a ring $(R', +', \cdot')$ if there exists some subring $(S, +', \cdot')$ of $(R', +', \cdot')$ such that $(R, +, \cdot) \cong$ $(S, +', \cdot')$.

Theorem(7-12): Any ring can be embedded in a ring with identity.

Proof: Let $(R, +, \cdot)$ be an arbitrary ring and

$$R \times \mathbb{Z} = \{(r, n) : r \in R, n \in \mathbb{Z}\}$$

Define

$$(a,n) + (b,m) = (a + b, n + m),$$

 $(a,n)\cdot(b,m)=(a\cdot b+m\cdot a+n\cdot b,n\cdot m),$

The triple $(R \times \mathbb{Z}, +, \cdot)$ forms a ring. This ring has multiplicative identity, namely the pair (0,1); for

$$(a,n) \cdot (0,1) = (a \cdot 0 + 1 \cdot a + n \cdot 0, n \cdot 1) = (a,n),$$

$$(0,1)\cdot(a,n)=(a,n).$$

Next, consider the subset $R \times 0$ of $R \times \mathbb{Z}$ consisting of all pairs of the form (*a*, 0). Since

$$(a,0) - (b,0) = (a - b,0), (a,0) \cdot (b,0) = (a \cdot b,0)$$

Therefore, $(R \times 0, +, \cdot)$ is a subring of $(R \times \mathbb{Z}, +, \cdot)$.

The proof is completed by showing $(R \times 0, +, \cdot)$ is isomorphic to the given ring $(R, +, \cdot)$. To this end, define the function $f: R \to R \times 0$ by taking

$$f(a)=(a,0).$$

The function f is a one-to-one mapping of R onto the set $R \times 0$.

$$f(a+b) = (a+b,0) = (a,0) + (b,0) = f(a) + f(b),$$

$$f(a \cdot b) = (a \cdot b, 0) = (a, 0) \cdot (b, 0) = f(a) \cdot f(b).$$

Thus, $(R, +, \cdot) \cong (R \times 0, +, \cdot)$.

8. Fundamental Theorems of Homomorphisms of Rings.

Theorem(8-1): (The first fundamental theorem of homomorphism of ring)

Let φ be a homomorphism from $(R, +, \cdot)$ into $(R, +, \cdot)$, then

$$(\frac{R}{ker\varphi}, +, \cdot) \cong (\varphi(R), +, \cdot)$$

Proof: let $\Psi: \frac{R}{ker\varphi} \to \varphi(R)$ defined by $\Psi(x + ker\varphi) = \varphi(x) \ \forall x \in R$

To prove that Ψ is well define

$$\forall x + ker\varphi, y + ker\varphi \in \frac{R}{ker\varphi}, x + ker\varphi = y + ker\varphi$$

$$(x - y) + ker\varphi = ker\varphi \Longrightarrow (x - y) \in ker\varphi$$

 $\Rightarrow \varphi(x - y) = 0 \Rightarrow \varphi(x) = \varphi(y) \Rightarrow \Psi(x + ker\varphi) = \Psi(y + ker\varphi)$

To prove that Ψ is a homomorphism

$$\Psi[(x + ker\varphi) + (y + ker\varphi)] = \Psi[(x + y) + ker\varphi]$$

$$= \varphi(x + y) = \varphi(x) + \varphi(y) = \Psi(x + ker\varphi) + \Psi(y + ker\varphi)$$

Also

$$\Psi[(x + ker\varphi) \cdot (y + ker\varphi)] = \Psi[(x \cdot y) + ker\varphi]$$

$$= \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = \Psi(x + ker\varphi) \cdot \Psi(y + ker\varphi)$$

To prove Ψ is an onto

If $z \in Im\varphi \Longrightarrow \exists r \in R \ni z = \varphi(r), r + ker\varphi \in \frac{R}{ker\varphi}$

$$\ni \Psi(r + ker\varphi) = \varphi(r) = z$$

To prove Ψ is an one-to-one

$$\Psi(x + ker\varphi) = \Psi(y + ker\varphi) \Longrightarrow \varphi(x) = \varphi(y)$$

$$\Rightarrow \varphi(x - y) = 0 \Rightarrow x - y \in ker\varphi \Rightarrow (x - y) + ker\varphi = ker\varphi$$

$$\Rightarrow x + ker\varphi = y + ker\varphi \Rightarrow (\frac{R}{ker\varphi}, +, \cdot) \cong (\varphi(R), +, \cdot)$$

Example(8-2): Let $f: Z_4 \to Z_2$ be a function defined by f(0) = f(2) = 0, f(1) = f(3) = 1.

$$kerf = \{0,2\}, \qquad \frac{Z_4}{kerf} = \{\{0,2\},\{1,3\}\}$$

The operation tables for the quotient ring $(\frac{Z_4}{kerf}, +, \cdot)$ are as shown:

+	{0,2}	{1,3}		

Prof. Dr. Najm Al-Seraji, Ring Theory, 2025			
{0,2}	{0,2}	{1,3}	
{1,3}	{1,3}	{0,2}	

	{0,2}	{1,3}
{0,2}	{0,2}	{0,2}
{1,3}	{0,2}	{1,3}

Therefore, $\left(\frac{Z_4}{kerf}, +, \cdot\right) \cong (Z_2, +_2, \cdot_2)$

Ē

<u>**Theorem(8-3):</u>** (The second fundamental theorem of homomorphism of ring)</u>

Let $(R, +, \cdot)$ be a ring, I be an ideal of R and H be a subring of R, then

$$\frac{(H+I)}{I} \cong \frac{H}{(H\cap I)}$$

Proof: Let $\varphi: H \longrightarrow \frac{(H+I)}{I}$ defined by $\varphi(a) = a + I \ \forall a \in H$

To prove that φ is a homomorphism

$$\forall a, b \in H, \varphi(a + b) = (a + b) + I = (a + I) + (b + I)$$
$$= \varphi(a) + \varphi(b)$$

Also

$$\varphi(a \cdot b) = (a \cdot b) + I = (a + I) \cdot (b + I) = \varphi(a) \cdot \varphi(b)$$

To prove that φ is an onto

$$\forall x + I \in \frac{(H+I)}{I} \ni x \in H + I, x = a + i \ni a \in H, i \in I$$
$$x + I = (a + i) + I = a + I \Longrightarrow \varphi(x) = \varphi(a) = x + I$$

By the first theorem, we get

$$\frac{H}{ker\varphi} \cong \frac{(H+I)}{I}$$

 $ker\varphi = \{x \in H \colon \varphi(x) = I\} = \{x \in H \colon x + I = I\} = \{x \in H \colon x \in I\}$

 $= \{x \in H \colon x \in H \cap I\} = H \cap I$

Therefore, $\frac{(H+I)}{I} \cong \frac{H}{(H \cap I)}$.

Theorem(8-4): Let $(R, +, \cdot)$ be a ring with identity and φ be a homomorphism from $(R, +, \cdot)$ into $(\varphi(R), +', \cdot')$, then

- (1) $\varphi(1)$ is an identity of $(\varphi(R), +', \cdot')$.
- (2) $\varphi(x^{-1})$ is an inverse $\varphi(x)$ in $(\varphi(R), +', \cdot')$.

Proof: (1) if $y \in \varphi(R)$, $\exists x \in R \ni y = \varphi(x)$ $1 \cdot x = x \cdot 1 = x \Longrightarrow \varphi(1 \cdot x) = \varphi(x \cdot 1) = \varphi(x)$ $\varphi(1) \cdot' \varphi(x) = \varphi(x) \cdot' \varphi(1) = \varphi(x)$ $\varphi(1) \cdot' y = y \cdot' \varphi(1) = y \Longrightarrow \varphi(1) \in \varphi(R)$ Thus, $\varphi(1)$ is an identity element of $(\varphi(R), +', \cdot')$ Proof: (2) $x \cdot x^{-1} = x^{-1} \cdot x = 1 \Longrightarrow \varphi(x \cdot x^{-1}) = \varphi(x^{-1} \cdot x) = \varphi(1)$ $\varphi(x) \cdot' \varphi(x^{-1}) = \varphi(x^{-1}) \cdot' \varphi(x) = \varphi(1) \Longrightarrow \varphi(x^{-1}) \in \varphi(R)$

Hence, $\varphi(x^{-1})$ is an inverse of $\varphi(x)$ in $\varphi(R)$.

<u>Theorem(8-5)</u>: (The third fundamental theorem of homomorphism of ring)

If *I*, *J* be two ideals in $(R, +, \cdot)$ with $J \subseteq I$, then $\frac{R}{I} \cong \frac{R}{\frac{J}{I}}$.

Proof: let $\varphi: \frac{R}{J} \longrightarrow \frac{R}{I}$ defined by $\varphi(r+J) = r+I$, $\forall r \in R, r+J \in \frac{R}{J}$

To show that φ is a homomorphism

$$\varphi[(x+J) + (y+J)] = \varphi[(x+y) + J] = (x+y) + I$$
$$= (x+I) + (y+I) = \varphi(x+J) + \varphi(y+J)$$

Also

$$\varphi[(x+J)\cdot(y+J)] = \varphi[(x\cdot y) + J] = (x\cdot y) + J$$

$$= (x+I) \cdot (y+I) = \varphi(x+J) \cdot \varphi(y+J)$$

To prove $ker\varphi = \frac{I}{J}$

Let $r + J \in ker\varphi \Longrightarrow \varphi(r + J) = I, \varphi(r + J) = r + I$

$$r+I = I \Longrightarrow r \in I \Longrightarrow r+J \in \frac{I}{J} \Longrightarrow ker\varphi \subseteq \frac{I}{J}$$

Let $z + J \in \frac{I}{J}, z \in I, \varphi(z + J) = z + I = I \Longrightarrow z + J \in ker\varphi \Longrightarrow \frac{I}{J} \subseteq ker\varphi$

Hence, $\frac{R}{I} \cong \frac{\frac{R}{J}}{\frac{1}{I}}$.

9. Properties of Ideals and Quotient Ring by Using

Homomorphisms.

Theorem(9-1): Let I, J be two ideals in a ring $(R, +, \cdot)$, then I + J is an ideal in a ring $(R, +, \cdot)$.

Proof: $I + J = \{x \in R : x = a + b; a \in I, b \in J\}$

$$\emptyset \neq I + J \subseteq R, 0 = 0 + 0 \in I + J$$

$$x, y \in I + J, x = a + b, a \in I, b \in J, y = c + d, c \in I, d \in J$$
$$x - y = (a + b) - (c + d) = (a - c) + (b - d) \in I + J$$
$$r \in R, r \cdot x = r \cdot (a + b) = r \cdot a + r \cdot b \in I + J$$
$$x \cdot r = (a + b) \cdot r = a \cdot r + b \cdot r \in I + J$$

Therefore, I + J is an ideal in a ring $(R, +, \cdot)$.

Theorem(9-2): Let I, J be two ideals in a ring $(R, +, \cdot)$, then $I \cap J$ is an ideal in a ring $(R, +, \cdot)$.

Proof: $I \cap J = \{x \in R : x \in I, x \in J\}$

$$\emptyset \neq I \cap J \subseteq R, 0 \in I, 0 \in J, 0 \in I \cap J$$

$$x, y \in I \cap J, x, y \in I, x, y \in J, x - y \in I, x - y \in J, x - y \in I \cap J$$
$$a \in R, y \in I \cap J, y \in I, y \in J, a \cdot y, y \cdot a \in I, a \cdot y, y \cdot a \in J$$
$$a \cdot y \in I \cap J, y \cdot a \in I \cap J$$

Hence, $I \cap J$ is an ideal in a ring $(R, +, \cdot)$.

Theorem(9-3): Let I, J be two ideals in a ring $(R, +, \cdot)$, then $I \cdot J$ is an ideal in a ring $(R, +, \cdot)$.

Proof: $I \cdot J = \{x \in R : x = \sum_{i=1}^{n} x_i \cdot y_i; x_i \in I, y_i \in J, n \in \mathbb{Z}^+\}$

$$\emptyset \neq I \cdot J \subseteq R, 0 = 0 \cdot 0 \in I \cdot J$$

$$x, y \in I \cdot J, x = \sum_{i=1}^{n} x_i \cdot y_i; x_i \in I, y_i \in J, n \in \mathbb{Z}^+$$

$$y = \sum_{j=1}^{m} x_{j}' \cdot y_{j}'; x_{j}' \in I, y_{j}' \in J, m \in \mathbb{Z}^{+}$$

$$x - y = \sum_{i=1}^{n} x_i \cdot y_i - \sum_{j=1}^{m} x_j' \cdot y_j' = \sum_{i=1}^{n} x_i \cdot y_i + \sum_{j=1}^{m} (-x_j') \cdot y_j' \in I \cdot J$$

$$y \in I \cdot J, a \in R, a \cdot y = a \cdot \left(\sum_{j=1}^{m} x_j' \cdot y_j'\right) = \sum_{j=1}^{m} (a \cdot x_j') \cdot y_j' \in I \cdot J$$

$$y \cdot a = \left(\sum_{j=1}^{m} x_j' \cdot y_j'\right) \cdot a = \left(\sum_{j=1}^{m} x_j' \cdot (y_j' \cdot a)\right) \in I \cdot J$$

Thus, $I \cdot J$ is an ideal in a ring $(R, +, \cdot)$.

<u>Theorem(9-4)</u>: Let $J \subseteq I$ be two ideals in a ring $(R, +, \cdot)$, then $\frac{I}{J}$ is an ideal in a ring $(R, +, \cdot)$.

P

Proof:
$$\frac{I}{J} = \{x \in R : x \cdot J \subseteq I\}$$

$$\phi \neq \frac{I}{J} \subseteq R, 0 \cdot J = \{0\} \subseteq I, \{0\} \in \frac{I}{J}$$
$$x, y \in \frac{I}{J}, x = a \cdot J, y = b \cdot J$$
$$x - y = a \cdot J - b \cdot J = (a - b) \cdot J \subseteq I, x - y \in \frac{I}{J}$$
$$r \in R, r \cdot x = r \cdot (a \cdot J) = (r \cdot a) \cdot J \subseteq I$$

Hence, $\frac{I}{I}$ is an ideal in a ring $(R, +, \cdot)$.

<u>**Theorem(9-5):**</u> Let $(R, +, \cdot)$ be a commutative ring, then \sqrt{I} is an ideal in $(R, +, \cdot)$ contains *I*.

Proof: $\emptyset \neq \sqrt{I} = \{x \in R : \exists n \in \mathbb{Z}^+; x^n \in I\} \subseteq R, 0 \in I, 0 \in \sqrt{I}$

$$x, y \in \sqrt{I}, x^n \in I, y^m \in I$$
$$(x - y)^{m+n-1} \in I, x - y \in \sqrt{I}$$
$$x \in \sqrt{I}, a \in R, x^n \in I, (a \cdot x)^n \in I, a \cdot x \in \sqrt{I}$$

To show $I \subseteq \sqrt{I}$

$$y \in I, y^1 \in I, y \in \sqrt{I}$$

Example(9-6): Find $\sqrt{\langle 6 \rangle}$.

Example(9-7): Show that $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$.

Example(9-8): Let *I*, *J*, *K* be ideals in a ring $(R, +, \cdot)$ with $I \subseteq K$, then

$$I + (J \cap K) = (I + J) \cap K$$

Solution: let $x \in I + (J \cap K)$

 $\Rightarrow x = a + b \ni a \in I, b \in J \cap K \Rightarrow b \in J, b \in K$

 $b \in J \Longrightarrow x = a + b \in I + J$, also

$$b \in k, a \in I \subseteq K \Longrightarrow x = a + b \in K \Longrightarrow x = a + b \in (I + J) \cap K$$

$$\Rightarrow I + (J \cap K) \subseteq (I + J) \cap K$$

Let
$$y \in (I + J) \cap K \Longrightarrow y \in I + J, y \in K$$

 \Rightarrow y = a + b, a \in I, b \in J

 $I \subseteq K \Longrightarrow a \in K, b = y - a \in K \Longrightarrow b \in J \cap K$

 $\Rightarrow y = a + b \in I + (J \cap K)$

 $\Longrightarrow (I+J) \cap K \subseteq I + (I \cap K)$

 \implies $I + (J \cap K) = (I + J) \cap K$
10. Zero Divisors Elements and Integral Domains.

Definition(10-1): A ring $(R, +, \cdot)$ is said to have divisors of zero if there exist nonzero elements $a, b \in R$ such that the product $a \cdot b = 0$.

Theorem(10-2): A ring $(R, +, \cdot)$ is without divisors of zero if and only if the cancellation law holds for multiplication.

Proof:(\Rightarrow) Assume (R, +,·) contains no divisors of zero.

let $a, b, c \in R \ni a \neq 0, a \cdot b = a \cdot c$, then

$$a \cdot (b-c) = a \cdot b - a \cdot c = 0$$

Since $a \neq 0$, $(R, +, \cdot)$ has no zero divisors, b - c = 0 or b = c

(\Leftarrow) suppose that the cancellation law holds and $a \cdot b = 0$

If $a \neq 0$, then $a \cdot b = a \cdot 0 \Longrightarrow b = 0$.

 $b \neq 0 \Longrightarrow a = 0$

This shows $(R, +, \cdot)$ is free of divisors of zero.

<u>Corollary(10-3)</u>: Let $(R, +, \cdot)$ be a ring with identity which has no zero divisors. Then the only solutions of the equation $a^2 = a$ are a = 0 and a = 1.

Proof: if $a^2 = a = a \cdot 1$, with $a \neq 0$, then a = 1.

Definition(10-4): An integral domain is a commutative ring with identity which does not have divisors of zero.

<u>Corollary(10-5)</u>: In an integral domain, all the nonzero elements have the same additive order, which is the characteristic of the domain.

Proof: suppose the integral domain $(R, +, \cdot)$ has positive characteristic *n*.

Any $a \in R(a \neq 0)$ will then possess a finite additive order *m*, with $m \leq n$.

But $0 = ma = (m1) \cdot a \Rightarrow m1 = 0$, since $(R, +, \cdot)$ is free of zero divisors.

<u>Corollary(10-6)</u>: The characteristic of an integral domain $(R, +, \cdot)$ is either zero or a prime number.

Proof: let $(R, +, \cdot)$ be of positive characteristic *n* and assume that *n* is not a prime.

 $n = n_1 n_2$ with $1 < n_i < n(i = 1, 2)$.

 $0 = n1 = (n_1 n_2)1 = (n_1 n_2)1^2 = (n_1 1) \cdot (n_2 1).$

Since $(R, +, \cdot)$ is without zero divisors, either $n_1 1 = 0$ or $n_2 1 = 0$.

But this is contradiction, n the least positive integer such that n1 = 0.

Hence, we are led to conclude that the characteristic must be prime.

Example(10-7): Let $(M_2(R), +, \cdot)$ be a ring. Then $\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}, c, d \in R$ is a right zero divisor and $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}, a, b \in R$ is a left zero divisor in $(M_2(R), +, \cdot)$.

Solution:
$$\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Example(10-8): The number 2 is a zero divisor in a ring $(Z_4, +_4, \cdot_4)$ and the numbers 2,3 are zero divisors in a ring $(Z_6, +_6, \cdot_6)$. (check)

Example(10-9): Let $(S = \{(a, b): a, b \in \mathbb{Z}\}, +, \cdot)$ be a commutative ring with identity and define

$$(a,b) + (c,d) = (a + c, b + d)$$

 $(a,b) \cdot (c,d) = (a \cdot c, b \cdot d)$

The identity element with + is (0,0), and the identity with \cdot is (1,1).

Also, (1,0) is a zero divisor, since

$$(1,0) \cdot (0,1) = (0,0)$$

$$(0,1) \neq (0,0), (1,0) \neq (0,0).$$

Example(10-10): The triple $(\mathbb{Z}, +, \cdot)$ is an integral domain, since $(\mathbb{Z}, +, \cdot)$ is a commutative with identity.

$$x, y \in \mathbb{Z} \ni x \cdot y = 0 \Longrightarrow x = 0 \text{ or } y = 0$$
.

Example(10-11): Let $(Z_p, +_p, \cdot_p)$ be a ring, where *p* is a prime number, then $(Z_p, +_p, \cdot_p)$ is an integral domain.

Solution: the triple $(Z_p, +_p, \cdot_p)$ is a commutative with identity [1].

To show $(Z_p, +_p, \cdot_p)$ has no zero divisors.

Let $[a], [b] \in Z_p \ni [a] \cdot_p [b] = [0] \Longrightarrow [a \cdot b] = [0] \Longrightarrow \frac{p}{a \cdot b}$

But *p* is a prime number, $\Rightarrow \frac{p}{a} \text{ or } \frac{p}{b} \Rightarrow [a] = [0] \text{ or } [b] = [0].$

Example(10-12): $(M_n(R), +, \cdot)$ is not an integral domain, since it is not commutative ring.

Example(10-13): Solve the equation $x^2 - 4x + 3 = 0$ in a ring $(Z_{12}, +_{12}, \cdot_{12})$.

Solution: $x^2 - 4x + 3 = 0 \implies (x - 3)(x - 1) = 0 \implies x = 3, x = 1.$

But, in $(Z_{12}, +_{12}, \cdot_{12})$, we have

$$[0] \cdot_{12} [a] = [a] \cdot_{12} [0] = [0]$$

Since

$$2 \cdot_{12} 6 = 3 \cdot_{12} 4 = 3 \cdot_{12} 8 = 4 \cdot_{12} 9 = 6 \cdot_{12} 6 = 6 \cdot_{12} 8 = 6 \cdot_{12} 10$$
$$= 9 \cdot_{12} 8 = 0$$

So,

$$(9-3)(9-1) = 6 \cdot_{12} 8 = 0$$

 $(7-3)(7-1) = 4 \cdot_{12} 6 = 0$

Hence, {1,3,7,9} is a set of solution of $x^2 - 4x + 3 = 0$ in $(Z_{12}, +_{12}, \cdot_{12})$.

Example(10-14): Let $(R, +, \cdot)$ is an integral domain with $x, y \in R \ni x^5 = y^5$ and $x^7 = y^7$. Show that x = y.

Solution: If $x = 0 \Rightarrow x^5 = 0 \Rightarrow y^5 = 0 \Rightarrow y = 0$.

Let $x \neq 0$, $x^7 = y^7 \Longrightarrow x^5 \cdot x^2 = y^5 \cdot y^2$

 $\Rightarrow x^5 \cdot x^2 = x^5 \cdot y^2 \Rightarrow x^5 \cdot (x^2 - y^2) = 0$

Since, $(R, +, \cdot)$ is an integral domain and $x \neq 0$

$$\Rightarrow x^5 \neq 0 \Rightarrow x^2 - y^2 = 0 \Rightarrow x^2 = y^2 \Rightarrow x^6 = y^6 \dots (*)$$

 $x^7 = y^7 \Longrightarrow x^6 \cdot x = y^6 \cdot y$

By (*), we get

 $x^6 \cdot (x - y) = 0, x \neq 0, x^6 \neq 0 \Longrightarrow x - y = 0 \Longrightarrow x = y$

<u>Corollary(10-15)</u>: Let $(R, +, \cdot)$ be a ring with identity and $u \in R$ is an invertible, then u is not zero divisor.

Proof: let $r \in R \ni u \cdot r = 0 \Longrightarrow u^{-1}(u \cdot r) = u^{-1}(0) = 0$

$$\Rightarrow (u^{-1} \cdot u) \cdot r = 0 \Rightarrow 1 \cdot r = 0 \Rightarrow r = 0$$

Also,

$$r \cdot u = 0 \Longrightarrow (r \cdot u) \cdot u^{-1} = (0) \cdot u^{-1}$$

 $\Rightarrow r \cdot (u \cdot u^{-1}) = r \cdot 1 = 0 \Rightarrow r = 0.$

11. Fields and their properties

Definition(11-1): A ring $(F, +, \cdot)$ is said to be a field provided the pair $(F - \{0\}, \cdot)$ forms a commutative group.

Example(11-2): Both $(\mathbb{R}, +, \cdot)$ and $(\mathbb{Q}, +, \cdot)$ are fields. (check)

Example(11-3): The triple $(F = \{a + b\sqrt{3}: a, b \in \mathbb{Q}\}, +, \cdot)$ is a field.

$$0 = 0 + 0\sqrt{3}, \qquad 1 = 1 + 0\sqrt{3}$$

$$(a+b\sqrt{3})^{-1} = \frac{1}{(a+b\sqrt{3})} = \frac{1}{(a+b\sqrt{3})} \frac{a-b\sqrt{3}}{a-b\sqrt{3}}$$

$$= \frac{a}{a^2 - 3b^2} + \frac{-b}{a^2 - 3b^2}\sqrt{3} \in F$$

Example(11-4): The triple $(\mathbb{R} \times \mathbb{R}, +, \cdot)$, is a field. Where

$$(a,b) + (c,d) = (a + c, b + d),$$

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc).$$

The pair (1,0) is the multiplicative identity and (0,0) is the zero element of the ring.

Now, suppose $(a, b) \neq (0,0)$, either $a \neq 0$ or $b \neq 0$, so that $a^2 + b^2 > 0$; thus

$$(a,b)^{-1} = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2})$$

$$(a,b) \cdot \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{a^2 + b^2}{a^2 + b^2}, \frac{-ab + ab}{a^2 + b^2}\right) = (1,0)$$

43

Example(11-5): The field contains a subring which is isomorphic to the ring of real numbers.

$$\mathbb{R} \times 0 = \{(a, 0) : a \in \mathbb{R}\}\$$

It follows that $(\mathbb{R}, +, \cdot) \cong (\mathbb{R} \times 0, +, \cdot)$ via the mapping *f* defined by

 $f(a) = (a, 0), a \in \mathbb{R}$ (check)

Example(11-6): The triple $(Z_p, +_p, \cdot_p)$ is a field.

Let $[0] \neq [a] \in Z_p \Longrightarrow \gcd(a, p) = 1$

 $\Rightarrow \exists s, t \in \mathbb{Z} \ni a \cdot s + p \cdot t = 1$

$$\Rightarrow [a] \cdot_p [s] +_p [p] \cdot_p [t] = [1]$$

 $\Rightarrow [a] \cdot_p [s] = [1]$

 \Rightarrow [*s*] is a multiplicative inverse of [*a*].

Example(11-7): The triple $(\mathbb{C}, +, \cdot)$ is a field. (check)

Corollary(11-8): In a field $(F, +, \cdot)$, with $0 \neq a, b \in F$, then there exist a unique element *x* satisfies $a \cdot x + b = 0$.

Proof: (F, +) is an abelian group, then

 $a \cdot x + b = 0 \Leftrightarrow a \cdot x = -b \Leftrightarrow x = a^{-1}(-b) = -a^{-1} \cdot b$

Example(11-9): The triple (\mathbb{R} ,*,•) is a field, where *,• are defined by

a * b = a + b + 1, $a \circ b = a \cdot b + a + b \forall a, b \in \mathbb{R}$ (check)

Theorem(11-10): If $(F, +, \cdot)$ is a field and $a, b \in F$ with $a \cdot b = 0$, then either a = 0 or b = 0.

Proof: if a = 0, the theorem is already established.

Suppose that $a \neq 0$ and prove that b = 0.

$$a^{-1} \in F, a \cdot b = 0$$

$$0 = a^{-1} \cdot 0 = a^{-1} \cdot (a \cdot b) = (a^{-1} \cdot a) \cdot b = 1 \cdot b = b.$$

12. More Results of Fields and Integral Domains.

Theorem(12-1): Any finite integral domain $(R, +, \cdot)$ is a field.

Proof: suppose $a_1, a_2, ..., a_n \in R$ and $0 \neq a \in R$

 $a \cdot a_1, a \cdot a_2, ..., a \cdot a_n$ are all distinct, for if $a \cdot a_i = a \cdot a_j$, then $a_i = a_j$ by the cancellation law. So each element of R is of the form $a \cdot a_i$. In particular, $\exists a_i \in R \ni a \cdot a_i = 1$; since multiplication is commutative,

we have $a_i = a^{-1}$. This shows that every nonzero element of *R* is invertible, so $(R, +, \cdot)$ is a field.

Example(12-2): Prove or disprove, every integral domain is a field.(**check**)

Example(12-3): Prove or disprove, every ring is a field.(check)

Example(12-4): Prove or disprove, every ring is an integral domain.(check)

<u>Theorem(12-5)</u>: The ring $(Z_n, +_n, \cdot_n)$ of integers modulo *n* is a field if and only if *n* is a prime number.

Proof: We first show that if *n* is not prime, then $(Z_n, +_n, \cdot_n)$ is not a field.

Thus assume $n = a \cdot b$, where 0 < a < n and 0 < b < n.

 $[a] \cdot_n [b] = [a \cdot b] = [n] = [0],$

Both $[a] \neq 0$, $[b] \neq 0$. This means that $(Z_n, +_n, \cdot_n)$ is not an integral domain, and hence not a field.

Suppose that *n* is a prime number. To show that $(Z_n, +_n, \cdot_n)$ is a field.

46

Let $[a] \in Z_n$, where $0 < a < n.gcm(a, n) = 1 \implies \exists r, s \in \mathbb{Z} \ni a \cdot r + n \cdot s = 1$

 $[a] \cdot_n [r] = [a \cdot r] +_n [0] = [a \cdot r] +_n [n \cdot s] = [a \cdot r + n \cdot s] = [1],$

Showing the congruence class [r] to be the multiplicative inverse of [a].

Therefore, $(Z_n, +_n, \cdot_n)$ is a field.

Theorem(12-6): Let $(R, +, \cdot)$ be a commutative ring with identity. Then $(R, +, \cdot)$ is a field if and only if $(R, +, \cdot)$ has no nontrivial ideals.

Proof: (\Rightarrow) Assume first that $(R, +, \cdot)$ is a field. We wish to show that the trivial ideals ($\{0\}, +, \cdot$) and $(R, +, \cdot)$ are its only ideals.

Let $(I, +, \cdot)$ be nontrivial ideal of $(R, +, \cdot) \Longrightarrow I \neq \{0\}$ and $I \neq R$

 $\Rightarrow \exists 0 \neq a \in I, \text{ since } (R, +, \cdot) \text{ is a field} \Rightarrow \exists a^{-1} \in R \ni a^{-1} \cdot a = 1 \in I \Rightarrow I = R$

But, this is contradiction.

(\Leftarrow) suppose that (R, +,·) has no nontrivial ideals.

Let $a \in R$, consider the principal idea ($\langle a \rangle$, +,·) generated by a:

$$\langle a \rangle = \{ r \cdot a : r \in R \}$$

Now $(\langle a \rangle, +, \cdot)$ cannot be the zero ideal, since $a = a \cdot 1 \in \langle a \rangle$, with $a \neq 0$.

If $(\langle a \rangle, +, \cdot) = (R, +, \cdot)$: that is, $\langle a \rangle = R$, since $1 \in \langle a \rangle, \exists r' \in R \ni r' \cdot a = 1$

 \Rightarrow $r' = a^{-1}$

Hence each nonzero element of R has a multiplicative inverse in R.

Theorem(12-7): Let f be a homomorphism from the field $(F, +, \cdot)$ onto the field $(F', +', \cdot')$. Then either f is the trivial homomorphism or else $(F, +, \cdot)$ and $(F', +', \cdot')$ are isomorphic.

Proof: since $(kerf, +, \cdot)$ is an ideal of $(F, +, \cdot)$, either $kerf = \{0\}$ or kerf = F.

If $kerf = \{0\} \Longrightarrow f$ is a one-to-one, in which case $(F, +, \cdot) \cong (F', +', \cdot')$ via f.

If kerf = F, then each element of $(F, +, \cdot)$ must map onto zero; that is, *f* is the trivial homomorphism.

Definition(12-8): By a subfield of the field $(F, +, \cdot)$ is meant any subring $(F', +, \cdot)$ of $(F, +, \cdot)$ which is itself a field.

Example(12-9): The ring $(\mathbb{Q}, +, \cdot)$ is a subfield of the field $(\mathbb{R}, +, \cdot)$.

<u>Theorem(12-10)</u>: The triple $(F', +, \cdot)$ is a subfield of $(F, +, \cdot)$ if and only if the following hold:

- (1) F' is a nonempty subset of F with at least one nonzero element.
- (2) $a, b \in F'$ implies $a b \in F'$.
- (3) $a, b \in F'$, where $b \neq 0$, implies $a \cdot b^{-1} \in F'$.

Theorem(12-11): Let the integral domain $(R, +, \cdot)$ be a subring of the field $(F, +, \cdot)$. If the set F' is defined by

$$F' = \{a \cdot b^{-1} : a, b \in R; b \neq 0\},\$$

then the triple $(F', +, \cdot)$ forms a subfield of $(F, +, \cdot)$ such that $R \subseteq F'$. In fact, $(F', +, \cdot)$ is the smallest subfield containing *R*.

Proof: if $a, b \in R$ with $b \neq 0$, $a \cdot b^{-1} \in F$

Since $1 = 1 \cdot 1^{-1} \in F', F' \neq \emptyset$

Let $x, y \in F'$, we have

$$x = a \cdot b^{-1}, y = c \cdot d^{-1}, a, b, c, d \in R, b \neq 0, d \neq 0$$

$$x - y = (a \cdot d - b \cdot c) \cdot (b \cdot d)^{-1} \in F'$$

If $y \neq 0, c \neq 0$,

$$x \cdot y^{-1} = (a \cdot d) \cdot (c \cdot b)^{-1} \in F'$$

Note(12-12): Let $(R, +, \cdot)$ be an integral domain and K the set of ordered pairs,

$$K = \{(a, b) : a, b \in R; b \neq 0\}.$$
$$(a, b) \equiv (c, d) \Leftrightarrow a \cdot d = b \cdot c$$

Theorem(12-13): The relation \equiv is an equivalence relation in *K*.(check

1,2)

That is to say

(1)
$$(a,b) \equiv (a,b),$$

(2) If
$$(a,b) \equiv (c,d)$$
, then $(c,d) \equiv (a,b)$,

(3) If
$$(a, b) \equiv (c, d)$$
 and $(c, d) \equiv (e, f)$, then $(a, b) \equiv (e, f)$.

The least obvious statement is (3). In this case, the hypothesis $(a, b) \equiv$ (c, d) and $(c, d) \equiv (e, f)$ implies that

$$a \cdot d = b \cdot c, \ c \cdot f = d \cdot e.$$

μ

Multiplying the first of these equations by f and the second by b, we obtain

$$a \cdot d \cdot f = b \cdot c \cdot f = b \cdot d \cdot e,$$

and, from the commutativity of multiplication, $a \cdot f \cdot d = b \cdot e \cdot d$. Since $d \neq 0$, this factor may be cancelled to yield $a \cdot f = b \cdot e$. But then $(a, b) \equiv (e, f)$.

<u>Note(12-14)</u>: We label those elements which are equivalent to the pair (a, b) by the symbol [a, b]; in other words,

 $[a, b] = \{(c, d) \in K : (a, b) \equiv (c, d)\}$ $= \{(c, d) \in K : a \cdot d = b \cdot c\}.$ $[a, b] + '[c, d] = [a \cdot d + b \cdot c, b \cdot d],$ $[a, b] \cdot '[c, d] = [a \cdot c, b \cdot d].$

let [a, b] = [a', b'] and [c, d] = [c', d']. From the equations

$$a \cdot b' = b \cdot a', \qquad c \cdot d' = d \cdot c'$$

it follows that

$$(a \cdot d + c \cdot b) \cdot (b' \cdot d') - (a' \cdot d' + c' \cdot b') \cdot (b \cdot d)$$

$$= (a \cdot b' - b \cdot a') \cdot (d \cdot d') + (c \cdot d' - d \cdot c') \cdot (b \cdot b')$$
$$= 0 \cdot (d \cdot d') + 0 \cdot (b \cdot b') = 0$$

Thus, by the definition of equality of classes,

$$[a \cdot d + c \cdot b, b \cdot d] = [a' \cdot d' + c' \cdot b', b' \cdot d'],$$

Proving addition to be well-defined. In much the same way, one can show that

$$[a \cdot c, b \cdot d] = [a' \cdot c', b' \cdot d'].$$

Lemma(12-15): The triple $(F, +', \cdot')$ is a field, generally known as the field of quotients of the integral domain $(R, +, \cdot)$.

Proof: the multiplicative identity , where *a* is any nonzero element is

$$[a,a] \cdot ' [c,d] = [a \cdot c, a \cdot d] = [c,d]$$

with [*c*, *d*] in *F*.

[0, b] as the zero element while [-a, b] is the negative of [a, b].

To show $[a, b] \neq [0, b]$, $a \neq 0$ has an inverse under multiplication.

$$[a,b] \cdot' [b,a] = [a \cdot b, b \cdot a] = [a \cdot b, a \cdot b].$$

Since $a \cdot b \neq 0$, $[a \cdot b, a \cdot b]$ is the identity element, so that $[a, b]^{-1} = [b, a]$.

Theorem(12-16): The integral domain $(R, +, \cdot)$ can be embedded in its field of quotients $(F, +', \cdot')$.

Proof: Consider the subset F' of F consisting of all element of the form [a, 1],

Where 1 is the multiplicative identity of $(R, +, \cdot)$:

$$F' = \{[a, 1]: a \in R\}$$

Let $f: R \longrightarrow F'$ be the onto mapping defined by

$$f(a) = [a, 1], \forall a \in R$$

Since [a, 1] = [b, 1] implies $a \cdot 1 = 1 \cdot b$ or a = b, we see that *f* is a one-to-one function.

$$f(a+b) = [a+b,1] = [a,1] + '[b,1] = f(a) + 'f(b),$$

$$f(a \cdot b) = [a \cdot b, 1] = [a, 1] \cdot '[b, 1] = f(a) \cdot 'f(b).$$

Therefore, $(R, +, \cdot) \cong (F, +', \cdot')$.

Note(12-17): Any member [a, b] of F can be written in the form

$$[a, b] = [a, 1] \cdot [1, b] = [a, 1] \cdot [b, 1]^{-1}.$$

Note(12-18): It should also be observed that for any $a \neq 0$, we have

$$[a, 1] \cdot [b, a] = [a \cdot b, a] = [b, 1].$$

Note(12-19): The field of quotients constructed from the integral domain $(\mathbb{Z}, +, \cdot)$ is, of course, the rational number field $(\mathbb{Q}, +, \cdot)$.

Definition(12-20): A field which does not have any proper subfields is called a prime field.

Example(12-21): The field of rational numbers, $(\mathbb{Q}, +, \cdot)$, is a prime field. To see this, suppose $(F, +, \cdot)$ is a subfield of $(\mathbb{Q}, +, \cdot)$ and let $0 \neq a \in F$. Since $(F, +, \cdot)$ is a subfield, it must contain the product $a \cdot a^{-1} = 1$. $n = n \cdot 1^{-1} \in F \quad \forall n \in \mathbb{Z}$: in other words, F contains all the integers. It follows then that every rational number $\frac{n}{m} = n \cdot m^{-1}, m \neq 0$, also belongs to F, so that $F = \mathbb{Q}$.

Example(12-22): For every prime p, the field $(Z_p, +_p, \cdot_p)$ of integers modulo p is a prime field. The reasoning here depends on the fact that the

additive group $(Z_p, +_p)$ of $(Z_p, +_p, \cdot_p)$ is a finite group of prime order, and therefore has no nontrivial subgroups.

Theorem(12-23): Any prime field $(F, +, \cdot)$ is isomorphic either to $(\mathbb{Q}, +, \cdot)$, the field of rational numbers, or to one of the fields $(Z_p, +_p, \cdot_p)$, where *p* is a prime number.

Proof: let 1 be the identity element of $(F, +, \cdot)$ and define the mapping $f: \mathbb{Z} \to F$ by

$$f(n) = n1 \ \forall n \in \mathbb{Z}$$

Then *f* is a homomorphism from $(\mathbb{Z}, +, \cdot)$ onto the subring $(f(\mathbb{Z}), +, \cdot)$ consisting of integral multiples of 1, we see that

$$\left(\frac{\mathbb{Z}}{kerf},+,\cdot\right)\cong(f(\mathbb{Z}),+,\cdot).$$

But the triple $(kerf, +, \cdot)$ is an ideal of $(\mathbb{Z}, +, \cdot)$ a principal ideal ring, $kerf = \langle n \rangle$ for some nonnegative integer n. if $n \neq 0$, then n must in fact be a prime. Suppose $n = n_1 n_2$ where $1 < n_i < n(i = 1, 2)$. Since $n \in kerf$,

$$(n_11) \cdot (n_21) = (n_1n_2)1 = n1 = 0,$$

yielding the contradiction that the field $(F, +, \cdot)$ has divisors of zero.

Therefore, *n* is the characteristic of $(F, +, \cdot)$ and as such must be prime. So

(1)
$$(f(\mathbb{Z}), +, \cdot) \cong \left(\frac{\mathbb{Z}}{\langle p \rangle}, +, \cdot\right) = (Z_p, +_p, \cdot_p)$$
 for some prime p , or

(2)
$$(f(\mathbb{Z}), +, \cdot) \cong \left(\frac{\mathbb{Z}}{\langle 0 \rangle}, +, \cdot\right) = (\mathbb{Z}, +, \cdot).$$

Suppose first that $(f(\mathbb{Z}), +, \cdot) \cong (Z_p, +_p, \cdot_p)$ the subring $(f(\mathbb{Z}), +, \cdot)$ must itself be a field. But $(F, +, \cdot)$ contains no proper subfield. $f(\mathbb{Z}) = F$ and $(F, +, \cdot) \cong (Z_p, +_p, \cdot_p)$.

Next, $(f(\mathbb{Z}), +, \cdot) \cong (\mathbb{Z}, +, \cdot)$, the subring $(f(\mathbb{Z}), +, \cdot)$ is an integral domain, but not a field. The hypothesis $(F, +, \cdot)$ is a prime field, then implies

$$F = \{a \cdot b^{-1} : a, b \in f(\mathbb{Z}); b \neq 0\}$$
$$= \{(n1) \cdot (m1)^{-1} : n, m \in \mathbb{Z}; m \neq 0\}.$$

The fields $(F, +, \cdot)$ and $(\mathbb{Q}, +, \cdot)$ are isomorphic under the mapping $g\left(\frac{n}{m}\right) = (n1) \cdot (m1)^{-1}$.

Corollary(12-24): Every field contains a subfield which isomorphic either to the field $(\mathbb{Q}, +, \cdot)$ or to one of the fields $(Z_p, +_p, \cdot_p)$, *p* a prime.

13. Maximal Ideals. Examples, Properties and Results.

Definition(13-1): An ideal $(I, +, \cdot)$ of the ring $(R, +, \cdot)$ is a maximal ideal provided $I \neq R$ and whenever $(J, +, \cdot)$ is an ideal of $(R, +, \cdot)$ with $I \subset J \subseteq R$, then J = R.

<u>Theorem(13-2)</u>: Let $(\mathbb{Z}, +, \cdot)$ be the ring of integers and n > 1. Then the principal ideal $(\langle n \rangle, +, \cdot)$ is maximal if and only if *n* is a prime number.

Proof: (\Rightarrow) suppose ($\langle n \rangle, +, \cdot$) is a maximal ideal of ($\mathbb{Z}, +, \cdot$). If the integer *n* is not prime, then $n = n_1 n_2$, where $1 < n_1 \le n_2 < n$. This implies the ideals ($\langle n_1 \rangle, +, \cdot$) and ($\langle n_2 \rangle, +, \cdot$) are such that

$$\langle n \rangle \subset \langle n_1 \rangle \subset \mathbb{Z}, \qquad \langle n \rangle \subset \langle n_2 \rangle \subset \mathbb{Z},$$

contrary to the maximality of $(\langle n \rangle, +, \cdot)$

 (\Leftarrow) assume that *n* is prime.

If the ideal $(\langle n \rangle, +, \cdot)$ is not maximal in $(\mathbb{Z}, +, \cdot)$, then either $\langle n \rangle = \mathbb{Z}$ or else there exists some proper ideal $(\langle m \rangle, +, \cdot)$ with $\langle n \rangle \subset \langle m \rangle \subset \mathbb{Z}$. The first case is immediately ruled out by the fact that 1 is not a multiple of a prime number.

The alternative possibility $\langle n \rangle \subset \langle m \rangle$ means n = km for some integer k > 1; this also is untenable, since *n* is prime, not composite. We therefore conclude that $(\langle n \rangle, +, \cdot)$ is a maximal ideal.

Example(13-3): Let *R* denote the collection of all functions $f : \mathbb{R} \to \mathbb{R}$. For two such functions *f* and *g*, we have

$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x)g(x), x \in \mathbb{R}.$$

Then $(R, +, \cdot)$ is a commutative ring with identity. Consider

$$M = \{ f \in R : f(0) = 0 \}.$$

The triple $(M, +, \cdot)$ forms an ideal of $(R, +, \cdot)$; we observe that it is a maximal ideal.

Zorns Lemma(13-4): Let *M* be a nonempty family of subsets of some fixed set with the property that for each chain χ in *M*, the union $\bigcup \chi$ also belongs to *M*. Then *M* contains a set which is maximal in the sense that it is not properly contained in any member of *M*.

<u>**Theorem(13-5):</u>** (Krull-Zorn). In a commutative ring with identity, each proper ideal is contained in a maximal ideal.</u>

Proof: let $(I, +, \cdot)$ be any proper ideal of $(R, +, \cdot)$. Define

 $M = \{J: I \subseteq J; (J, +, \cdot) \text{ is a proper ideal of } (R, +, \cdot)\}.$

 $M \neq \emptyset$, since $I \in M$. Let a chain $\{I_i\}$ in M. Notice that $\bigcup I_i \neq R$, since $1 \notin I_i$ for any i.

Let $a, b \in \bigcup I_i$ and $r \in R \implies \exists i, j$ for which $a \in I_i, b \in I_j$

The collection $\{I_i\}$ forms a chain, either $I_i \subseteq I_j$ or else $I_j \subseteq I_i$; say, for definiteness, $I_i \subseteq I_j$. But $(I_j, +, \cdot)$ is an ideal, so $a - b \in I_j \subseteq \bigcup I_i$. For the same reason, $r \cdot a \in I_j$. This shows the triple $(\bigcup I_i, +, \cdot)$ to be a proper ideal of the ring $(R, +, \cdot)$. $I \subseteq \bigcup I_i$, hence $\bigcup I_i \in M$.

Thus, on the basis of Zorns Lemma, M contains a maximal element N. The triple $(N, +, \cdot)$ is a proper ideal of the ring $(R, +, \cdot)$ with $I \subseteq N$. $(N, +, \cdot)$ is a maximal ideal. To see this, suppose $(J, +, \cdot)$ is any ideal of $(R, +, \cdot)$ for which $N \subset J \subseteq R$. Since N is a maximal element of M, the set $J \notin M$, the ideal $(J, +, \cdot)$ must be improper, which implies J = R. We therefore conclude $(N, +, \cdot)$ is a maximal ideal of $(R, +, \cdot)$.

<u>Corollary(13-6)</u>: An element is invertible if and only if it belongs to no maximal ideal.

Definition(13-7): Let $(R, +, \cdot)$ be a ring and $a \in R$, then *a* is said to be an idempotent element, if $a^2 = a$.

Theorem(13-8): In a ring $(R, +, \cdot)$ having exactly one maximal ideal $(M, +, \cdot)$, the only idempotent elements are 0 and 1.

Proof: assume the theorem is false; that is, suppose there exists an idempotent $a \in R$ with $a \neq 0,1$. The relation $a^2 = a$ implies $a \cdot (1 - a) = 0$, so that a and 1 - a are zero divisors. Hence, neither the element a nor 1 - a is invertible in R. But this means the principle ideals $(\langle a \rangle, +, \cdot)$ and $(\langle 1 - a \rangle, +, \cdot)$ are both proper ideals of the ring $(R, +, \cdot)$. As such, they must be contained in $(M, +, \cdot)$: $\langle a \rangle \subseteq M$ and $\langle 1 - a \rangle \subseteq M$, both a and 1 - a lie in M,

$$1 = a + (1 - a) \in M$$

This leads at once to the contradiction M = R.

Theorem(13-9): Let $(I, +, \cdot)$ be a proper ideal of the commutative ring $(R, +, \cdot)$ with identity. Then $(I, +, \cdot)$ is a maximal ideal if and only if the quotient ring $\left(\frac{R}{I}, +, \cdot\right)$ is a field.

Proof: (\Rightarrow) let $(I, +, \cdot)$ be a maximal ideal of $(R, +, \cdot)$. Since $(R, +, \cdot)$ is a commutative ring with identity, the quotient ring $\left(\frac{R}{I}, +, \cdot\right)$ also has these properties. If $a + I \neq 0 + I$, then $a \notin I$. The ideal $(\langle I, a \rangle, +, \cdot)$ generated by I and a must be the whole ring $(R, +, \cdot)$:

$$R = \langle I, a \rangle = \{i + r \cdot a : i \in I, r \in R\}.$$

The identity element 1, $1 = i' + r' \cdot a$, $1 - r' \cdot a \in I$

$$1 + I = r' \cdot a + I = (r' + I) \cdot (a + I),$$

 $r' + I = (a + I)^{-1}$. Hence $\left(\frac{R}{I}, +, \cdot\right)$ is a field.

(⇐) suppose $\left(\frac{R}{I}, +, \cdot\right)$ is a field and $(J, +, \cdot)$ is any ideal of $(R, +, \cdot)$ such that $I \subset J \subseteq R$. Since *I* is a proper subset of *J*, there exists an element $a \in J$ with $a \notin I$. The coset $a + I \neq 0 + I$. $\left(\frac{R}{I}, +, \cdot\right)$ is a field,

$$(a+I)\cdot(b+I) = 1+I$$

for some coset $b + I \in \frac{R}{I}$. $1 - a \cdot b \in I \subset J$. But $a \cdot b \in J, 1 \in J, J = R$.

Example(13-10): Consider the ring of even integers $(\mathbb{Z}_e, +, \cdot)$, a commutative ring without identity. In this ring, the principle ideal $(\langle 4 \rangle, +, \cdot)$ generated by the integer 4 is a maximal ideal.

Solution: if *n* is any element not in $\langle 4 \rangle$, then *n* is an even integer not divisible by 4; the greatest common divisor of *n* and 4 must be 2. We have

$$\langle \langle 4 \rangle, n \rangle = \langle 2 \rangle = \mathbb{Z}_e,$$

This reasoning shows that there is no ideal of $(\mathbb{Z}_e, +, \cdot)$ contained between $(\langle 4 \rangle, +, \cdot)$ and $(\mathbb{Z}_e, +, \cdot)$.

Now note that in $\left(\frac{\mathbb{Z}_e}{\langle 4 \rangle}, +, \cdot\right)$,

$$(2 + \langle 4 \rangle) \cdot (2 + \langle 4 \rangle) = 0 + \langle 4 \rangle.$$

The ring $\left(\frac{\mathbb{Z}_e}{\langle 4 \rangle}, +, \cdot\right)$ therefore has divisors of zero and cannot be a field.

<u>Definition(13-10)</u>: Let $(R, +, \cdot)$ be a ring and $a \in R$, then *a* is said to be a nilpotent element, if there exists a positive integer *n* such that $a^n = 0$.

Example(13-11): Find the set of all nilpotent elements of $(\mathbb{Z}, +, \cdot)$ and $(\mathbb{Z}_9, +_9, \cdot_9)$.

Example(13-12): If $(R, +, \cdot)$ is an integral domain, then the zero element is the only nilpotent of *R*.

Example(13-13): The converse of example (13-12) is no true in general, for example $0 \in Z_6$ is a nilpotent, but $(Z_6, +_6, \cdot_6)$ is not an integral domain.

Example(13-14): Let $(R, +, \cdot)$ be a ring and $a \in R$. If a is a nilpotent and $a \neq 0$, then a is a zero divisor.

Example(13-15): The converse of example (13-14) is not true in general, for example $2 \in Z_6$ is a zero divisor, but it is not nilpotent.

Example(13-16): Find the set of idempotent elements in $(\mathbb{Z}, +, \cdot)$ and $(\mathbb{Z}_6, +_6, \cdot_6)$.

Example(13-17): Find all the maximal ideals in $(Z_{12}, +_{12}, \cdot_{12})$.

14. Prime Ideals. Examples, Properties and Results.

Definition(14-1): An ideal $(I, +, \cdot)$ of the ring $(R, +, \cdot)$ is a prime ideal if for all $a, b \in R, a \cdot b \in I$ implies either $a \in I$ or $b \in I$.

Example(14-2): The prime ideals of the ring $(\mathbb{Z}, +, \cdot)$ are precisely the ideals $(\langle p \rangle, +, \cdot)$, where *p* is a prime number, together with the trivial ideals $(\{0\}, +, \cdot)$ and $(\mathbb{Z}, +, \cdot)$.

Theorem(14-3): A commutative ring with identity $(R, +, \cdot)$ is an integral domain if and only if the zero ideal $(\{0\}, +, \cdot)$ is a prime ideal.

Proof: (\Longrightarrow) if $(R, +, \cdot)$ is an integral domain

Let $a, b \in R$ and $a, b \in \{0\} \Rightarrow a, b = 0 \Rightarrow$ either a = 0 or b = 0, since $(R, +, \cdot)$ is an integral domain $\Rightarrow a \in \{0\}$ or $b \in \{0\} \Rightarrow \{0\}$ is a prime ideal (\Leftarrow) let $\{0\}$ is a prime ideal and $a, b = 0 \Rightarrow a, b \in \{0\} \Rightarrow$ either $a \in \{0\}$ or $b \in \{0\}$, since $\{0\}$ is a prime ideal $\Rightarrow a = 0$ or $b = 0 \Rightarrow (R, +, \cdot)$ is an integral domain.

Example(14-4): Let $(F, +, \cdot)$ be a field, then $(\{0\}, +, \cdot)$ and $(F, +, \cdot)$ are only prime ideals in $(F, +, \cdot)$.

Example(14-5): the triples $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$ and $(Z_p, +_p, \cdot_p)$, where *p* is a prime have trivial prime ideals.

Example(14-6): The prime ideals of $(\mathbb{Z}, +, \cdot)$ are $(\langle p \rangle, +, \cdot), (\{0\}, +, \cdot)$ and $(\mathbb{Z}, +, \cdot)$.

Example(14-7): In $(Z_n, +_n, \cdot_n)$, an ideal $(\langle p \rangle, +, \cdot)$ is a prime.

Example(14-8): The prime ideals of $(Z_{12}, +_{12}, \cdot_{12})$ are $(\langle 2 \rangle, +_{12}, \cdot_{12})$ and $(\langle 3 \rangle, +_{12}, \cdot_{12})$.

Example(14-9): Find all prime and maximal ideals of $(Z_{15}, +_{15}, \cdot_{15})$.

<u>Theorem(14-10)</u>: Let $(I, +, \cdot)$ be a proper ideal of the commutative ring $(R, +, \cdot)$ with identity. Then $(I, +, \cdot)$ is a prime ideal if and only if the quotient ring $\left(\frac{R}{I}, +, \cdot\right)$ is an integral domain.

Proof: (\Rightarrow) take (I, +, \cdot) is a prime ideal. Since (R, +, \cdot) is a commutative ring with identity, so is the quotient ring $\left(\frac{R}{I}, +, \cdot\right)$. Assume that

$$(a+I)\cdot(b+I) = I = a\cdot b + I$$

 $a \cdot b \in I$. Since $(I, +, \cdot)$ is a prime ideal, $a \in I$ or $b \in I$. But this means either a + I = I or b + I = I, hence $\left(\frac{R}{I}, +, \cdot\right)$ is without zero divisors.

(⇐) suppose $\left(\frac{R}{I}, +, \cdot\right)$ is an integral domain and $a \cdot b \in I$.

$$(a+I)\cdot(b+I) = a\cdot b + I = I.$$

By hypothesis, $\left(\frac{R}{I}, +, \cdot\right)$ contains no divisors of zero, so that either a + I = I or b + I = I. So $a \in I$ or $b \in I$, therefore $(I, +, \cdot)$ is a prime ideal.

Theorem(14-11): In a commutative ring with identity, every maximal ideal is a prime ideal.

Proof: Assume($I, +, \cdot$) is a maximal ideal of the ring ($R, +, \cdot$) and that $a \cdot b \in I$ with $a \notin I$. ($I, +, \cdot$) is a maximal implies that $R = \langle I, a \rangle$. Hence there exist elements $i \in I, r \in R$ for which

$$1 = i + r \cdot a.$$

Since both $a \cdot b$ and *i* are in *I*, we conclude

$$b = (i + r \cdot a) \cdot b = i \cdot b + r \cdot (a \cdot b) \in I,$$

from which it is clear that $(I, +, \cdot)$ is a prime ideal.

Example(14-12): The ring $(\mathbb{Z}_e, +, \cdot)$, where $(\langle 4 \rangle, +, \cdot)$ forms a maximal ideal which is not prime.

Theorem(14-13): Let $(R, +, \cdot)$ be a principal ideal domain. A (nontrivial) ideal of $(R, +, \cdot)$ is prime if and only if it is a maximal ideal.

Proof: (\Rightarrow) suppose $(I, +, \cdot)$ is any ideal with $\langle a \rangle \subset I \subseteq R$. Since $(R, +, \cdot)$ is a principal ideal ring, there exists $b \in R$ for which $I = \langle b \rangle$. Now $a \in I = \langle b \rangle$, hence $a = r \cdot b, r \in R$. But $(\langle a \rangle, +, \cdot)$ is a prime ideal, so either $r \in \langle a \rangle$ or $b \in \langle a \rangle$. $b \in \langle a \rangle$ leads to the contradiction $\langle b \rangle \subseteq \langle a \rangle$. Therefore $r \in \langle a \rangle$, which implies $r = s \cdot a, s \in R$, or $a = r \cdot b = (s \cdot a) \cdot b$. Since $a \neq 0$ and $(R, +, \cdot)$ is an integral domain, we have $1 = s \cdot b$. This means

 $1 \in \langle b \rangle = I$, or I = R. Since no ideal lies between $(\langle a \rangle, +, \cdot)$ and $(R, +, \cdot)$, we conclude that $(\langle a \rangle, +, \cdot)$ is a maximal ideal.

(\Leftarrow) from theorem (14-5).

Corollary(14-14): A nontrivial ideal of the ring $(\mathbb{Z}, +, \cdot)$ is prime if and only if it is maximal.

Definition(14-15): A nonzero element *a* of the ring $(R, +, \cdot)$ is called a prime element of *R* if *a* is not invertible and in every factorization $a = b \cdot c$ with $b, c \in R$, either *b* or *c* is invertible.

Theorem(14-16): Let $(R, +, \cdot)$ be a principal ideal domain. The ideal $(\langle a \rangle, +, \cdot)$ is a prime (maximal) ideal of $(R, +, \cdot)$ if and only if *a* is a prime element of *R*.

Proof: (\Leftarrow) suppose *a* is a prime element of *R* and $(I, +, \cdot)$ is any ideal for which $\langle a \rangle \subset I \subseteq R$. By hypothesis, $(R, +, \cdot)$ is a principal ideal ring, so there is $b \in R$ with $I = \langle b \rangle$. As $a \in \langle b \rangle$, $a = r \cdot b$ for some $r \in R$. Since *a* is a prime element that either *r* or *b* is invertible. $b = r^{-1} \cdot a \in \langle a \rangle$, which implies $I = \langle b \rangle \subseteq \langle a \rangle$, an obvious contradiction. The element *b* must be invertible, so that $\langle b \rangle = R$. This argument shows that $(\langle a \rangle, +, \cdot)$ is a maximal ideal of $(R, +, \cdot)$ and prime.

(⇒) Let $(\langle a \rangle, +, \cdot)$ be a prime ideal of $(R, +, \cdot)$. Assume that *a* is not a prime element of *R*. Then $a = b \cdot c$, where $b, c \in R$, and neither *b* nor *c* is invertible. Now if $b \in \langle a \rangle, b = r \cdot a, r \in R$, and $a = b \cdot c = (r \cdot a) \cdot c$. From the cancellation law, $r \cdot c = 1$. But this contradiction that *c* is invertible. By the same reasoning, if *c* lies in $\langle a \rangle$, then $b \cdot c \in \langle a \rangle$, with $b \notin \langle a \rangle, c \notin \langle a \rangle, (\langle a \rangle, +, \cdot)$ is a prime ideal. Hence our supposition is false and *a* must be a prime element of *R*.

Definition(14-17): The radical of a ring $(R, +, \cdot)$, denoted by rad *R*, is the set

rad $R = \bigcap \{M: (M, +, \cdot) \text{ is a maximal ideal of } (R, +, \cdot)\}$.

If rad $R = \{0\}$, then we say $(R, +, \cdot)$ is a ring without radical or is a semisimple ring.

Example(14-18): The ring of integers $(\mathbb{Z}, +, \cdot)$ is a semisimple ring.

Solution: the maximal ideals of $(\mathbb{Z}, +, \cdot)$ are the principal ideals $(\langle p \rangle, +, \cdot)$, where *p* is a prime; that is,

rad $\mathbb{Z} = \bigcap \{ \langle p \rangle : p \text{ a prime number} \}.$

Since no nonzero integer is divisible by every prime, rad $\mathbb{Z} = \{0\}$.

Example(14-19): Find rad (Z_{15}) and rad (Z_{23}) .

Theorem(14-20): Let $(I, +, \cdot)$ be an ideal of the ring $(R, +, \cdot)$. Then the set $I \subseteq \operatorname{rad} R$ if and only if each element of the coset 1 + I has an inverse in R.

Proof: (\Rightarrow) assume that $I \subseteq \operatorname{rad} R$ and that there is $a \in I$, for which 1 + a is not invertible. The element 1 + a must belong to some maximal ideal $(M, +, \cdot)$ of the ring $(R, +, \cdot)$. Since $a \in \operatorname{rad} R$, $a \in M$, and therefore $1 = (1 + a) - a \in M$. But this means M = R, which is clearly impossible.

(⇐) suppose each element of the coset 1 + I has an inverse in R, but $I \nsubseteq$ rad R. There exist a maximal ideal $(M, +, \cdot)$ of $(R, +, \cdot)$ with $I \nsubseteq M$. If $a \in I$, $a \notin M$, $\langle M, a \rangle = R$.

 $1 = m + r \cdot a$

Let $m \in M, r \in R, m = 1 - r \cdot a \in 1 + I$, so that *m* possesses an inverse. The conclusion is untenable, since no proper ideal contains an invertible element.

<u>Theorem(14-21)</u>: In any ring $(R, +, \cdot)$ an element $a \in \operatorname{rad} R$ if and only if $1 + r \cdot a$ has an inverse for each $r \in R$.

<u>Corollary(14-22)</u>: An element *a* is invertible in the ring $(R, +, \cdot)$ if and

only if the coset $a + \operatorname{rad} R$ is invertible in the quotient ring $\left(\frac{R}{\operatorname{rad} R}, +, \cdot\right)$.

Proof: (\Leftarrow) assume the coset $a + \operatorname{rad} R$ has an inverse in $\left(\frac{R}{\operatorname{rad} R}, +, \cdot\right)$, so

that

$$(a + \operatorname{rad} R) \cdot (b + \operatorname{rad} R) = 1 + \operatorname{rad} R$$

for some $b \in R$. Then $a \cdot b - 1 \in \text{rad } R$. With r = 1, to conclude that $a \cdot b = 1 + 1 \cdot (a \cdot b - 1)$ is invertible: this means *a* has an inverse.

 (\Rightarrow) (check)

Corollary(14-23): The only idempotent in the radical of the ring $(R, +, \cdot)$ is 0.

Proof: let $a \in rad(R)$ with $a^2 = a$. Taking r = -1 in the preceding theorem, we see that 1 - a has an inverse in *R*; say

$$(1-a) \cdot b = 1, b \in R$$

 $a = a^2 + a \cdot b - a \cdot b = a \cdot (a + a \cdot b - b) = a \cdot (a - 1) = 0$

<u>Corollary(14-24)</u>: Let *N* denote the set of all noninvertible elements of *R*. Then the triple $(N, +, \cdot)$ is an ideal of the ring $(R, +, \cdot)$ if and only if $N = \operatorname{rad} R$.

Proof: (\Rightarrow) rad $R \subseteq N$ clearly holds. Suppose $a \in N$. ($N, +, \cdot$) is an ideal of the ring ($R, +, \cdot$), then $r \cdot a \in N, r \in R$. $1 + r \cdot a \notin N$, for otherwise

$$1 = (1 + r \cdot a) - (r \cdot a) \in N$$

So $1 + r \cdot a$ must be invertible, $a \in rad R$. This shows $N \subseteq rad R$, then N = rad R.

 (\Leftarrow) is clear.

<u>Theorem(14-25)</u>: For any ring $(R, +, \cdot)$, the quotient ring $\left(\frac{R}{\operatorname{rad} R}, +, \cdot\right)$ is semisimple.

Proof: suppose $a + I \in rad\left(\frac{R}{I}\right)$

 $(1+I) + (r+I) \cdot (a+I) = 1 + r \cdot a + I$

is invertible in $\frac{R}{I}$ for each $r \in R$. There exists a coset b + I, such that

 $(1 + a \cdot r + I) \cdot (b + I) = 1 + I$

$$b + a \cdot r \cdot b - 1 \in I = \operatorname{rad} R$$

 $b + a \cdot r \cdot b = 1 + 1 \cdot (b + a \cdot r \cdot b - 1)$

has an inverse $c \in R$. But

$$(1 + r \cdot a) \cdot (b \cdot c) = (b + a \cdot r \cdot b) \cdot c = 1$$

so that $1 + r \cdot a$ is invertible in $R. a \in rad R$.

Definition(14-26): An ideal $(I, +, \cdot)$ of a ring $(R, +, \cdot)$ is called a primary ideal, if for all $a, b \in R$ such that $a, b \in I$, implies that, if $a \notin I$, then $b^n \in I$ or if $b \notin I$, then $a^n \in I$, for some $n \in \mathbb{Z}^+$.

Example(14-27): Show that, $(I = \langle 4 \rangle, +_{12}, \cdot_{12})$ is a primary ideal of $(Z_{12}, +_{12}, \cdot_{12})$.

Solution: $I = \langle 4 \rangle = \{0,4,8\}, Z_{12} = \{0,1,2,3,4,5,6,7,8,9,10,11\}$

$$2 \cdot_{12} 6 = 0 \in I \Longrightarrow 6 \notin I, 2^2 = 4 \in I$$

 $10 \cdot_{12} 2 = 8 \in I \Longrightarrow 2 \notin I, 10^2 = 4 \in I$

 $6 \cdot_{12} 8 = 0 \in I \Longrightarrow 6 \notin I, 8 \in I$

$$6 \cdot_{12} 6 = 0 \in I \Longrightarrow 6 \notin I, 6^2 = 0 \in I$$

 $4 \cdot_{12} 5 = 8 \in I \Longrightarrow 5 \notin I, 4 \in I$

:
Therefore, *I* is a primary ideal.

Theorem(14-28): Every prime ideal is a primary.

Proof: Let $(I, +, \cdot)$ be a prime ideal of a ring $(R, +, \cdot)$.

Let $a, b \in R$ such that $a, b \in I$

If $a \notin I$, then $b \in I$ (since *I* is a prime ideal)

Thus, $b^n \in I$, so *I* is a primary ideal.

Example(14-29): Prove or disprove, every primary ideal is a prime.

Solution: In general, it is not true, for example: in $(Z_{12}, +_{12}, \cdot_{12})$ the ideal $(I = \langle 4 \rangle, +_{12}, \cdot_{12})$ is a primary ideal, but it's not a prime ideal, since $2 \cdot_{12} 2 = 4 \in I$, but $2 \notin I$.

Example(14-30): Every maximal ideal is a primary ideal. (check)

Theorem(14-31): Let $(I, +, \cdot)$ be a proper ideal of a commutative ring with identity $(R, +, \cdot)$, then *I* is a primary iff all zero divisors in $\frac{R}{I}$ are nilpotent elements.

Proof: \Rightarrow) suppose *I* is a primary.

Let $a + I \in \frac{R}{I}$ such that a + I is a zero divisor

 $\Rightarrow a + I \neq I, \exists b + I \neq I \in \frac{R}{I}$ such that $(a + I) \odot (b + I) = I \Rightarrow a.b + I \neq I \in \frac{R}{I}$ $I = I \Longrightarrow a.b \in I$ $b + I \neq I \Longrightarrow b \notin I \Longrightarrow a^n \in I$, for some $n \in \mathbb{Z}^+$ (since I is a primary ideal) $\Rightarrow a^n + I = I \Rightarrow (a + I)^n = I$ So, all zero divisors in $\frac{R}{I}$ are nilpotent elements. \Leftarrow) suppose all zero divisors in $\frac{R}{I}$ are nilpotent elements. Let $a, b \in R$ such that $a, b \in I, a \notin I \Longrightarrow a + I \neq I$ $a, b \in I \Rightarrow a.b + I = I \Rightarrow (a + I) \odot (b + I) = I$ If $b + I = I \implies b \in I \implies I$ is a prime ideal $\implies I$ is a primary ideal. If $b + I \neq I \Rightarrow b + I$ is a zero divisor $\Rightarrow b + I$ is a nilpotent element. $\Rightarrow \exists n \in \mathbb{Z}^+$ such that $(b+I)^n = I \Rightarrow b^n + I = I \Rightarrow b^n \in I$ Thus, *I* is a primary ideal.

7/

15. Polynomials Rings. Examples and Basic Properties.

Definition(15-1): For an arbitrary ring $(R, +, \cdot)$. The set of polynomials over *R* may be regarded as the set

poly
$$R = \{(a_0, a_1, ..., a_n, 0, 0, ...): a_k \in R, n \ge 0\}$$

 $f = (a_0, a_1, a_2, ...) \text{ and } g = (b_0, b_1, b_2, ...)$
 $f + g = (a_0 + b_0, a_1 + b_1, a_2 + b_2, ...).$
 $f \cdot g = (a_0 \cdot b_0, a_0 \cdot b_1 + a_1 \cdot b_0, a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0, ...)$
 $= (c_0, c_1, c_2, ...),$

Where

$$c_k = \sum_{i+j=k} a_i \cdot b_j = a_0 \cdot b_k + a_1 \cdot b_{k-1} + \dots + a_k \cdot b_0$$

<u>Theorem(15-2)</u>: The triple (poly R, +,·) forms a ring, known as the ring of polynomials over R. Furthermore, the ring (poly R, +,·) is commutative with identity if and only if (R, +,·) is a commutative ring with identity.

Definition(15-3): If $f(x) = a_0 + a_1x + \dots + a_nx^n$, $a_n \neq 0$ is a nonzero polynomial in R[x] (the set of poly R), we call the coefficient a_n the leading coefficient of f(x) and the integer n, the degree of the polynomial.

Theorem(15-4): Let $(R, +, \cdot)$ be an integral domain and f(x), g(x) be two nonzero elements of $(R[x], +, \cdot)$. Then

- (1) $\deg(f(x) \cdot g(x)) \leq \deg f(x) + \deg g(x)$, and
- (2) either f(x) + g(x) = 0 or deg max{degf(x),degg(x)}.

 $(f(x) + g(x)) \le$

Example(15-5): Consider $(Z_8, +_8, \cdot_8)$. Taking

$$f(x) = 1 + 2x,$$

$$g(x) = 4 + x + 4x^2$$

we then have $f(x) \cdot g(x) = 4 + x + 6x^2$, so that

$$\deg (f(x) \cdot g(x)) = 2 < 1 + 2 = \deg f(x) + \deg g(x).$$

Theorem(15-6): (Division Algorithm). Let $(R, +, \cdot)$ be a commutative ring with identity and $f(x), g(x) \neq 0$ be polynomials in R[x], with the leading coefficient of g(x) an invertible element. Then there exist unique polynomials $q(x), r(x) \in R[x]$ such that

$$f(x) = q(x) \cdot g(x) + r(x),$$

where either r(x) = 0 or deg r(x) < deg g(x).

<u>Theorem(15-7)</u>: (Remainder Theorem). Let $(R, +, \cdot)$ be a commutative ring with identity. If $f(x) \in R[x]$ and $a \in R$, then there is a unique polynomial q(x) in R[x] such that $f(x) = (x - a) \cdot q(x) + f(a)$.

Proof: Applying the division algorithm to f(x) and x - a, we obtain

$$f(x) = (x - a) \cdot q(x) + r(x),$$

where r(x) = 0 or deg r(x) < deg (x - a) = 1. It follows in either case that r(x) is a constant polynomial $r \in R$. Substituting *a* for *x*, we have

$$f(a) = (a - a) \cdot q(a) + r(a) = 0 + r = r.$$

<u>Corollary(15-8)</u>: (Factorization Theorem). The polynomial $f(x) \in R[x]$ is divisible by x - a if and only if a is a root of f(x).

Proof: since
$$f(x) = (x - a) \cdot q(x)$$
 if and only if $f(a) = 0$.

<u>Theorem(15-9)</u>: Let $(R, +, \cdot)$ be an integral domain and $f(x) \in R[x]$ be a nonzero polynomial of degree *n*. Then f(x) has at most *n* distinct roots in *R*.

Proof: when deg f(x) = 0, the result is trivial, since f(x) cannot have any roots. If deg f(x) = 1, say f(x) = ax + b, $a \neq 0$, then f(x) has at most one root; indeed, if a is invertible, $-a^{-1} \cdot b$ is only root of f(x).

Now, suppose the theorem is true for all polynomials of degree $n - 1 \ge 1$, and let deg f(x) = n. If f(x) has a root r, then

$$f(x) = (x - r) \cdot q(x),$$

where the polynomial q(x) has degree n - 1. Any root r_1 of f(x) distinct from r must be a root of q(x), for, by substitution

$$f(r_1) = (r_1 - r) \cdot q(r_1) = 0$$

and, since $(R, +, \cdot)$ has no zero divisors, $q(r_1) = 0$. q(x) has at most n - 1 distinct roots. As the only roots of f(x) are r and those of q(x), f(x) cannot have more than n distinct roots in R.

<u>Corollary(15-10)</u>: Let f(x) and g(x) be nonzero polynomials of degree $\leq n$ over the integral domain $(R, +, \cdot)$. If there exist n + 1 distinct elements $a_k \in R(k = 1, 2, ..., n + 1)$ for which $f(a_k) = g(a_k)$, then f(x) = g(x).

Proof: the polynomial h(x) = f(x) - g(x) is such that deg $h(x) \le n$ and has at least n + 1 distinct roots in R. This is impossible unless h(x) = f(x) - g(x) = 0, or f(x) = g(x).

Example(15-11): Consider the polynomial $x^p - x \in Z_p[x]$, where p is a prime number. Since the nonzero elements of $(Z_p, +_p, \cdot_p)$ form a cyclic group, under multiplication, of order p - 1, we must have $a^{p-1} = 1$ or $a^p = a$ for every $a \neq 0$. But the last equation clearly holds when a = 0, so that every element of Z_p is a root of the polynomial $x^p - x$.

<u>Theorem(15-12)</u>: Let (\mathbb{C} , +,·) be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then f(x) has at least one root in \mathbb{C} .

<u>Corollary(15-13)</u>: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree n > 0, then f(x) can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

Theorem(15-14): If $(F, +, \cdot)$ is a field, then the ring $(F[x], +, \cdot)$ is a principal ideal domain.

Proof: $(F[x], +, \cdot)$ is an integral domain. To see that any ideal $(I, +, \cdot)$ of $(F[x], +, \cdot)$ is principal. If $I = \{0\}$, the result is trivially true, since $I = \langle 0 \rangle$. Otherwise, there is some nonzero polynomial p(x) of lowest degree in I. For each polynomial $f(x) \in I$, we may use the Division Algorithm to write $f(x) = q(x) \cdot p(x) + r(x)$, where either r(x) = 0 or deg r(x) <

deg p(x). Now, $r(x) = f(x) - q(x) \cdot p(x)$ lies in *I*; if the degree of r(x)were less than that of p(x), a contradiction to the choice of p(x).r(x) = 0and $f(x) = q(x) \cdot p(x) \in \langle p(x) \rangle$; hence, $I \subseteq \langle p(x) \rangle$. But the opposite inclusion clearly holds, so that $I = \langle p(x) \rangle$.

Corollary(15-15): A nontrivial ideal of $(F[x], +, \cdot)$ is maximal if and only if it is a prime ideal.

Definition(15-16): A nonconstant polynomial $f(x) \in F[x]$ is said to be irreducible in F[x] if and only if f(x) cannot be expressed as the product of two polynomials of positive degree. Otherwise, f(x) is reducible in F[x].

Example(15-17): Any linear polynomial $f(x) = ax + b, a \neq 0$, is irreducible in F[x]. Indeed, since the degree of a product of two nonzero polynomials is the sum of the degree of the factors, it follows that a representation

$$ax + b = g(x) \cdot h(x),$$

with $0 < \deg g(x) < 1, 0 < \deg h(x) < 1$ is impossible. Thus, every reducible polynomial has degree at least 2.

Example(15-18): The polynomial $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$, where $(\mathbb{Q}, +, \cdot)$ is the field of rational numbers. Otherwise, we have

$$x^2 - 2 = (ax + b) \cdot (cx + d)$$

$$= (ac)x^2 + (ad + bc)x + bd,$$

where the coefficients $a, b, c, d \in \mathbb{Q}$. Accordingly,

$$ac = 1$$
, $ad + bc = 0$, $bd = -2$.

 $c = \frac{1}{a}, d = \frac{-2}{b}$. Substituting in the relation ad + bc = 0, we obtain

$$0 = \frac{-2a}{b} + \frac{b}{a} = \frac{(-2a^2 + b^2)}{ab}$$

Thus, $-2a^2 + b^2 = 0$, or $(\frac{b}{a})^2 = 2$, which is impossible because $\sqrt{2}$ is not a rational number.

Theorem(15-19): If $(F, +, \cdot)$ is a field, the following statements are equivalent:

- (1) f(x) is an irreducible polynomial in F[x].
- (2) The principal ideal (⟨f(x)⟩, +,·) is a maximal (prime) ideal of (F[x], +,·).

(3) The quotient ring $\left(\frac{F[X]}{\langle f(x) \rangle}, +, \cdot\right)$ is a field.

<u>Theorem(15-20)</u>: (Unique Factorization Theorem). Each polynomial $f(x) \in F[x]$ of positive degree is the product of a nonzero element of *F* and irreducible monic polynomial of F[x].

Corollary(15-21): If $f(x) \in \mathbb{R}[x]$ is of positive degree, then f(x) can be factored into linear and irreducible quadratic factors.

Theorem(15-22): (Kronecker). If f(x) is an irreducible polynomial in F[x], then there is an extension field of $(F, +, \cdot)$ in which f(x) has a root.

<u>Corollary(15-23)</u>: If the polynomial $f(x) \in F[x]$ is of positive degree, then there exists an extension field of $(F, +, \cdot)$ containing a root of f(x).

Example(15-24): Consider $(Z_2, +_2, \cdot_2)$, the field of integers modulo 2, and the polynomial $f(x) = x^3 + x + 1 \in Z_2[x]$. Since neither of the elements 0 or 1 is a root of $x^3 + x + 1$, f(x) is irreducible in $Z_2[x]$. Thus, the existence of an extension of $(Z_2, +_2, \cdot_2)$, specifically the field

$$\left(\frac{Z_2[x]}{\langle f(x) \rangle}, +, \cdot\right)$$

in which the given polynomial has a root. Denoting this root by λ , the discussion above tells us that

$$\frac{Z_2[x]}{\langle f(x)\rangle} = \{a + b\lambda + c\lambda^2 : a, b, c \in Z_2\}$$

 $=\{0,1,\lambda,1+\lambda,\lambda^2,1+\lambda^2,\lambda+\lambda^2,1+\lambda+\lambda^2\},\$

where, of course, $\lambda^3 + \lambda + 1 = 0$.

$$\lambda^3 = -(\lambda + 1) = \lambda + 1, \qquad \lambda^4 = \lambda^2 + \lambda$$

$$(1 + \lambda + \lambda^2) \cdot (a + b \lambda + c\lambda^2) = 1$$

$$(a+b+c) + a\lambda + (a+b)\lambda^2 = 1$$

$$a + b + c = 1$$
, $a = 0$, $a + b = 0$

with solution a = b = 0, c = 1; therefore, $(1 + \lambda + \lambda^2)^{-1} = \lambda^2$.

Finally, note that $x^3 + x + 1$ factors completely into linear factors in $\frac{Z_2[x]}{\langle f(x) \rangle}$ and has the three roots λ, λ^2 , and $\lambda + \lambda^2$:

$$x^3 + x + 1 = (x - \lambda) \cdot (x - \lambda^2) \cdot (x - (\lambda + \lambda^2))$$

Example(15-25): The quadratic polynomial $x^2 + 1$ is irreducible in $\mathbb{R}[x]$. For, If $x^2 + 1$ were reducible, it would be of the form $x^{2} + 1 = (ax + b) \cdot (cx + d) = acx^{2} + (ad + bc)x + bd,$

where $a, b, c, d \in \mathbb{R}$. It follows at once that ac = bd = 1 and ad + bc = 0

therefore bc = -(ad), and

$$1 = (ac)(bd) = (ad)(bc) = -(ad)^2$$

or, $(ad)^2 = -1$, which is impossible.

The extension field $(\frac{\mathbb{R}[x]}{\langle x^2+1 \rangle}, +, \cdot)$ is described by

$$\frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} = \{a + b\lambda; a, b \in \mathbb{R}; \lambda^2 + 1 = 0\}$$

$$(a+b\lambda) + (c+d\lambda) = (a+c) + (b+d)\lambda$$

$$(a + b\lambda) \cdot (c + d\lambda) = (ac - bd) + (ad + bc)\lambda + bd(\lambda^2 + 1)$$
$$= (ac - bd) + (ad + bc)\lambda$$

Theorem(15-26): If $f(x) \in F[x]$ is a polynomial of positive degree, then there exists an extension field $(F', +, \cdot)$ of $(F, +, \cdot)$ in which f(x) factors completely into linear polynomials.

Corollary(15-27): Let $f(x) \in F[x]$ with deg f(x) = n > 0. Then there exists an extension of $(F, +, \cdot)$ in which f(x) has n roots.

Example(15-28): Let us consider the polynomial $f(x) = x^4 - 5x^2 + 6 = (x^2 - 2) \cdot (x^2 - 3)$ over the field (\mathbb{Q} , +,·) of rational numbers.

We first extend $(\mathbb{Q}, +, \cdot)$ to the field $(F_1, +, \cdot)$, where

$$F_1 = \frac{\mathbb{Q}[x]}{\langle x^2 - 2 \rangle} = \{a + b\lambda : a, b \in \mathbb{Q}; \lambda^2 - 2 = 0\}$$

and obtain the factorization

$$f(x) = (x - \lambda) \cdot (x + \lambda) \cdot (x^2 - 3)$$
$$= (x - \sqrt{2}) \cdot (x + \sqrt{2}) \cdot (x^2 - 3)$$

f(x) does not factor completely, since the polynomial $(x^2 - 3)$ is irreducible in $F_1[x]$. For, suppose $x^2 - 3$ has a root in F_1 , say $c + d\sqrt{2}$, with $c, d \in \mathbb{Q}$. Substituting, we find that

$$(c^{2} + 2d^{2} - 3) + 2cd\sqrt{2} = 0$$

 $c^{2} + 2d^{2} - 3 = 0, \ cd = 0$

This equation implies that either c = 0 or d = 0; but neither c nor d can be zero, since otherwise we would have $d^2 = \frac{3}{2}$ or $c^2 = 3$, which is impossible. Thus $x^2 - 3$ remains irreducible in $F_1[x]$.

In order to factor f(x) into linear factors, it is necessary to extend the coefficient field further. We therefore constant the extension $(F_2, +, \cdot)$, where

$$F_{2} = \frac{F_{1}[x]}{\langle x^{2} - 2 \rangle} = \{ \alpha + \beta \mu; \alpha, \beta \in F_{1}; \mu^{2} - 3 = 0 \}$$

The elements of F_2 may be expressed in the form

$$(a+b\sqrt{2}) + (c+d\sqrt{2})\sqrt{3} = a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}$$
$$f(x) = (x-\lambda)\cdot(x+\lambda)\cdot(x-\mu)\cdot(x+\mu)$$
$$= (x-\sqrt{2})\cdot(x+\sqrt{2})\cdot(x-\sqrt{3})\cdot(x+\sqrt{3})$$

Observe that the four roots all lie in F_2 .