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Ring Theory
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1. Definitions and Examples of Rings

Definition(1-1):

A ring is an ordered triple (R, +,-) consisting of a non-empty set R and

two binary operations + and - on R such that

I. (R,+) isacommutative group,
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ii.  (R,”) is asemigroup (satisfies the axioms i, ii of group),

ili.  The two operations are related by the distributive laws
a-(b+c)=(@a-b)+ (a-c),
(b+c)ra=Mh-a)+(c-a)Va,b,c€ER.

Definition(1-2):

A commutative ring is a ring in which (R,-) isacommutative.

Examples(1-3):

1. Each one of the following is a commutative ring:

(R, +,),(Q +,), (Z, +,), (Ze, +).
2. The set R = {a + b\/3:a, b € Z} is a commutative ring with identity.
(a+bV3)+(c+dV3)=(a+c)+(b+dV3ER,

(a +bV3) - (c+dv3) = (ac + 3bd) + (ad + bc)V3 €

R,Va,b,c,d € Z

1=1+0J3 €R.
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3. Let R denote the set of all functions f: R — R. The sum f + g and
product f - g of two functions f, g € R are defined as usual, by the

equations
(f + 9 () = f(x) + g(x),
(f-9)x) =fx)-g(x),x €R.
The triple (R, +,-) is a commutative ring with identity.
4. The triple (R, +,0) is not a ring.
The left distributive law f o (g + h) # (f e g) + (f o h).

5. Let (G,*) be an arbitrary commutative group and Hom G be the set
of all homomorphisms from (G,*) into itself. (Hom G,o) is a
semigroup with identity, then the triple (Hom G, +,0) forms a ring

with identity.

f+9)x)=f(x)*g(x),x€G

(Hom G, +) is a commutative group.
(fF+@x*y)=flxxy)xglx*y) =fx)*f(y)xglx) * g(y)

=(fx) *g@))*(fO) *g») =+ D) = + 9 ),
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Sothat f + g € (Hom G, +).
[f o (g +M)](x) = f((g+hM)(x) = f(g(x) * h(x))
= f(g(x)) * f (r(x))
=([feg@)*(foh)(x)=(feog+[feh)(x).
Therefore, fo (g+h) = fog+foh.

6. The triple (Z,,, +,,7,,) IS @a commutative ring with identity.
7. Consider the set R = R X R of ordered pairs of real numbers. We

define addition and multiplication in R by the formulas
(a,b) + (c,d) =(a+c,b+d), (ab)-(c,d) = (ac bd).
(R, +,") is a commutative ring with identity.

8. The triple (Z,, +4,74) IS a commutative ring with identity.

+, 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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N 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Here, we have 2 -, 2 = 0, the product of nonzero elements being zero.
Note also that 2-, 1 = 2, 3, yet it is clearly not true that 1 = 3. The

multiplicative semigroup (Z,,",) does not satisfy the cancellation law.

9. The triple (C, +,-) is a commutative ring with identity.

10. The triple (M,(R),+,) is a ring with identity, but not
commutative.

11. The triple (Z,, +,) is not ring, since the sum of two odds equal
into even number.

2. Basic Properties of Rings

Theorem(2-1): If (R, +,") be aring, then

(1) a-0=0-a=0
(2) (—¢)ra=—-c-a, a(-c)=-a-c

(3) a'b=(-a) (-b), Va,b €R
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Proof: (1) a-(b—c)=a-b—a-c..(%)

(b—c)-a=b-a—c-a, Vab,c€ER..(x)

Substitute b =cin (x),weget a-(b—b)=a-b—a-b=a-0=

OVa R

(b—b)ra=b-a—b-a=0-a=0.

Proof: (2) Substitute b = 0 in (*) and by using (1), we have

a-(0—c)=a-0—a'c=a'(—c)=-a-c

(0—c¢)'a=-c-a; Ya,c €ER.

Proof: (3) Substitute a = —a in (2), we get

a-(—c)=-a-c

(—a) - (=0)=—-(-a)-c

() - (—o)=—-(-a-c)=a-c

Corollary(2-2): If (R,+,") be a ring with identity and R # {0}, then

0#1,(-1)a=—-a

Proof: since R # {0} = 3a € R 3 a # 0, suppose that 0 = 1

a=a-1=a-0=0= a =0,buta # 0 byassumption, thus 0 # 1

[
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Toprove (—1)-a = —a

(-1)a=—-(1-a)=-a

Corollary(2-3): If (R, +,") be aring, if R has an identity element, then

it is a unique.
Proof: let 1, 1* are two identity elements of R, then1 =1-1* = 1*

Corollary(2-4): If a,, a, are two inverses of a in a ring (R, +,") with

identity, thena, = a,
Proof:a, =a,"1=a,"(a-a;) =(@a,-a)a;,=1"a;, = a4

Theorem(2-5): If (R, +,-) be a ring with identity and U be a set of units

of R, then (U,") is a group.

Proof: U # @, since31 € U

leta,belU =3aL,b'eUs3a-al=atla=1
b-b7'=pb"1-b=1
(a-b)-(bra)=a-b-bHal=a-1al=a-al=1
(bL.aH)-(a-b)=b"t-(ala)-b=b1-1-b=b1-b=1

Thismeans a-b € U
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Since (R,") is associative, then (U,) is associative (since U € R)
Therefore, (U,) is a group.

3. Subrings, Examples and Properties

Definition(3-1): Let (R,+,7)) be a ring and S < R be a nonempty
subset of R. If the triple (S, +,") is itself a ring, then (S, +,") is said to

be a subring of (R, +,).

Theorem(3-2): Let (R,+,) bearingand @ + S < R. Then the triple

(S, +,") isasubring of (R,+,) ifand only if

(1) a—b € SVa,b €S (closed under differences),

(2) a*b € SVa,b € S (closed under multiplication).

Proof: (=) let (S, +,") be asubring of (R,+,)) = (S5,+) isa

subgroup of (R, +)

= x—yESVX,yES

Since (S,+,") isasubringof (R,+,,)) > x-y €S Vx,y €S.

(=)leta—beS,a-beSVa,beS = (5 +)isasubgroup of

(R, +)
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Since the operation of addition is a commutativeon R, S € R

= the operation of addition is a commutative on S

= (S, +) is an abelian subgroup of (R, +)

Also, similarly the associative and distributed the multiplication on

addition are true on S sinceS € R.

= (S, +,") isasubring of (R, +,7).

Examples(3-3):

(1) Every ring (R, +,") has two trivial subrings; for, if 0 denotes
the zero element of the ring (R, +,7), then both ({0}, +,) and (R, +,)
are subrings of (R, +,).

(2) In the ring of integers (Z, +,7), the triple (Z,, +,") is a subring,
while (Z,, +,") is not.

(3) Consider (Zg, +4,76) the ring of integers modulo 6. If S =
{0,2,4}, then (S,+¢,¢), Whose operation tables are given at the

below, is a subring of (Zg, +¢,¢).

+6 0 2 4

0 0 2 4
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2 2 4 0
4 4 0 2
. 0 2 4
0 0 0 0
2 0 4 2
4 0 2 4

(4) Let S = {a + b\/3:a,b € Z}. Then (S, +,) is a subring of

(R, +,"), since for a, b, c,d € Z, we get
(a+bV3)=(c+dV3)=(a—c)+ (b—-d)V3ES,
(a +bv3) - (c+dV3) = (ac +3bd) + (bc + ad)V3 € S.

(5) The triple (Z, +,-) is a subring of (R, +,).

(6) Let the set nZ = {0, +n, +2n, ...}, then the triple (nZ, +,") is a
subring of (Z, +,).

(7) (Z[i] = {a + ib:a,b € Z}, +,7) is a subring of (C, +,).

(8) (S ={a+ bV5:a,b € Z},+,) is a subring of (R, +,").

10
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a b,
0 C).a,b,cER}, then

9) Let (R,+,7) be a ring and M = {(
(M, +,) is a subring of (M, (R), +,").

(10) (S ={2a:a € Z},+,) is asubring of (Z, +,"). We note that 1 €
Z,butl & S.

(11)  Give example to ring with identity and subring with different

identity.

Take (M,(Z), +,) and (5 = {({ 8) a €z}, +)

The identity of (M, (Z),+,") is ((1) (1))

The identity of (S = {(g 8) €z}, +) s (é 8)

1 0 1 0
(0 0) > (0 1)
4. Characteristic of the Ring and Related Concepts

Definition(4-1): Let (R,+,") be an arbitrary ring. If there exists a

positive integer n such that na =0 for alla € R, then the least
positive integer with this property is called the characteristic of the ring.
If no such positive integer exists (that is, na =0 for all a €R

implies n = 0), then we say (R, +,-) has characteristic zero.

11
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Example(4-2): the rings of integers, rational numbers and real numbers

are standard examples of characteristic zero.

Example(4-3): the ring (P(X), A,n) is of characteristic two.

Since AAB=(A—B)U (B —A4)

2A =AA = (A— A) U (A — A) = ¢ for every subset A of X.

Theorem(4-4): Let (R, +,") be a ring with identity. Then (R, +,") has

characteristic n > 0 if and only if n is the least positive integer for

whichn-1 = 0.

Proof: if the ring (R, +,-) is of characteristic n > 0, it follows trivially

that n-1=0.1fm-1 =0, where 0 < m < n, then

ma=m(l-a)=(ml)ra=0-a=0

For every element a € R. This would mean the characteristic of
(R,+,") is less than n, an obvious contradiction. The converse is

established in much the same way.

Example(4-5): the characteristic of the ring (C, +,-) is zero.

Example(4-6): the characteristic of the ring (Z,,, +,,,) IS n.

12
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Example(4-7): the characteristic of the ring (Z, X Z,, D, ®) is 12.

5. lIdeals and their Properties

Definition(5-1): A subring (I, +,") of the ring (R, +,-) is an ideal of

(R,+,) ifandonlyif reRanda €l implybothr-a€landa-r €

L.

Definition(5-2): Let (R,+,") be a ring and I a nhonempty subset of R.

Then (I,+,7) is an ideal of (R, +,-) if and only if

(1) a,belimplya—b>bel,

(2) re€Randa €l implybothr-ae€landa-r €l.

Example(5-3): In any ring (R, +,), the trivial subrings (R,+,") and

({03, +,) are both ideals.

Remark(5-4): A ring which contains no ideals except these two is said

to be simple. Any ideal different from (R, +,7) is a proper.

Example(5-5): The subring ({0,3,6,9},+,,) is an ideal of

(Z12,+12,12), the ring of integers modulo 12.

Example(5-6): For a fixed integer a € Z, let (a) denote the set of all

integral multiples of a, that is,

13
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(a) = {na:n € Z}

The following relations show the triple ({a), +,”) to be an ideal of the

ring of integers (Z, +,):

na —ma = (n —m)a,

m(na) = (mn)a, n,m € Z.

Example(5-7): (2) = Z,, the ring of even integers (Z,, +,") is an ideal

of (Z, +,).

Example(5-8): Suppose (R, +,") is the commutative ring of functions

f:R — R. The sum f + g and product f - g of two functions f,g € R

are defined as usual, by the equations

(f+9)x) =fx)+g(x),

f-9)x)=f(x)-gkx),xeR.

Define

I={fe€R:f(1) =0}

For functions f,g € I and h € R, we have

F-g9D)=f1D-g(1)=0-0=0

14
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And also
(h-f)D)=h1) f(1) =h(1)-0=0.
Since both f — g and h - f belongto I, (I,+,) is an ideal of (R, +,).

a 0
b 0

Example(5-9): Let (M,(R),+,-) be a ring, then I = ({( ):a,b €

R},+,-) is a left ideal of (M,(R),+,"), but it is not right ideal of

(M3 (R), +,).

(8 8)61=>®¢I§M2(]R)

et(® 0),(5 Oerand(t V) emm

o) 0=(GZa oe!
G WG o=Gim oe!
Therefore, (I, +,") is a left ideal of (M, (R), +,")

(1,+,") is not right ideal of (M, (R), +,"), since

(8 (1)) € M,(R) and G 8) el

15
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sl 90 = De

Example(5-10): Let (R, +,") be the set of all functions on R, then I =

{f €R:f(3) = 0} isan ideal of (R,+,").

Example(5-11): Prove or disprove, the triple (Z, +,-) is an ideal of

(Q’ +’.)'

Theorem(5-12): If (I, +,7) is a proper ideal of aring (R, +,-) with

identity, then no element of I has a multiplicative inverse; that is, I N

R* = Q.
Proof: suppose 0 # a € I 3 a™! exists
a l-a=1€l(sincel isclosed under multiplication)

Thus,r*1=r VréeR=RCI[,butl € R =1 = R thisis

contradiction. (I a proper).

Theorem(5-13): If (I;, +,7) is an arbitrary indexed collection of ideals

of the ring (R, +,), then so also is (N [;, +,7).

Proof: 0 e, = 0N, = NI+ 0

Leta,beNl;andreR=a b€, =a—b,r-aanda-r €l

16
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= a—b,r-aanda-r € N

Therefore, (N I;,+,7) is an ideal of (R, +,).

Example(5-14): Prove or disprove, the union of two ideals is an ideal.

Solution: In general, it is not true, for example, in (Z5, +12,"12)

(4) = {0,4,8},(6) = {0,6} = (4) U (6) = {0,4,6,8} is not ideal, since

6—4=2¢&(4)U(6)

Note(5-15): Consider (R, +,-) bearingand @ = S € R. Define the set

(S)=N{:S<I;(+,) isanideal of (R,+,)}.
(S) = @, since S € (S)

Theorem(5-16): The triple ((S), +,-) is an ideal of the ring (R, +,),

known as the ideal generated by the set S.

Example(5-17): (Z1g, +18,715), find (S) where S = {0,9}.

Theorem(5-18): If (R, +,") is a commutative ring with identity and a €

R, then the principle ideal ({(a), +,") generated by a is such that (a) =

{r-a:r € R}.

17
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Theorem(5-19): If (I,+,) is an ideal of the ring (Z, +,), then I = (n)

for some nonnegative integer n.

Proof: If I = {0}, the theorem is trivially true, for the zero ideal

({0}, +,) is the principal ideal generated by 0.

Let0 #m € I = —m € I, suppose n the least positive integer in [

Thus, (n) € I,anyintegerk €l = k =qgn+r whereq,r € Z,0 <

r<n

Sincek,gnel =k—gqn=r€l =r=0=k=qn

Thus every member of I isa multipleof n = I € (n) = I = (n).

Theorem(5-20): Let a4, a,,...,a, be nonzero element of a principal

ideal ring (R, +,"). Then (N{a;),+,") = ({a), +,7), where a is a least

common multiple of a4, a,, ..., a,.

Proof: (N{a;),+,") is an ideal of (R, +,").

But every ideal of (R, +,") is a principle ideal; 3a € R 3 (a) = N{a;)
Since (a) € (q;)[i = 1,2,..,n],a = r; - a; for some r; € R,

So, a is a common multiple of a4, a,, ..., a,.

18
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Let b any common multiple of a,,a,, ...,a,,,say b =s; - a;, s; € R[i =

1,2,...,n]
IfreR, thenr-b=r-(s;-a;) =(r-s;) a; €{a;) = (b) S (a;)

Therefore, (b) < N(a;) = (a) and b must be a multiple of a, thus a is a

least common multiple of a4, a,, ..., a,,.

Example(5-21): Consider the principal ideal ((4),+,") and ((6),+,)

generated by the integers 4 and 6 in the ring (Z,+,).Then ((4)n
(6), +,)) = ({(12),+,"), where 12 is the least common multiple of 4

and 6.
6. Quotient Ring and Related Concepts.

Notes(6-1): Let (1, +,") is an ideal of the ring (R, +,-), then

(1) a+Il={a+ii€l}
(2) (a+D)+Bb+1)=(@+b)+1,

3) (@+D-(b+D=(-b)+1

Theorem(6-2): If (I,+,7) is an ideal of the ring (R, +,-), then (?, +,7) is

a ring, known as the quotient ring of R by I.

19
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The zero element of (§,+,-) is the cose 0+ 1 =1, while —(a+1) =

(—a) +1.

Example(6-3): In the ring (Z, +,") of integers, consider the principal

ideal ({(n), +,"), where n is a nonnegative integer. The coset of (n) in Z

take the form

a+(n)={a+kn:k €7z}

i) = (.41

Example(6-4): The triple (6Z, +,-) is an ideal of the ring (2Z, +,7) ,

then

27
= = {0+ 622+ 61,4 + 67}

Is a ring with an identity.

a b

Example(6-5): Let (R = ({(0 a) :a,b € Z},+,-) be aring and (I =

0 b . | |
({(0 0) :b € Z},+,-) is an ideal of the ring (R, +,7), then (? +)isa

commutative ring with identity.

7={(® Y)+rabez)

20
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a b _a b 0 ¢\,
(0 a)+1—{(0 a)+(0 0).a,b,cEZ}

7. Homomorphisms of Ring. Examples and Properties

Definition(7-1): Let (R,+,)) and (R',+',") be two rings and f a

function from R into R’; in symbols, f:R — R'. Then f is said to be a

ring homomorphism from (R, +,7) into (R, +',-") if and only if
fla+b) =f(a)+'f(b)
fla-b) =f(a)-" f(b)

for every pair of elements a, b € R.

Example(7-2): Let (R,+,7) and (R',+',") be arbitrary rings and

f:R — R’ be the function that maps each element of R onto the zero

element 0’ of (R', +',").
fla+b)=0"= 0'+"0" = f(a)+'f (D),
fa-b)=0"=0""0 =f(a)'f(b), a,b €R.

As with the case of groups, this mapping is called the trivial

homomorphism.

21
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Example(7-3): The mapping f:Z — Z, defined by f(a) = 2a is not a

homomorphism from (Z, +,") into (Z,, +,"),

fl@a+b)=2(a+b)=2a+2b=f(a)+ f(b)

but

fla-b) =2(a-b) # (2a) - (2b) = f(a) - f(b)

Example(7-4): Consider (Z, +,"), the ring of integers, and (Z,,, +,,"1,),

the ring of integers modulo n. Define f: Z — Z, by taking f(a) = [a];

that is, map each integer into the congruence class containing it. Then
fla+b) =la+b] = [a]+,[b] = f(@)+.f (b)),
f(a-b) =la-b] =la] -, [b] = f(a) n f(D),
so that f is a homomorphism mapping.

Example(7-5): Let (R, +,-) be any ring with identity. For each

invertible element a € R, the function f,: R — R given by

fx)=a-x-a?

IS a homomorphism from (R, +,-) into itself. Indeed, if x,y € R, we

see that

22
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fax+y)=a-(x+y)-at=ax-alt+ay-at=Ffx)+

fa@),

fax:y)=a-(x-y)-al=(@x-ab -(ayal)=fx):

fa),

Theorem(7-6): Let f be a homomorphism from the ring (R, +,7) into

the ring (R’, +',-"). Then the following hold:

(1) f(0) = 0', where 0’ is the zero element of (R’, +',").
(2) f(—a) = —f(a) forall a € R.

(3) The triple (f(R), +',”) isa subring of (R’,+',"").

@4 fO=1.

(5) f(a™1) = f(a)~? for each invertible element a € R.
(6) If S is asubring in R, then £(S) is a subring in R".

(7) If [ isan ideal in R, then f(I) isan ideal in R".

(8) If T is a subring in R’, then f~1(T) is a subring in R.

(9) If J is an ideal in R’, then f~1(J) is an ideal in R.
Proof: (1)f(0+ 0) = f(0)+'f(0)

£(0) = F(0)+£(0)

23
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FO+'0" = FO)+(0) = £(0) = 0'

Proof: (2) a4+ (—a)=0

flat+(-a)=f(0)= f(@+f(-a) =0 = f(-a) = —f(a)

Theorem(7-7): If f isa homomorphism from the ring (R, +,") into the

ring (R', +',""), then the triple (ker(f), +,") is an ideal of (R, +,").
Proof: ker(f) = {a € R: f(a) = 0'}

0 € ker(f), since £(0) = 0' = ker(f) = @

Leta, b € ker(f) = f(a) = 0’ = f(b)
fla—b)=f(a)=f(b) =0 —0 =0 = a—b € ker(f)
freRacker(f)= f(r-a)=fr) - fl@)=fr)-0 =0.
Thus, 7+ a € ker(f) = (ker(f), +,") is an ideal of (R, +,").

Theorem(7-8): If f isa homomorphism from the ring (R, +,") into the

ring (R, +',""), then f is a monomorphism iff ker () = {0}.

24
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Example(7-9): Consider an arbitrary ring (R, +,") with identity element

1 and the mapping f:Z — R given by f(n) =nl. Then f is a

homomorphism from the ring of integers (Z, +,-) into the ring (R, +,"):
fln+m)=(mMm+m)l=nl+ml=f(n)+ f(m),
fr-m)=(m-m)l=m-m)1*=(nl) (ml)=fn) - fm).

Theorem(7-10): That ker(f) ={n € Z:nl =0} = (m) for some

nonnegative integer m.

Definition(7-11): A ring (R, +,") is embedded in a ring (R',+',"") if

there exists some subring (S,+',”) of (R',+',”") such that (R, +,") =

(S, +,.

Theorem(7-12): Any ring can be embedded in a ring with identity.

Proof: Let (R, +,") be an arbitrary ring and

RXZ={(r,n):r €eR,n€Z}

Define

(a,n) + (b,m) = (a+ b,n+m),

(a,an)-(bbm)=(a-b+m-a+n-bn-m),

25
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The triple (R X Z, +,") forms a ring. This ring has multiplicative

identity, namely the pair (0,1); for

(a,n)-(01)=(a-0+1-a+n-0,n-1) = (a,n),

(0,1) - (a,n) = (a,n).

Next, consider the subset R x 0 of R x Z consisting of all pairs of the

form (a, 0). Since

(a,0) — (b,0) = (a—b,0), (a,0)-(b,0)=(a-b,0)

Therefore, (R x 0,+,") isasubring of (R X Z,+,").

The proof is completed by showing (R X 0,4,") is isomorphic to the
given ring (R, +,7). To this end, define the function f:R — R X 0 by

taking

f(a) = (a,0).

The function f is a one-to-one mapping of R onto the set R X 0.

fla+b) =(a+b,0)=(a0)+(b0) =f(a)+f(b),

fla-b) =(a*b,0) =(a,0)(b,0)=f(a)" f(b).

Thus, (R,+,)) = (R X 0,+,).
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8. Fundamental Theorems of Homomorphisms of Rings.

Theorem(8-1): (The first fundamental theorem of homomorphism of

ring)

Let ¢ be a homomorphism from (R, +,") into (R, +,-), then

R
(ke,r(p’-l_’) ((p( )J+J)
Proof: let ¥: ﬁ — @(R) defined by W (x + kergp) = ¢(x) Vx €R

To prove that ¥ is well define

R
Vx + kerp,y + kerg € q),x+ker<p = y+ kerg

ker
(x —y) + kerp = kerp = (x —y) € kere
= px—y) =0= o) = ¢y) = ¥(x + kerp) = ¥Y(y + keryp)
To prove that ¥ is a homomorphism
P[(x + kerp) + (y + kerp)] = ¥Y[(x + y) + kerg]

=px+y)=9x)+ o) =¥(x +kerp) + ¥V (y + kergp)

Also
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P[(x + kerp) - (y + kerp)] = V[(x-y) + kerg]
=p(x-y) =9 @) =¥+ kerp) - ¥(y + kerp)

To prove ¥ is an onto

If z€eImp = 3r €R Bz=<p(r),r+ker<peﬁ
SY(r+kerp)=q@r) =z

To prove ¥ is an one-to-one

Y(x + kergp) =¥(y + kergp) = ¢(x) = ¢(y)

= px—y)=0=x—y€kerp = (x —y) + kerp = kere

= x + kerp =y + kerp = ( +) = (p(R), +)

kerg’

Example(8-2): Let f:Z, — Z, be a function defined by £(0) =

f2)=0,f(1)=f(3) =1

Zy
kerf - {0,2}, kerf - {{0!2}; {1,3}}
The operation tables for the quotient ring (ki:f, +,-) are as shown:

+ {0,2} {1,3}
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{0,2} {0,2} {1,3}
{1,3} {1,3} {0,2}

{0,2} {1,3}
10,2} 10,2} 10,2}
{1,3} {0,2} {1,3}

Zy
kerf

Therefore, (%, +,") = (Zy, +2,7)

Theorem(8-3): (The second fundamental theorem of homomorphism of

ring)
Let (R, +,)) bearing, I be an ideal of R and H be a subring of R, then

(H+D) _ H
I ~(HN)D)

Proof: Let op: H — @ defined by ¢(a) =a+1Va € H

To prove that ¢ is a homomorphism

Va,b e Hp(a+b)=(a+b)+I=@+D+(b+1)

= ¢(a) + ¢(b)

29




Prof. Dr. Najm Al-Seraji, Ring Theory, 2025

Also

pla-b)=(ab)+I=@+D b+ =¢(a: ¢b)

To prove that ¢ is an onto

HA+1
Vx+I€( )

Sx€EH+I,x=a+i32a€H i€l

x+I=(@+i)+I=a+]1=¢x)=¢pla)=x+1
By the first theorem, we get

H _(H+1D)
kerop — I

kero={xeH:p(x)=1}={x€eH:x+1=1}={x€H:x €I}
={xeH:xeHNI}=HNI

(H+D) _ H
~ (HnD)'

Therefore,

Theorem(8-4): Let (R,+,7)) be a ring with identity and ¢ be a

homomorphism from (R, +,7) into (¢(R),+',""), then

(1) (1) is an identity of (¢ (R),+',").

(2) @(x~ 1) isaninverse @(x) in (p(R),+',").
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Proof: (1)ify € ¢(R),3x ER 3y = ¢(x)
l-x=x-1l=x=¢(1-x) =0 1) = o)
p(D) o) =) o(1) = p(x)
p(D'y=y" o) =y = ¢1) € p(R)
Thus, (1) is an identity element of (@(R), +',")
Proof: Q) x-x T=x"1x=1= o x5 = o 1 x) = (1)
Q) p(x™) = (™) " p(x) = o(1) = ¢(x71) € p(R)

Hence, p(x 1) is an inverse of ¢(x) in ¢ (R).

Theorem(8-5): (The third fundamental theorem of homomorphism of

ring)

If I,] be two ideals in (R, +,") with ] € I, then ?

~

~I~~I

Proof: Ietgo:§—> ?deﬁned by p(r+J)=r+1, VreR,r+] € ?

To show that ¢ is a homomorphism
plx+ DN+ +Dl=plx+y)+]1=(x+y) +1I

=x+D+@+D=px+))+oly+])
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Also
plx+ - +DI=plx=y)+]I=Cx-y)+1I
=@+D-+tD=9ox+]) oy +])

To prove kerp = §

Letr+J€kerp = o(r+])=1Lpo0r+])=r+1
I I
r+1=1$7‘€1=>r+]€jzker<p§j

Letz+]E§,zEI,g0(z+])=Z+I=I=Z+]Eker<p=>§§ker<p

Hence,

~ | >
[
\I~|\<I'JU

9. Properties of Ideals and Quotient Ring by Using

Homomorphisms.

Theorem(9-1): Let I,] be two ideals in a ring (R, +,)), then I 4] is an

ideal inaring (R, +,7).

Proof: I+ ] ={x€R:x=a+b;a€l,be]}

O+I+JCSRO0O=0+0€1+]
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x,yeEl+],x=a+ba€l,be],y=c+d,cel,de]

x—y=@@+b)—(c+d)=(a—c)+b—-d)el+]

reRr-x=r-(a+b)=r-a+r-bel+]

xr=(a+b)-r=ar+b-rel+]

Therefore, I + J isanideal inaring (R, +,7).

Theorem(9-2): Let I,/ be two ideals ina ring (R,+,"), then I NnJ is an

ideal inaring (R, +,7).

Proof: IN] ={x€eR:x€l,x €]}

@+INJCROELOEJOEIN]

x,yeEIN] x,yeElLLx,yE], x—yELX—YE],x—YyEIN]

a€ERyeln],yel,ye],a-y,y-a€l,ay,y-a€]j

ayelnj,y-aelnj

Hence, I NnJ isanideal inaring (R, +,7).

Theorem(9-3): Let I,/ be two ideals in a ring (R, +,)), then I -] is an

ideal inaring (R, +,").

Proof: [ J={x€R:x =YY", x;"yi;x; €L,y €],n€ZL*}
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@+1-JCSRO=0-0€l-]

n

x,yEI-],x=in-yi;xi el,y,e/,nel*

i=1

y=zxj'-yj';xj' EI,yj’ €EJmeZL*

m

n
X—y= le Vi — x]

i=1 j=1 i

m
yEIl-J,aeERa ' y=a- ij’
j=1

m
j=1

Thus, I -] isan ideal inaring (R, +,).

.yj,

m

2.

j=1

le yl+Z( x;j')y; €l-]

m
=Z(a'xj')'3’j' €l-]
=1
xj'(y; ra) |€l-]

Theorem(9-4): Let J € I be two ideals in a ring (R, +,"), then § IS an

ideal inaring (R, +,7).

Proof: §={xeR:x-];I}
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I I
-CR0-]={0}c1,{0}€-
0# 7SRO 0} € 0} &7

I
x,yej,x=a-],y=b-]

X—y= a-]—b-]=(a—b)-]gl,x—ye§

reERr-x=r-(a-])=0-a)-JcI

Hence, § isan ideal inaring (R, +,7).

Theorem(9-5): Let (R, +,) be a commutative ring, then /T is an ideal

in (R, +,7) contains I.
Proof: 9 #VI={x € R:An € Z*;x" €[} S R,0€ 1,0 €I
x,yE\/T,x”EI,ym €l
(x—y)™lel,x—ye+
x€EVILaeRx"el,(a-x)"€l,a-x €I
To show I €+/1

yel,ylel,y eI
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Example(9-6): Find \/@ :

Example(9-7): Show that v7 < /1 .

Example(9-8): Let I, ], K be ideals inaring (R, +,") with [ € K, then

I+JnNnK)=(U+]))NK

Solution: letx € I + (J N K)

= x=a+b3a€l,beJ]NK=be],beEK

be]=x=a+bel+], also

bekaelCK=x=a+beEK=x=a+be(l+])NK

=I+(JnNnK)c{U+])nK

letye(I+])NK =>y€el+],yeEK

= y=a+ba€l,be]

ICK=a€Kb=y—a€K=be]JNK

=y=a+bel+(NK)

= {U+]))NK<SI+({(NK)

= I1+(JnNnK)=U+])nK
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10. Zero Divisors Elements and Integral Domains.

Definition(10-1): A ring (R, +,") is said to have divisors of zero if

there exist nonzero elements a, b € R such that the producta - b = 0.

Theorem(10-2): A ring (R, +,") is without divisors of zero if and only

if the cancellation law holds for multiplication.

Proof:(=) Assume (R, +,") contains no divisors of zero.

leta,b,c ER3a#0,a-b=a-c,then

a(b—c)=ab—a-c=0

Since a # 0, (R, +,") has no zero divisors, b —c=0o0rb =c

(<) suppose that the cancellation law holdsand a-b = 0

Ifa+0,thena-b=a-0=b=0.

bx0=a=0

This shows (R, +,7) is free of divisors of zero.

Corollary(10-3): Let (R, +,") be a ring with identity which has no zero

divisors. Then the only solutions of the equation a®> = a are a = 0 and

a=1.
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Proof: ifa? =a=a-1,witha # 0, thena = 1.

Definition(10-4): An integral domain is a commutative ring with

identity which does not have divisors of zero.

Corollary(10-5): In an integral domain, all the nonzero elements have

the same additive order, which is the characteristic of the domain.

Proof: suppose the integral domain (R, +,") has positive characteristic

n.

Any a € R(a # 0) will then possess a finite additive order m, with

m < n.

But 0 =ma = (ml)-a= ml=0, since (R,+,) is free of zero

divisors.

Corollary(10-6): The characteristic of an integral domain (R, +,") is

either zero or a prime number.

Proof: let (R, +,) be of positive characteristic n and assume that n is

not a prime.
n=nn,with 1 <n; <n(i = 1,2).

0=nl=(ny)1=(yny)1? = (m1) - (n,1).
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Since (R, +,7) is without zero divisors, either n;1 = 0or n,1 = 0.
But this is contradiction, n the least positive integer such that n1 = 0.

Hence, we are led to conclude that the characteristic must be prime,

0 O

Example(10-7): Let (M,(R),+,") be a ring. Then (C d

),c,d ER IS a

a 0

b 0),a, b € R is a left zero divisor in (M, (R), +,:

right zero divisor and (

).
Solution: ((C) 2)¢(8 8)(2 8)¢(8 8)
(b o) a)=( o

Example(10-8): The number 2 is a zero divisor inaring (Z,, +4,"4) and

the numbers 2,3 are zero divisors inaring (Zg, +¢,7¢). (check)

Example(10-9): Let (S = {(a, b): a, b € Z}, +,7) be a commutative ring

with identity and define
(a,b) + (c,d)=(a+c,b+d)
(a,b)-(c,d)=(a-c,b-d)

The identity element with + is (0,0), and the identity with - is (1,1).
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Also, (1,0) is a zero divisor, since

(1,0) - (0,1) = (0,0)

(0,1) # (0,0, (1,0) % (0,0).

Example(10-10): The triple (Z,+,") is an integral domain, since (Z, +,")

IS a commutative with identity .
x,YyEZ3x-y=0=x=00ry=0.

Example(10-11): Let (Z,,+,,,) be a ring, where p is a prime number,

then (Z,, +,,7p) is an integral domain.
Solution: the triple (Z,, +,,,) is a commutative with identity [1].

To show (Z,, +,,) has no zero divisors.
Let [a], [b] € Z, 3 [a] -, [b] = [0] = [a-b] = [0] = =
But p is a prime humber, = Z or% = [a] = [0] or [b] = [O].

Example(10-12): (M, (R), +,7) is not an integral domain, since it is not

commutative ring.

Example(10-13): Solve the equation x? —4x + 3 = 0 inaring

(Z12,+12:12)-
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Solution: x2 —4x+3=0=> (x—-3)(x—1)=0=>x=3,x = L.
But, in (Z1,, +12,712), We have

[0] -1z [a] = [a] 12 [0] = [0]
Since

2'126=3'124=3'128=4'129=6'126=6'128=6'1210

=9.,8=0
So,
(9-3)(9-1)=6-,8=0
(7-3)(7-1)=4,6=0
Hence, {1,3,7,9} is a set of solution of x2 —4x + 3 = 0in (Z;5, +12,°12)-

Example(10-14): Let (R, +,") is an integral domain with x,y € R 3 x> =

y> and x” = y7. Show that x = y.
Solution: If x =0 =x"=0=y"=0=y = 0.
Letx 20, x”’ =y7 = x> x2 = y> - 2

=x’ x?=x>y?=x>- (x?2—-y?) =0
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Since, (R, +,) is an integral domain and x + 0

Sx°#20=2x2—-y?=0=x2=y2 = x4 =95 ..(¥)

X =y = xbx=y6-y

By (*), we get
x6(x—y)=0,x#0,x#20=>x—-y=0=x=y

Corollary(10-15): Let (R, +,") be a ring with identity and u € R is an

invertible, then u is not zero divisor.
Proof:letr eR3 u-r=0=ut(u-r) =u"1(0) =0
S@wluwr=0=1r=0=r=0
Also,
rru=0= 0w -ult=00)utl
Sr-uul)=r-1=0=r=0.

11. Fields and their properties

Definition(11-1): A ring (F,+,") is said to be a field provided the pair

(F — {0},-) forms a commutative group.
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Example(11-2): Both (R, +,") and (Q, +,-) are fields. (check)

Example(11-3): The triple (F = {a + bv3:a,b € Q}, +,") is a field.

0=0+0v3, 1=1+0V3

L, 1 1 a-bf3
(a+bV3) (@a+bV3) (a+bV3)a—by3
a
“@ 3 —3b2‘/—EF

Example(11-4): The triple (R X R, +,), is a field. Where

(a,b) + (c,d) = (a+c,b+ad),
(a,b) - (c,d) = (ac — bd,ad + bc).

The pair (1,0) is the multiplicative identity and (0,0) is the zero element

of the ring.

Now, suppose (a, b) # (0,0), either a = 0 or b # 0, so that a® + b? > 0;
thus

—b

1 _
(a,b)" (az + b?'a? + bz)

a —b ) a’+ b%* —ab + ab

D (s, = , = (1,0
(a.) a? + b? a? + b? (a2+b2 a2+b2) (1O
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Example(11-5): The field contains a subring which is isomorphic to the

ring of real numbers.
Rx0={(a0):a € R}
It follows that (R, +,") = (R X 0, +,7) via the mapping f defined by
f(a) = (a,0),a € R (check)

Example(11-6): The triple (Z,, +,,",) is a field.

Let [0] # [a] € Z, = gcd(a,p) =1

= 3s,t€Zd3a's+p-t=1

= [s] is a multiplicative inverse of [a].

Example(11-7): The triple (C, +,) is a field. (check)

Corollary(11-8): In a field (F,+,"), with 0 # a,b € F, then there exist a

unique element x satisfies a-x + b = 0.

Proof: (F,+) is an abelian group, then
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a-x+b=0=a-x=-b=sx=a(-b)=—-al-b

Example(11-9): The triple (IR,*,0) is a field, where *,0 are defined by

a*b=a+b+1, aecb=a-b+a+ bVa,b € R (check)

Theorem(11-10): If (F,+,")isafieldand a,b € F with a - b = 0, then

either a=0 or b =0.
Proof: if a = 0, the theorem is already established.
Suppose that a + 0 and prove that b = 0.
aleFa-b=0
O=atl-0=al(@ab)=(@@?' a):b=1-b=b.
12. More Results of Fields and Integral Domains.

Theorem(12-1): Any finite integral domain (R, +,") is a field.

Proof: suppose a,,a,,..,a, ERand 0 #a €R

a- a;,a-a..,a-a,arealldistinct, forif a- a; =a-aq; then q; =
a; by the cancellation law. So each element of R is of the form a- a;.

In particular, 3a; € R 3 a - a; = 1; since multiplication is commutative,
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we have a; = a~1. This shows that every nonzero element of R is

invertible, so (R, +,") is a field.

Example(12-2): Prove or disprove, every integral domain is a

field.(check)

Example(12-3): Prove or disprove, every ring is a field.(check)

Example(12-4): Prove or disprove, every ring is an integral

domain.(check)

Theorem(12-5): The ring (Z,, +,,,») of integers modulo n is a field if

and only if n is a prime number.

Proof: We first show that if n is not prime, then (Z,,, +,,,-,,) is not a field.

Thus assumen =a-b,where0 <a<nand 0 < b <n.

la] - [b] = [a - b] = [n] = [0],

Both [a] # 0, [b] # 0. This means that (Z,,, +,,",) is hot an integral

domain, and hence not a field.

Suppose that n is a prime number. To show that (Z,,, +,,,-,) is a field.
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Let [a] € Z,,, where 0 < a <n.gem(a,n)=1=3Ar,s€Z3a-r+n-

s=1

la] n [r] = la-r]+,[0] = [a-r]+pn-s]=la-r+n-s] =[1],
Showing the congruence class [r] to be the multiplicative inverse of [a].
Therefore, (Z,,,+,,) is a field.

Theorem(12-6): Let (R, +,) be a commutative ring with identity. Then

(R, +,7) isafield if and only if (R, +,-) has no nontrivial ideals.

Proof: (=) Assume first that (R, +,") is a field. We wish to show that the

trivial ideals ({0}, +,-) and (R, +,-) are its only ideals.
Let (I, +,") be nontrivial ideal of (R,+,) = I # {0}and [ # R

= 30 #a €1,since (R,+,) isafield=3a '€R3al-a=1¢€

I =1=R

But, this is contradiction.

(&) suppose that (R, +,7) has no nontrivial ideals.

Let a € R, consider the principal idea ({a), +,") generated by a:

(a) ={r-a:r € R}
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Now ((a),+,") cannot be the zero ideal, sincea = a-1 € (a), with a #

0.

If ({(a),+,")) = (R,+,"):thatis, (a) = R,since1 € (a),Ir' ER3r'-a =

Hence each nonzero element of R has a multiplicative inverse in R.

Theorem(12-7): Let f be a homomorphism from the field (F, +,") onto

the field (F',+',""). Then either f is the trivial homomorphism or else

(F,+,”) and (F',+',-") are isomorphic.

Proof: since (kerf,+,") is an ideal of (F,+,), either kerf = {0} or

kerf =F.

If kerf = {0} = f is a one-to-one, in which case (F,+,) = (F',+',")

via f.

If kerf = F, then each element of (F,+,) must map onto zero; that is, f

s the trivial homomorphism.

Definition(12-8): By a subfield of the field (F,+,") is meant any subring

(F',+,) of (F,+,") which is itself a field.
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Example(12-9): The ring (Q, +,-) is a subfield of the field (R, +,-).

Theorem(12-10): The triple (F', +,7) is a subfield of (F,+,") if and only

if the following hold:

(1) F' is a nonempty subset of F with at least one nonzero
element.
(2) a,b € F' implies a —b € F'.

(3) a,b € F', where b = 0, impliesa-b~! € F'.

Theorem(12-11): Let the integral domain (R, +,-) be a subring of the field

(F,+,). If the set F' is defined by
F'={a-b':a,b €R;b # 0},

then the triple (F’,+,-) forms a subfield of (F,+,) such that R € F’. In

fact, (F', +,") is the smallest subfield containing R.
Proof: if a,b € Rwithb #0, a-b~1 €F
Sincel=1-1"*eF ,F'#0

Let x,y € F', we have

x=a'b™L,y=c-dta,bc,d€ERDb+0,d=0
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x—y=(a-d—b-c)-(b-d)"teF
Ify +0,c+0,
xyl=(@-d)-(c-b)teF

Note(12-12): Let (R, +,7) be an integral domain and K the set of ordered

pairs,

K ={(a,b):a,b € R; b + 0}.

(a,b) =(c,d) = a-d=b-c

Theorem(12-13): The relation = is an equivalence relation in K.(check

1,2)
That is to say

1)  (ab) = (ab),
2)  If(ab) = (c,d), then (c,d) = (a,b),

(3) If (a,b) = (c,d) and (c,d) = (e, f), then (a,b) = (e, f).

The least obvious statement is (3). In this case, the hypothesis (a, b) =

(c,d) and (c,d) = (e, f) implies that

ad=b-c, c-f=d-e.
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Multiplying the first of these equations by f and the second by b, we
obtain

a-d-f=b-c-f=b-d-e,

and, from the commutativity of multiplication,a-f -d = b - e - d. Since

d + 0, this factor may be cancelled to yield a - f = b - e. But then
(a,b) = (e, f).

Note(12-14): We label those elements which are equivalent to the pair

(a, b) by the symbol [a, b]; in other words,
[a,b] = {(c,d) € K:(a,b) = (c,d)}
={(c,d) €EK:a-d =b-c}.
la,b]+'[c,d] =[a-d+b-c,b-d],
[a,b] ' [c,d] =[a-c,b-d].
let [a, b] = [a’, b'] and [c,d] = [c¢', d']. From the equations
ab'=b-a, c-d =d-c
it follows that

(@a-d+c-b)-(b-d)—(a-d +cb)-(b-d)
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=(a-b'—b-a)-(d-d)+(c-d —d-c) (bb)

=0-(d-d)+0-(b-b')=0

Thus, by the definition of equality of classes,

[a'd+C'b,b'd]=[a’-d’+c’-b',b’-d’],

Proving addition to be well-defined. In much the same way, one can show

that

[a-c,b-d] =[a"-c',b"-d].

Lemma(12-15): The triple (F,+',-") is a field, generally known as the

field of quotients of the integral domain (R, +,-).

Proof: the multiplicative identity , where a is any nonzero element is
[a,a] ' [c,d] =[a-c,a-d] = [c,d]

with [c,d] in F.

[0, b] as the zero element while [—a, b] is the negative of [a, b].

To show [a, b] # [0, b], a # 0 has an inverse under multiplication.

la,b]-' [b,a] =[a-b,b-a]l =[a-b,a-b].
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Sincea-b # 0, [a- b,a- b] is the identity element, so that [a, b]™! =

[b, a].

Theorem(12-16): The integral domain (R, +,-) can be embedded in its

field of quotients (F,+',-").

Proof: Consider the subset F' of F consisting of all element of the form

[a, 1],
Where 1 is the multiplicative identity of (R, +,7):
F'={la,1]:a € R}
Let f: R — F' be the onto mapping defined by
f(a) =[a,1],Va €R

Since [a, 1] = [b,1] impliesa-1 = 1-b or a = b, we see that f is a one-

to-one function.
fla+b) =[a+b,1] = [a1]+'[b, 1] = f(a)+'f (b),
fla-b)=la-b 1] =[a,1]-[b,1] = f(a) ' f(b).
Therefore, (R, +,) = (F, +,").

Note(12-17): Any member [a, b] of F can be written in the form
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[a,b] = [a,1] ' [1,b] = [a, 1] ' [b, 1]~ .

Note(12-18): It should also be observed that for any a + 0, we have

a,1]-' [b,a] = [a-b,a] = [b,1].

Note(12-19): The field of quotients constructed from the integral domain

(Z,+,) is, of course, the rational number field (Q, +,").

Definition(12-20): A field which does not have any proper subfields is

called a prime field.

Example(12-21): The field of rational numbers, (Q, +,-), is a prime field.

To see this, suppose (F, +,) is a subfield of (Q,+,) andlet 0 #a € F.
Since (F, +,) is a subfield, it must contain the product a - a™! = 1.

n=n-1"1€F vn €Z: in other words, F contains all the integers. It
follows then that every rational number % =n-m~1,m # 0, also belongs

to F,sothat F = Q.

Example(12-22): For every prime p, the field (Z,,+,,,) of integers

modulo p is a prime field. The reasoning here depends on the fact that the
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additive group (Z,, +,) of (Z,, +,,,) is a finite group of prime order, and

therefore has no nontrivial subgroups.

Theorem(12-23): Any prime field (F, +,-) is isomorphic either to (Q, +,),

the field of rational numbers, or to one of the fields (Z,, +,,,), where p is

a prime number.

Proof: let 1 be the identity element of (F,+,") and define the mapping

f:Z — F by
f(n)=nl Vnez

Then f is a homomorphism from (Z, +,-) onto the subring (f (Z), +,")

consisting of integral multiples of 1, we see that

Z

(o +) = (F@, ).

But the triple (kerf, +,") is an ideal of (Z, +,") a principal ideal ring,
kerf = (n) for some nonnegative integer n. if n # 0, then n must in fact
be a prime. Suppose n = n;n, where 1 <n; <n(i = 1,2). Sincen €

kerf,

(ny1)- (ny1) = (nyn,)1 =nl =0,
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yielding the contradiction that the field (F,+,-) has divisors of zero.

Therefore, n is the characteristic of (F, +,-) and as such must be prime. So

(1) (f (@), +,) = (%, +,-) = (Zp, +p,) for some prime p, or

Z

@ @+ = (g +) = @+,

Suppose first that (f(Z), +,)) = (Zp, +5,7p) the subring (f(Z), +,-) must
itself be a field. But (F, +,-) contains no proper subfield. f(Z) = F and

(F,+) = (Zp, +prp)-

Next, (f(Z),+,") = (Z, +,"), the subring (f(Z), +,") is an integral domain,

but not a field. The hypothesis (F,+,-) isa prime field, then implies
F={a-bt:a,be€f(Z);b+ 0}
={(n1)-(m1)tin,m € Z;m # 0}.

The fields (F,+,)) and (Q,+,") are isomorphic under the mapping

n

g(;) = @D 1™,

m

Corollary(12-24): Every field contains a subfield which isomorphic either

to the field (Q,+,7) orto one of the fields (Z,,+,,',), p a prime.
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13. Maximal Ideals. Examples, Properties and Results.

Definition(13-1): An ideal (I,+,") of the ring (R, +,") is a maximal ideal

provided I # R and whenever (J, +,-) is an ideal of (R, +,") with [ c ] S

R,then J =R.

Theorem(13-2): Let (Z, +,7) be the ring of integers and n > 1. Then the

principal ideal ({(n), +,") is maximal if and only if n is a prime number.

Proof: (=) suppose ({n),+,) is a maximal ideal of (Z,+,"). If the
integer n is not prime, then n =nyn,, where 1 <n;, <n, <n. This

implies the ideals ({n,),+,") and ({n,), +,*) are such that

(n)c(n)cZ  (n)c(ny)cZ

contrary to the maximality of ((n), +,")

(&) assume that n is prime.

If the ideal ((n), +,) is not maximal in (Z, +,-), then either (n) = Z or else
there exists some proper ideal ({(m),+,) with (n) c (m) c Z. The first
case is immediately ruled out by the fact that 1 is not a multiple of a prime

number.
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The alternative possibility (n) c (m) means n = km for some integer
k > 1; this also is untenable, since n is prime, not composite. We therefore

conclude that ({(n), +,") is a maximal ideal.

Example(13-3): Let R denote the collection of all functions f: R — R.

For two such functions f and g, we have

f+9)x) =f(x)+g(x)

(f - () = f(x)g(x), x € R.

Then (R, +,7) is a commutative ring with identity. Consider

M = {f € R: £(0) = 0}.

The triple (M,+,") forms an ideal of (R,+,); we observe that it is a

maximal ideal.

Zorns Lemma(13-4): Let M be a nonempty family of subsets of some

fixed set with the property that for each chain y in M, the union U y also
belongs to M. Then M contains a set which is maximal in the sense that it

Is not properly contained in any member of M.

Theorem(13-5): (Krull-Zorn). In a commutative ring with identity, each

proper ideal is contained in a maximal ideal.
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Proof: let (1, +,") be any proper ideal of (R, +,"). Define
M ={J:1 < ];(J,+,)is aproper ideal of (R,+,")}.

M = @, since I € M. Let achain {[;} in M. Notice that U I; # R, since 1 ¢

I; for any i.
Leta,b € Ul;andr € R = 3i,j forwhicha € I;,b € [;

The collection {I;} forms a chain, either I; € I; or else I; < I;; say, for
definiteness, I; < I;. But (I;,+,") is an ideal, so a — b € I; < U I;. For the
same reason , - a € I;. This shows the triple (U/;,+,") to be a proper

ideal of thering (R,+,")).1 € UI;, hence UI; € M.

Thus, on the basis of Zorns Lemma, M contains a maximal element N. The
triple (N, +,7) is a proper ideal of the ring (R, +,-) with] € N. (N,+,") isa
maximal ideal. To see this, suppose (J,+,") is any ideal of (R,+,") for
which N € J € R. Since N is a maximal element of M, the set ] ¢ M, the
ideal (J,+,) must be improper, which implies /] = R. We therefore

conclude (N, +,7) is a maximal ideal of (R, +,-).

Corollary(13-6): An element is invertible if and only if it belongs to no

maximal ideal.
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Definition(13-7): Let (R, +,") be aring and a € R, then a is said to be an

idempotent element, if a? = a.

Theorem(13-8): In a ring (R,+,) having exactly one maximal ideal

(M, +,-), the only idempotent elements are 0 and 1.

Proof: assume the theorem is false; that is, suppose there exists an
idempotent a € R with a # 0,1. The relation a? = a impliesa - (1 — a) =
0, so that a and 1 — a are zero divisors. Hence, neither the element a nor
1 — a is invertible in R. But this means the principle ideals ({a), +,") and
({1 — a), +,) are both proper ideals of the ring (R, +,-). As such, they
must be contained in (M, +,"): {(a) €M and (1 —a) € M, botha and 1 —

aliein M,
l=a+(1—-a)eM
This leads at once to the contradiction M = R.

Theorem(13-9): Let (I,+,") be a proper ideal of the commutative ring

(R, +,") with identity. Then (I, +,) is a maximal ideal if and only if the

quotient ring (? +,-) is a field.

a0




Prof. Dr. Najm Al-Seraji, Ring Theory, 2025

Proof: (=) let (I, +,") be a maximal ideal of (R, +,-). Since (R, +,) is a
commutative ring with identity, the quotient ring (? +,-) also has these

properties. If a +1 = 0 + I, then a & I. The ideal ({I, a), +,") generated by

I and a must be the whole ring (R, +,"):
R={l,a)={i+r-a:i €l,r €R}.

The identity element 1,1 =i"+r'-a,1—1r"-a €l
1+I=r""a+l=0"+1D (a+]),

r'+1 = (a+ 1)1 Hence (? +,-) is a field.

(<) suppose (%, +,") is a field and (J, +,) is any ideal of (R, +,") such

that I c J € R. Since [ is a proper subset of J, there exists an element a €

Jwith a&l. Thecoseta+1+ 0+ 1. (§+) is a field,
(a+D-b+D=1+1
forsomecosetb+1€§. l—a-belc].Buta-bej,1€/,] =R.

Example(13-10): Consider the ring of even integers (Z,, +,"), a

commutative ring without identity. In this ring, the principle ideal
((4), +,") generated by the integer 4 is a maximal ideal.
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Solution: if n is any element not in (4), then n is an even integer not

divisible by 4; the greatest common divisor of n and 4 must be 2. We have

((4),n) = (2) = Ze,

This reasoning shows that there is no ideal of (Z,, +,-) contained between
((4),+,) and (Z, +,").
. (T _
Now note that in (@, +, )
(Z+(4)-(2+(4) =0+ (4).

The ring (%, +,-) therefore has divisors of zero and cannot be a field.

Definition(13-10): Let (R, +,-) be a ring and a € R, then a is said to be a

nilpotent element, if there exists a positive integer n such that a™ = 0.

Example(13-11): Find the set of all nilpotent elements of (Z, +,") and

(Zy, to,9).

Example(13-12): If (R, +,-) is an integral domain, then the zero element is

the only nilpotent of R.

Example(13-13): The converse of example (13-12) is no true in general,

for example 0 € Z; is a nilpotent, but (Z,, +¢,"¢) is not an integral domain.
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Example(13-14): Let (R,+,") be aring and a € R. If a is a nilpotent and

a # 0, then a is a zero divisor.

Example(13-15): The converse of example (13-14) is not true in general,

for example 2 € Z, is a zero divisor, but it is not nilpotent.

Example(13-16): Find the set of idempotent elements in (Z, +,-) and

(Zs, t6,6)-

Example(13-17): Find all the maximal ideals in (Z;5, +12,'12).

14, Prime Ideals. Examples, Properties and Results.

Definition(14-1): An ideal (I, +,-) of the ring(R,+,-) is a prime ideal if

forall a,b € R,a-b € I implies eithera el or b € I.

Example(14-2): The prime ideals of the ring (Z, +,") are precisely the

ideals ({(p), +,"), where p is a prime number, together with the trivial ideals

{0},+,) and (Z,+,).

Theorem(14-3): A commutative ring with identity (R, +,-) is an integral

domain if and only if the zero ideal ({0}, +,7) is a prime ideal.

Proof: (=) if (R, +,7) is an integral domain
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Let a,b € R and a.b € {0} = a.b = 0 = either a = 0 or b = 0, since

(R, +,) isan integral domain= a € {0} or b € {0} = {0} is a prime ideal

(&) let {0} is a prime ideal and a.b = 0 = a.b € {0} = either a € {0}
or b € {0}, since {0} is a prime ideal= a=0o0r b = 0= (R,+,”) is an

integral domain.

Example(14-4): Let (F,+,") be a field, then ({0},+,) and (F,+,") are

only prime ideals in (F, +,").

Example(14-5): the triples (Q +,), (R, +,),(C,+,) and (Z,, +,.p),

where p is a prime have trivial prime ideals.

Example(14-6): The prime ideals of (Z, +,") are ({(p),+,"), ({0}, +,") and

(Z,+,).

Example(14-7): In (Z,,, +,,',), an ideal ({(p), +,") is a prime.

Example(14-8): The prime ideals of (Z;,, +12,'12) are ({(2),+1,,"1) and

((3), +12,12)-

Example(14-9): Find all prime and maximal ideals of (Z;s, +15,"15).

a4




Prof. Dr. Najm Al-Seraji, Ring Theory, 2025

Theorem(14-10): Let (I,+,") be a proper ideal of the commutative ring

(R, +,") with identity. Then (I,+,)) is a prime ideal if and only if the

quotient ring (? +,-) Is an integral domain.

Proof: (=) take (I, +,") is a prime ideal. Since (R, +,") is a commutative

ring with identity, so is the quotient ring (? +) Assume that

(a+D)-(b+D)=I=a-b+1
a-b€l. Since (I,+,) is a prime ideal, a € I or b € I. But this means

eithera+I1=1or b+ 1 =1, hence (? +,-) IS without zero divisors.

(&) suppose (? +,-) Is an integral domainand a - b € I.

(a+D-(b+D)=a-b+1=1.

By hypothesis, (? +,-) contains no divisors of zero, so that either a + I =

Il orb+I1=1.S0a€l or bel,therefore (I,+,) is aprime ideal.

Theorem(14-11): In a commutative ring with identity, every maximal

ideal is a prime ideal.
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Proof: Assume(/, +,-) is a maximal ideal of the ring (R, +,") and that a -
b €l witha & I. (I,+,) is a maximal implies that R = (I, a). Hence there

exist elementsi € I, € R for which

l1=i+4+r-a.

Since both a - b and i are in I, we conclude

b=(+r-a):b=i-b+r-(a*b)€l,

from which it is clear that (1, +,-) is a prime ideal.

Example(14-12): The ring (Z,, +,"), where ({4), +,-) forms a maximal

ideal which is not prime.

Theorem(14-13): Let (R, +,") be a principal ideal domain. A (nontrivial)

ideal of (R, +,) is prime if and only if it is a maximal ideal.

Proof: (=) suppose (I, +,") is any ideal with {(a) € I < R. Since (R, +,")
Is a principal ideal ring, there exists b € R for which I = (b). Now a €
I = (b), hence a =r-b,r € R. But ({a),+,”) is a prime ideal, so either
r € {a)or b € (a). b € {(a) leads to the contradiction (b) € {(a). Therefore
r € (a), which implies r=s-a,s€R, or a=r-b=(s-a)-b. Since

a # 0 and (R, +,") is an integral domain, we have 1 = s - b. This means
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1 e (b) =1, or I = R. Since no ideal lies between ({a),+,) and (R, +,"),

we conclude that ({a), +,") is a maximal ideal.

(&) from theorem (14-5).

Corollary(14-14): A nontrivial ideal of the ring (Z, +,-) is prime if and

only if it is maximal.

Definition(14-15): A nonzero element a of the ring (R, +,") is called a

prime element of R if a is not invertible and in every factorization a = b -

c with b, c € R, either b or c is invertible.

Theorem(14-16): Let (R,+,) be a principal ideal domain. The ideal

({(a), +,") is a prime (maximal) ideal of (R, +,7) if and only if a is a prime

element of R.

Proof: (&) suppose a is a prime element of R and (I, +,") is any ideal for
which (a) € I € R. By hypothesis, (R,+,") is a principal ideal ring, so
thereisb € R with I = (b). As a € (b),a = r - b for some r € R. Since a
is a prime element that either r or b is invertible. b = r~1 - a € {(a), which
implies I = (b) € (a), an obvious contradiction. The element b must be
invertible, so that (b) = R. This argument shows that ({(a),+,") is a

maximal ideal of (R, +,") and prime.
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(=) Let ({a),+,”) be a prime ideal of (R,+,"). Assume that a is not a
prime element of R. Then a = b - ¢, where b, c € R, and neither b nor c is
invertible. Now if be(a),b=r-a,r€R, and a=b-c=(r-a)-c.
From the cancellation law, r-c¢ = 1. But this contradiction that c is
invertible. By the same reasoning, if ¢ lies in (a), then b -c € (a), with
b & (a),c & (a), ({a),+,") is a prime ideal. Hence our supposition is false

and a must be a prime element of R.

Definition(14-17): The radical of a ring (R, +,-), denoted by rad R, is the

set
rad R = N{M: (M, +,-) is a maximal ideal of (R, +,")} .

If rad R = {0}, then we say (R,+,) is a ring without radical or is a

semisimple ring.

Example(14-18): The ring of integers (Z, +,") is a semisimple ring.

Solution: the maximal ideals of (Z, +,-) are the principal ideals ({p), +,"),

where p is a prime; that is,

rad Z = N{(p): p a prime number}.

Since no nonzero integer is divisible by every prime, rad Z = {0}.
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Example(14-19): Find rad (Z;5) and rad (Z,3).

Theorem(14-20): Let (I,+,") be an ideal of the ring(R, +,-). Then the set

I € rad R if and only if each element of the coset 1 4+ I has an inverse in

R.

Proof: (=) assume that I € rad R and that there is a € I, for which 1 +
a is not invertible. The element 1 + a must belong to some maximal ideal
(M, +,") of the ring (R,+,"). Since a € rad R, a € M, and therefore 1 =

(14 a) — a € M. But thismeans M = R, which is clearly impssible.

(<) suppose each element of the coset 1 + I has an inverse in R, but I &
rad R. There exist a maximal ideal (M, +,") of (R, +,-)) withI € M. If a €

lL,ag¢ M,(M,a) =R.
l1=m+r-a

letmeM,reR,m=1—r-a €1+, sothat m possesses an inverse.
The conclusion is untenable, since no proper ideal contains an invertible

element.

Theorem(14-21): In any ring (R, +,") an element a € rad R if and only if

1 + r - a has an inverse for each r € R.
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Corollary(14-22): An element a is invertible in the ring (R, +,-) if and

only if the coset a + rad R is invertible in the quotient ring (ﬁ, +)

Proof: (&) assume the coset a + rad R has an inverse in (ﬁ, +) SO

that
(a+radR)-(b+radR)=1+radR

forsome b € R. Thena+-b —1 € rad R. With r = 1, to conclude that a -

b=1+4+1-(a-b—1)isinvertible: this means a has an inverse.
(=) (check)

Corollary(14-23): The only idempotent in the radical of the ring (R, +,)

is 0.

Proof: let a €rad (R) with a? = a. Taking r = —1 in the preceding

theorem, we see that 1 — a has an inverse in R; say
(1—a)-b=1,b€ER

a=a’*+a-b—a-b=a-(a+a-b—b)=a-(a—1)=0

20




Prof. Dr. Najm Al-Seraji, Ring Theory, 2025

Corollary(14-24): Let N denote the set of all noninvertible elements of R.

Then the triple (N, +,-) is an ideal of the ring (R, +,”) ifand only if N =

rad R.

Proof: (=) rad R € N clearly holds. Suppose a € N. (N, +,-) is an ideal

of thering (R, +,"),thenr-a € N,r e R. 1+ r-a ¢ N, for otherwise
1=(0+r-a)—(r-a)eN

So1+r-a must be invertible, a € rad R. This shows N € rad R, then

N = rad R.

(<) is clear.

Theorem(14-25): For any ring (R, +,7), the quotient ring (ﬁ,ﬁ-) IS

semisimple.

Proof: suppose a + I € rad (?)
A+D+@r+D-(a+D=1+4+r-a+1

IS invertible in ? for each r € R. There exists a coset b + I, such that

AQ+4+ar+DH-b+DH=1+1

b+ar-b—1€l=radR
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b+ar-b=1+1-(b+a-r-b—-1)

has an inverse ¢ € R. But

AQ+r-a)-(b-c)=0b+a-r-b)-c=1

sothat 1 +r-aisinvertible in R. a € rad R.

Definition(14-26): An ideal (I,+,") of a ring (R, +,) is called a primary

ideal, if forall a,b € R suchthata,b € I, implies that, if a & I, then b™ €

lorifb &I, thena™ €I, forsomen € Z™.

Example(14-27): Show that, (I = (4),+12,12) IS @ primary ideal of

(Z12,+12,°12).

Solution: I = (4) = {0,4,8},Z,, = {0,1,2,3,4,5,6,7,8,9,10,11}
21,6=0€l=6¢1,22=4¢€]
10-,2=8€l=2¢L102=4¢€]
6.,8=0€l=6¢&l8¢€l
6,6=0€l=6¢&l,62=0€l

4'125=8EI:S$1,4EI
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Therefore, I is a primary ideal.

Theorem(14-28): Every prime ideal is a primary.

Proof: Let (1,+,") be a prime ideal of a ring (R, +,).

Leta,b € Rsuchthata.b € 1

Ifa &1,thenb €1 (since ! isaprime ideal)

Thus, b™ € 1, s0 1 is a primary ideal.

Example(14-29): Prove or disprove, every primary ideal is a prime.

Solution: In general, it is not true, for example: in (Z;5, +15,"12) the ideal
(I = (4),+12,12) IS a primary ideal, but it's not a prime ideal, since

Example(14-30): Every maximal ideal is a primary ideal. (check)

Theorem(14-31): Let (I,+,") be a proper ideal of a commutative ring with
identity (R, +,"), then [ is a primary iff all zero divisors in ? are nilpotent

elements.

Proof: =) suppose I is a primary.

Leta+1 € ? such that a + I is a zero divisor
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=a+1#1I3 b+I¢IE§ such that (a+ DHDOMB+1)=1=a.b+

I=1=abel

b+I+1I=be¢l=a"el, for some n€Z*( since I is a primary

ideal)
=ada'+l=I=(a+D"=1

- - R -
So, all zero divisors in — are nilpotent elements.

- - R -
<) suppose all zero divisors in — are nilpotent elements.

Leta,b € Rsuchthata,bel,a&l=a+1+*1
a,beEl=ab+I=1=(a+DHObB+I) =1

Ifb+1=1= bel=Iisaprimeideal = I is a primary ideal.
Ifb+1+1= b+ 1isazerodivisor = b + I is a nilpotent element.
= 3dn € Z*suchthat(b+ D" =1=b"+I=1=Db" €]

Thus, I is a primary ideal.
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15. Polynomials Rings. Examples and Basic Properties.

Definition(15-1): For an arbitrary ring (R, +,"). The set of polynomials

over R may be regarded as the set
poly R = {(a,,ay, ...,a,,0,0,..):a, € R,n = 0}
f =(ay,a4,a,,..)and g = (by, by, by, ...)
f+g=(ay+bya; +by,a,+by,..).
f-g=1(ay-by,ag-b; +a,-by,ay b, +a; by +a,-by,..)

= (€0, €1, €25+ ),s

Where
Ck:z a,"b;=ag by +ay; by_q+-+a-bg
i+j=k

Theorem(15-2): The triple (poly R, +,") forms a ring, known as the ring

of polynomials over R. Furthermore, the ring (poly R, +,7) is commutative

with identity if and only if (R, +,") is a commutative ring with identity.

Definition(15-3): If f(x) =ay + a;x + -+ a,x™, a,, # 0 is a nonzero

polynomial in R[x](the set of poly R), we call the coefficient a, the

leading coefficient of f(x) and the integer n, the degree of the polynomial.
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Theorem(15-4): Let (R, +,") be an integral domain and f(x), g(x) be two

nonzero elements of (R[x], +,-). Then

(1) deg (f(x) - g(x)) <degf (x) +degg(x), and
(2) either f(x)+gx)=0 or deg (f(x) +gx)) <

max{degf (x),degg (x)}.

Example(15-5): Consider (Zg, +g,"g). Taking

) =1+ 2x,
gx) =4+ x + 4x?
we then have f(x)- g(x) = 4 + x + 6x?, so that
deg (f(x) g(x)) =2<1+2=degf(x)+ degg(x).

Theorem(15-6): (Division Algorithm). Let (R, +,-) be a commutative ring

with identity and f(x), g(x) # 0 be polynomials in R[x], with the leading
coefficient of g(x) an invertible element. Then there exist unique

polynomials q(x), r(x) € R[x] such that

f(x) =qx) glx) +r(x),

where either r(x) = 0 or deg r(x) < deg g(x).

16
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Theorem(15-7): (Remainder Theorem). Let (R,+,") be a commutative

ring with identity. If f(x) € R[x] and a € R, then there is a unique

polynomial g(x) in R[x] such that f(x) = (x — a) - q(x) + f(a).

Proof: Applying the division algorithm to f(x) and x — a, we obtain

f) =& —-a) qix) +rk),

where r(x) = 0 or deg r(x) < deg (x —a) = 1. It follows in either case

that r(x) is a constant polynomial » € R. Substituting a for x, we have

fla=(@a—-a)qa)+r(a)=0+r=r.

Corollary(15-8): (Factorization Theorem). The polynomial f(x) € R[x]

is divisible by x — a if and only if a is a root of f(x).

Proof: since f(x) = (x —a) - q(x) ifand only if f(a) = 0.

Theorem(15-9): Let (R, +,") be an integral domain and f(x) € R[x] be a

nonzero polynomial of degree n. Then f(x) has at most n distinct roots in

R.

Proof: when deg f(x) = 0, the result is trivial, since f(x) cannot have
any roots. If deg f(x) =1, say f(x) =ax + b,a # 0, then f(x) has at

most one root; indeed, if a is invertible, —a~!- b is only root of f(x).

17
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Now, suppose the theorem is true for all polynomials of degree n — 1 > 1,

and let deg f (x) = n. If f(x) has a root r, then

fx)=@x=7)-qx),

where the polynomial g(x) has degree n — 1. Any root r; of f(x) distinct

from r must be a root of g(x), for, by substitution

fr)=01—1)q() =0

and, since (R, +,7) has no zero divisors, g(r;) = 0. g(x) hasat mostn — 1
distinct roots. As the only roots of f(x) are r and those of q(x), f(x)

cannot have more than n distinct roots in R.

Corollary(15-10): Let f(x) and g(x) be nonzero polynomials of degree

<n over the integral domain (R,+,). If there exist n+ 1 distinct
elements a, € R(k=1,2,..,n+1) for whichf(a;) = g(ay), then
fx) = g(x).

Proof: the polynomial h(x) = f(x) — g(x) is such that deg h(x) <n
and has at least n + 1 distinct roots in R. This is impossible unless h(x) =

fx)—gx)=0,0rf(x) = g(x).
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Example(15-11): Consider the polynomial x? — x € Z,[x], where p is a

prime number. Since the nonzero elements of (Z,,+,,",) form a cyclic

group, under multiplication, of order p — 1, we must have a?~1 =1 or
aP = a for everya # 0. But the last equation clearly holds when a = 0, so

that every element of Z,,is a root of the polynomial x? — x.

Theorem(15-12): Let (C, +,-) be the field of complex numbers. If f(x) €

C[x] is a polynomial of positive degree, then f(x) has at least one root in

C.

Corollary(15-13): If f(x) € C[x] is a polynomial of degree n > 0, then

f(x) can be expressed in C[x] as a product of n (not necessarily distinct)

linear factors.

Theorem(15-14): If (F,+,") is a field, then the ring (F[x],+,) is a

principal ideal domain.

Proof: (F[x], +,") is an integral domain. To see that any ideal (I, +,") of
(F[x],+,") is principal. If I = {0}, the result is trivially true, since I = (0).
Otherwise, there is some nonzero polynomial p(x) of lowest degree in I.
For each polynomial f(x) € I, we may use the Division Algorithm to

write f(x) = q(x) - p(x) + r(x), where either r(x) =0 or deg r(x) <
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deg p(x). Now, r(x) = f(x) — q(x) - p(x) lies in I; if the degree of r(x)
were less than that of p(x), a contradiction to the choice of p(x).r(x) =0
and f(x) =q(x)-p(x) € (p(x)); hence, I < (p(x)). But the opposite

inclusion clearly holds, so that I = (p(x)).

Corollary(15-15): A nontrivial ideal of (F[x], +,") is maximal if and only

if it is a prime ideal.

Definition(15-16): A nonconstant polynomial f(x) € F[x] is said to be

irreducible in F[x] if and only if f(x) cannot be expressed as the product
of two polynomials of positive degree. Otherwise, f(x) is reducible in

F[x].

Example(15-17): Any linear polynomial f(x) =ax+b,a #0, Iis

irreducible in F[x]. Indeed, since the degree of a product of two nonzero
polynomials is the sum of the degree of the factors, it follows that a

representation

ax +b = g(x)-h(x),

with 0 < deg g(x) < 1,0 <deg h(x) < 1 isimpossible. Thus, every

reducible polynomial has degree at least 2.
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Example(15-18): The polynomial x2 — 2 is irreducible in Q[x], where

(Q, +,7) is the field of rational numbers. Otherwise, we have
x?—=2=(ax+Db) (cx+d)
= (ac)x? + (ad + bc)x + bd,

where the coefficients a, b, c,d € Q. Accordingly,

ac=1, ad+bc=0, bd=-2,

c=-, d = _72 . Substituting in the relation ad + bc = 0, we obtain
—2a b (—2a*+ b?)
0 =— 4 - =
b a ab

Thus, —2a? + b? =0, or (g)2 = 2, which is impossible because V2 is

not a rational number.

Theorem(15-19): If (F, +,7) is a field, the following statements are

equivalent:

(1) f(x)isanirreducible polynomial in F[x].
(2) The principal ideal ({(f(x)),+,) is a maximal (prime) ideal of

(F[X], +:')-
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(3) The quotient ring (% +,-) is a field.

Theorem(15-20): (Unique Factorization Theorem). Each polynomial

f(x) € F[x] of positive degree is the product of a nonzero element of F

and irreducible monic polynomial of F[x].

Corollary(15-21): If f(x) € R[x] is of positive degree, then f(x) can be

factored into linear and irreducible quadratic factors.

Theorem(15-22): (Kronecker). If f(x) is an irreducible polynomial in

F[x], then there is an extension field of (F,+,") in which f(x) has a root.

Corollary(15-23): If the polynomial f(x) € F[x] is of positive degree,

then there exists an extension field of (F, +,-) containing a root of f(x).

Example(15-24): Consider (Z,, +,,",), the field of integers modulo 2, and

the polynomial f(x) = x3 + x + 1 € Z,[x]. Since neither of the elements
0 orl is a root of x3+ x + 1, f(x) is irreducible in Z,[x]. Thus, the

existence of an extension of (Z,, +,,",), specifically the field

Z,[x]
(f(x))

( +)

2
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in which the given polynomial has a root. Denoting this root by A, the

discussion above tells us that

Z,|x]
(f (x))

={a+bA+cA*:a,b,c € Z,}

={0,,, 1+ 4,251+ 22,14+ 221+ 1+ A%},
where, of course, 13+ 1+ 1 =0.
MB=—(A+1)=21+1, M= 22+2
(1+2A+2%)-(a+bA+cA?) =1
(a+b+c)+al+(a+b)A*> =1
a+b+c=1 a=0 a+b=0

with solution a = b = 0,c¢ = 1; therefore, (1 + 1 + A2)"1 = A2,

Finally, note that x3 + x + 1 factors completely into linear factors in —éz(ix)i

and has the three roots 1, A2, and 1 + A2:
x3+x+1=(0(x—-1 (x—213) (x— A+ 212)).

Example(15-25): The quadratic polynomial x# + 1 is irreducible in R[x].

For, If x? + 1 were reducible, it would be of the form
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x’+1=(ax+b) (cx+d) =acx?+ (ad + bc)x + bd,
where a, b, ¢, d € R. It follows at once that ac = bd = 1and ad + bc =0
therefore bc = —(ad), and
1 = (ac)(bd) = (ad)(bc) = —(ad)?
or, (ad)? = —1, which is impossible.

R[x]
2

The extension field ( )
(x%+1)

+,") is described by

R[x]

(x% + 1)

={a+b7L:a,bE]R;/12+1=O}

(a+bA)+(c+dA)=(@+c)+Bh+d)
(a + bA) - (c + dA) = (ac — bd) + (ad + bc)A + bd (A% + 1)
= (ac — bd) + (ad + bc)A

Theorem(15-26): If f(x) € F[x] is a polynomial of positive degree, then

there exists an extension field (F’,+,") of (F,+,") in which f(x) factors

completely into linear polynomials.

Corollary(15-27): Let f(x) € F[x] with deg f(x) =n > 0. Then there

exists an extension of (F, +,) in which f(x) has n roots.
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Example(15-28): Let us consider the polynomial f(x) = x* —5x% + 6 =

(x? —2) - (x* — 3) over the field (Q, +,) of rational numbers.
We first extend (Q, +,") to the field (F;, +,), where

_ QIx]
C (x2=2)

F, ={a+blabeQ—2=0}

and obtain the factorization
f)=@—-D - x+2) (x*-3)
=(x—V2)-(x +V2) - (x? = 3)

f(x) does not factor completely, since the polynomial (x% —3) is

irreducible in F;[x]. For, suppose x? — 3 has a root in Fy, say ¢ + dv/2,

with ¢, d € Q. Substituting, we find that
(c? +2d?—3) +2cdV2 =0
c2+2d*-3=0, cd=0

This equation implies that either c = 0 or d = 0; but neither ¢ nor d can
be zero, since otherwise we would have d? = % or ¢? = 3, which is

impossible. Thus x# — 3 remains irreducible in F; [x].
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In order to factor f(x) into linear factors, it is necessary to extend the

coefficient field further. We therefore constant the extension (F,,+,"),

where

_ Fix]
- (x2-2)

F, ={a+Pu:a,p € F;;u* —3 =0}

The elements of F, may be expressed in the form
(a+bV2) + (c+dV2)V3 =a+bV2+cV3+dVe
f) == &+ (x=pw-(x+p)
=(x—V2)-(x+V2)- (x —V3)- (x +V3)

Observe that the four roots all lie in F;,.
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