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 Ring Theory 
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1. Definitions and Examples of Rings 

Definition(1-1): 

A ring is an ordered triple (𝑅, +,∙) consisting of a non-empty set 𝑅 and 

two binary operations + and ∙ on 𝑅 such that  

i. (𝑅, +) is a commutative group, 
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ii. (𝑅,∙) is a semigroup (satisfies the axioms  i , ii of group), 

iii. The two operations are related by  the distributive laws 

𝑎 ∙ (𝑏 + 𝑐) = (𝑎 ∙ 𝑏) + (𝑎 ∙ 𝑐), 

(𝑏 + 𝑐) ∙ 𝑎 = (𝑏 ∙ 𝑎) + (𝑐 ∙ 𝑎) ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑅. 

Definition(1-2): 

A commutative ring is a ring in which  (𝑅,∙)  is a commutative. 

Examples(1-3): 

1. Each one of the following is a commutative ring: 

  (ℝ, +,∙), (ℚ, +,∙), (ℤ, +,∙), (ℤ𝑒, +,∙). 

2. The set 𝑅 = {𝑎 + 𝑏√3: 𝑎, 𝑏 ∈ ℤ} is a commutative ring with identity. 

     (𝑎 + 𝑏√3) + (𝑐 + 𝑑√3) = (𝑎 + 𝑐) + (𝑏 + 𝑑)√3 ∈ 𝑅, 

     (𝑎 + 𝑏√3) ∙ (𝑐 + 𝑑√3) = (𝑎𝑐 + 3𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)√3 ∈

𝑅, ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ 

     1 = 1 + 0√3 ∈ 𝑅. 
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3. Let 𝑅 denote the set of all functions 𝑓: ℝ ⟶ ℝ. The sum 𝑓 + 𝑔 and 

product 𝑓 ∙ 𝑔 of two functions 𝑓, 𝑔 ∈ 𝑅 are defined as usual, by the 

equations  

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥), 

(𝑓 ∙ 𝑔)(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥), 𝑥 ∈ ℝ. 

     The triple (𝑅, +,∙) is a commutative ring with identity. 

4. The triple (𝑅, +,∘) is not a ring. 

The left distributive law 𝑓 ∘ (𝑔 + ℎ) ≠ (𝑓 ∘ 𝑔) + (𝑓 ∘ ℎ). 

5. Let (𝐺,∗) be an arbitrary commutative group and Hom 𝐺  be the set 

of all homomorphisms from (𝐺,∗) into itself. (Hom 𝐺,∘) is a 

semigroup with identity, then the triple  (Hom 𝐺, +,∘) forms a ring 

with identity. 

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) ∗ 𝑔(𝑥), 𝑥 ∈ 𝐺 

(Hom 𝐺, +) is a commutative group. 

(𝑓 + 𝑔)(𝑥 ∗ 𝑦) = 𝑓(𝑥 ∗ 𝑦) ∗ 𝑔(𝑥 ∗ 𝑦) = 𝑓(𝑥) ∗ 𝑓(𝑦) ∗ 𝑔(𝑥) ∗ 𝑔(𝑦) 

= (𝑓(𝑥) ∗ 𝑔(𝑥)) ∗ (𝑓(𝑦) ∗ 𝑔(𝑦)) = (𝑓 + 𝑔)(𝑥) ∗ (𝑓 + 𝑔)(𝑦), 



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

4 

So that 𝑓 + 𝑔 ∈ (Hom 𝐺, +). 

[𝑓 ∘ (𝑔 + ℎ)](𝑥) = 𝑓((𝑔 + ℎ)(𝑥)) = 𝑓(𝑔(𝑥) ∗ ℎ(𝑥))

= 𝑓(𝑔(𝑥)) ∗ 𝑓(ℎ(𝑥)) 

= (𝑓 ∘ 𝑔)(𝑥) ∗ (𝑓 ∘ ℎ)(𝑥) = (𝑓 ∘ 𝑔 + 𝑓 ∘ ℎ)(𝑥). 

Therefore, 𝑓 ∘ (𝑔 + ℎ) = 𝑓 ∘ 𝑔 + 𝑓 ∘ ℎ. 

6. The triple (𝑍𝑛, +𝑛,∙𝑛) is a commutative ring with identity. 

7. Consider the set 𝑅 = ℝ × ℝ of ordered pairs of real numbers. We 

define addition and multiplication  in 𝑅 by the formulas 

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑),     (𝑎, 𝑏) ∙ (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑). 

(𝑅, +,∙) is a commutative ring with identity. 

8. The triple (𝑍4, +4,∙4) is a commutative ring with identity. 

+4 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 
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∙4 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 

Here, we have  2 ∙4 2 = 0, the product of nonzero elements being zero. 

Note also that 2 ∙4 1 = 2 ∙4 3, yet it is clearly not true that  1 = 3. The 

multiplicative semigroup (𝑍4,∙4) does not satisfy the cancellation law. 

9. The triple (ℂ, +,∙) is a commutative ring with identity. 

10.  The triple (𝑀2(ℝ), +,∙) is a ring with identity, but not 

commutative. 

11.  The triple (ℤ𝑜, +,∙) is not ring, since the sum of two odds equal 

into even number. 

2. Basic Properties of Rings 

Theorem(2-1): If (𝑅, +,∙) be a ring, then 

(1)  𝑎 ∙ 0 = 0 ∙ 𝑎 = 0 

(2)  (−𝑐) ∙ 𝑎 = −𝑐 ∙ 𝑎,    𝑎(−𝑐) = −𝑎 ∙ 𝑐 

(3)  𝑎 ∙ 𝑏 = (−𝑎) ∙ (−𝑏), ∀𝑎, 𝑏 ∈ 𝑅 
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Proof: (1) 𝑎 ∙ (𝑏 − 𝑐) = 𝑎 ∙ 𝑏 − 𝑎 ∙ 𝑐 … (∗) 

(𝑏 − 𝑐) ∙ 𝑎 = 𝑏 ∙ 𝑎 − 𝑐 ∙ 𝑎,   ∀𝑎, 𝑏, 𝑐 ∈ 𝑅 … (∗) 

Substitute  𝑏 = 𝑐 in  (∗), we get  𝑎 ∙ (𝑏 − 𝑏) = 𝑎 ∙ 𝑏 − 𝑎 ∙ 𝑏 ⟹ 𝑎 ∙ 0 =

0 ∀𝑎 ∈ 𝑅   

(𝑏 − 𝑏) ∙ 𝑎 = 𝑏 ∙ 𝑎 − 𝑏 ∙ 𝑎 ⟹ 0 ∙ 𝑎 = 0. 

Proof: (2) Substitute 𝑏 = 0 in (∗) and by using (1), we have 

𝑎 ∙ (0 − 𝑐) = 𝑎 ∙ 0 − 𝑎 ∙ 𝑐 ⟹ 𝑎 ∙ (−𝑐) = −𝑎 ∙ 𝑐  

(0 − 𝑐) ∙ 𝑎 = −𝑐 ∙ 𝑎; ∀𝑎, 𝑐 ∈ 𝑅. 

Proof: (3) Substitute 𝑎 = −𝑎 in (2), we get  

𝑎 ∙ (−𝑐) = −𝑎 ∙ 𝑐 

(−𝑎) ∙ (−𝑐) = −(−𝑎) ∙ 𝑐 

(−𝑎) ∙ (−𝑐) = −(−𝑎 ∙ 𝑐) = 𝑎 ∙ 𝑐 

Corollary(2-2): If (𝑅, +,∙) be a ring with identity and 𝑅 ≠ {0}, then 

0 ≠ 1, (−1) ∙ 𝑎 = −𝑎 

Proof: since 𝑅 ≠ {0} ⟹ ∃𝑎 ∈ 𝑅 ∋ 𝑎 ≠ 0, suppose that 0 = 1 

𝑎 = 𝑎 ∙ 1 = 𝑎 ∙ 0 = 0 ⟹ 𝑎 = 0, but 𝑎 ≠ 0 by assumption, thus 0 ≠ 1  



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

7 

To prove (−1) ∙ 𝑎 = −𝑎 

(−1) ∙ 𝑎 = −(1 ∙ 𝑎) = −𝑎 

Corollary(2-3): If (𝑅, +,∙) be a ring, if 𝑅 has an identity element, then 

it is a unique. 

Proof: let 1, 1∗ are two identity elements of 𝑅, then 1 = 1 ∙ 1∗ = 1∗ 

Corollary(2-4): If 𝑎1, 𝑎2 are two inverses of  𝑎 in a ring (𝑅, +,∙) with 

identity,   then 𝑎1 = 𝑎2 

Proof: 𝑎2 = 𝑎2 ∙ 1 = 𝑎2 ∙ (𝑎 ∙ 𝑎1) = (𝑎2 ∙ 𝑎) ∙ 𝑎1 = 1 ∙ 𝑎1 = 𝑎1 

Theorem(2-5): If (𝑅, +,∙) be a ring with identity and 𝑈 be a set of units 

of 𝑅, then (𝑈,∙) is a group. 

Proof: 𝑈 ≠ ∅, since ∃1 ∈ 𝑈  

Let 𝑎, 𝑏 ∈ 𝑈 ⟹ ∃𝑎−1, 𝑏−1 ∈ 𝑈 ∋ 𝑎 ∙ 𝑎−1 = 𝑎−1 ∙ 𝑎 = 1 

𝑏 ∙ 𝑏−1 = 𝑏−1 ∙ 𝑏 = 1 

(𝑎 ∙ 𝑏) ∙ ( 𝑏−1. 𝑎−1) = 𝑎 ∙ (𝑏 ∙ 𝑏−1) ∙ 𝑎−1 = 𝑎 ∙ 1 ∙ 𝑎−1 = 𝑎 ∙ 𝑎−1 = 1 

( 𝑏−1. 𝑎−1) ∙ (𝑎 ∙ 𝑏) = 𝑏−1 ∙ (𝑎−1 ∙ 𝑎) ∙ 𝑏 = 𝑏−1 ∙ 1 ∙ 𝑏 = 𝑏−1 ∙ 𝑏 = 1 

This means  𝑎 ∙ 𝑏 ∈ 𝑈 
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Since  (𝑅,∙) is associative, then  (𝑈,∙) is associative (since 𝑈 ⊆ 𝑅 ) 

Therefore, (𝑈,∙) is a group. 

3. Subrings, Examples and Properties 

Definition(3-1): Let  (𝑅, +,∙) be a ring and  𝑆 ⊆ 𝑅 be a nonempty 

subset of 𝑅. If the triple  (𝑆, +,∙) is itself a ring, then (𝑆, +,∙) is said to 

be a subring of  (𝑅, +,∙). 

Theorem(3-2): Let  (𝑅, +,∙) be a ring and  ∅ ≠ 𝑆 ⊆ 𝑅. Then the triple 

(𝑆, +,∙) is a subring of  (𝑅, +,∙) if and only if  

(1)  𝑎 − 𝑏 ∈ 𝑆 ∀𝑎, 𝑏 ∈ 𝑆 (closed under differences), 

(2)  𝑎 ∙ 𝑏 ∈ 𝑆 ∀𝑎, 𝑏 ∈ 𝑆 (closed under multiplication). 

Proof: (⟹) let (𝑆, +,∙) be a subring of  (𝑅, +,∙) ⟹ (𝑆, +) is a 

subgroup of (𝑅, +) 

⟹ 𝑥 − 𝑦 ∈ 𝑆 ∀𝑥, 𝑦 ∈ 𝑆 

Since (𝑆, +,∙) is a subring of (𝑅, +,∙) ⟹ 𝑥 ∙ 𝑦 ∈ 𝑆  ∀𝑥, 𝑦 ∈ 𝑆. 

(⟸) let 𝑎 − 𝑏 ∈ 𝑆, 𝑎 ∙ 𝑏 ∈ 𝑆 ∀𝑎, 𝑏 ∈ 𝑆 ⟹ (𝑆, +) is a subgroup of 

(𝑅, +) 
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Since the operation of addition is a commutative on 𝑅, 𝑆 ⊆ 𝑅 

⟹ the operation of addition is a commutative on 𝑆 

⟹ (𝑆, +) is an abelian subgroup of (𝑅, +) 

Also, similarly the associative and distributed the multiplication on 

addition are true on  𝑆 since 𝑆 ⊆ 𝑅. 

⟹ (𝑆, +,∙) is a subring of (𝑅, +,∙). 

Examples(3-3): 

(1)  Every ring (𝑅, +,∙) has two trivial subrings; for, if 0 denotes 

the zero element of the ring (𝑅, +,∙), then both ({0}, +,∙) and (𝑅, +,∙) 

are subrings of (𝑅, +,∙). 

(2) In the ring of integers (ℤ, +,∙), the triple (ℤ𝑒, +,∙) is a subring, 

while (ℤ𝑜, +,∙) is not. 

(3) Consider (ℤ6, +6,∙6) the ring of integers modulo  6. If 𝑆 =

{0,2,4}, then (𝑆, +6,∙6), whose operation tables are given at the 

below, is a subring of (ℤ6, +6,∙6). 

+6 0 2 4 

0 0 2 4 



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

10 

2 2 4 0 

4 4 0 2 

 

∙6 0 2 4 

0 0 0 0 

2 0 4 2 

4 0 2 4 

 

(4) Let 𝑆 = {𝑎 + 𝑏√3: 𝑎, 𝑏 ∈ ℤ}. Then (𝑆, +,∙) is a subring of 

(ℝ, +,∙), since for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, we get  

(𝑎 + 𝑏√3) − (𝑐 + 𝑑√3) = (𝑎 − 𝑐) + (𝑏 − 𝑑)√3 ∈ 𝑆, 

(𝑎 + 𝑏√3) ∙ (𝑐 + 𝑑√3) = (𝑎𝑐 + 3𝑏𝑑) + (𝑏𝑐 + 𝑎𝑑)√3 ∈ 𝑆. 

(5) The triple (ℤ, +,∙) is a subring of  (ℝ, +,∙). 

(6)  Let the set 𝑛ℤ = {0, ±𝑛, ±2𝑛, … }, then the triple (𝑛ℤ, +,∙) is a 

subring of (ℤ, +,∙). 

(7) (ℤ[𝑖] = {𝑎 + 𝑖𝑏: 𝑎, 𝑏 ∈ ℤ}, +,∙) is a subring of (ℂ, +,∙). 

(8) (𝑆 = {𝑎 + 𝑏√5: 𝑎, 𝑏 ∈ ℤ}, +,∙) is a subring of (ℝ, +,∙). 
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(9) Let (𝑅, +,∙) be a ring and 𝑀 = {(
𝑎 𝑏
0 𝑐

) : 𝑎, 𝑏, 𝑐 ∈ 𝑅}, then 

(𝑀, +,∙) is a subring of (𝑀2(𝑅), +,∙). 

(10) (𝑆 = {2𝑎: 𝑎 ∈ ℤ}, +,∙) is a subring of (ℤ, +,∙). We note that 1 ∈

ℤ, but 1 ∉ 𝑆. 

(11) Give example to ring with identity and subring with different 

identity. 

Take (𝑀2(ℤ), +,∙) and (𝑆 = {(
𝑎 0
0 0

) : 𝑎 ∈ ℤ} , +,∙) 

The identity of (𝑀2(ℤ), +,∙) is (
1 0
0 1

) 

The identity of (𝑆 = {(
𝑎 0
0 0

) : 𝑎 ∈ ℤ} , +,∙) is (
1 0
0 0

) 

(
1 0
0 0

) ≠ (
1 0
0 1

) 

4. Characteristic of the Ring and Related Concepts 

Definition(4-1): Let (𝑅, +,∙) be an arbitrary ring. If there exists a 

positive integer  𝑛 such that  𝑛𝑎 = 0 for all 𝑎 ∈ 𝑅, then the least 

positive integer with this property is called the characteristic of the ring. 

If no such positive integer exists (that is,  𝑛𝑎 = 0 for all  𝑎 ∈ 𝑅 

implies  𝑛 = 0 ), then we say (𝑅, +,∙) has characteristic zero. 
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Example(4-2): the rings of integers, rational numbers and real numbers 

are standard examples of characteristic zero. 

Example(4-3): the ring (𝑃(𝑋), ∆,∩) is of characteristic two. 

Since 𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) 

2𝐴 = 𝐴∆𝐴 = (𝐴 − 𝐴) ∪ (𝐴 − 𝐴) = ∅ for every subset 𝐴 of 𝑋. 

Theorem(4-4): Let (𝑅, +,∙) be a ring with identity. Then (𝑅, +,∙) has 

characteristic 𝑛 > 0 if and only if 𝑛 is the least positive integer for 

which 𝑛 ∙ 1 = 0. 

Proof: if the ring (𝑅, +,∙) is of characteristic 𝑛 > 0, it follows trivially 

that  𝑛 ∙ 1 = 0. If 𝑚 ∙ 1 = 0, where 0 < 𝑚 < 𝑛, then  

𝑚𝑎 = 𝑚(1 ∙ 𝑎) = (𝑚1) ∙ 𝑎 = 0 ∙ 𝑎 = 0 

For every element 𝑎 ∈ 𝑅. This would mean the characteristic of  

(𝑅, +,∙) is less than 𝑛, an obvious contradiction. The converse is 

established in much the same way. 

Example(4-5): the characteristic of the  ring (ℂ, +,∙) is zero. 

Example(4-6): the characteristic of the  ring (𝑍𝑛, +𝑛,∙𝑛) is 𝑛. 
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Example(4-7): the characteristic of the  ring (𝑍4 × 𝑍6, ⨁, ⨂) is 12. 

5. Ideals and their Properties 

Definition(5-1): A subring (𝐼, +,∙) of the ring (𝑅, +,∙) is an ideal of  

(𝑅, +,∙) if and only if  𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼 imply both 𝑟 ∙ 𝑎 ∈ 𝐼 and 𝑎 ∙ 𝑟 ∈

𝐼. 

Definition(5-2): Let (𝑅, +,∙) be a ring and 𝐼 a nonempty subset of 𝑅. 

Then (𝐼, +,∙) is an ideal of (𝑅, +,∙) if and only if  

(1) 𝑎, 𝑏 ∈ 𝐼 imply 𝑎 − 𝑏 ∈ 𝐼, 

(2)  𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼 imply both 𝑟 ∙ 𝑎 ∈ 𝐼 and 𝑎 ∙ 𝑟 ∈ 𝐼. 

Example(5-3): In any ring (𝑅, +,∙), the trivial subrings (𝑅, +,∙) and 

({0}, +,∙) are both ideals. 

Remark(5-4): A ring which contains no ideals except these two is said 

to be simple. Any ideal different from (𝑅, +,∙) is a proper. 

Example(5-5): The subring ({0,3,6,9}, +12) is an ideal of  

(𝑍12, +12,∙12), the ring of integers modulo 12. 

Example(5-6): For a fixed integer 𝑎 ∈ ℤ, let 〈𝑎〉 denote the set of all 

integral multiples of  𝑎, that is, 
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〈𝑎〉 = {𝑛𝑎: 𝑛 ∈ ℤ} 

The following relations show the triple (〈𝑎〉, +,∙) to be an ideal of the 

ring of integers (ℤ, +,∙): 

𝑛𝑎 − 𝑚𝑎 = (𝑛 − 𝑚)𝑎, 

𝑚(𝑛𝑎) = (𝑚𝑛)𝑎,  𝑛, 𝑚 ∈ ℤ. 

Example(5-7): 〈2〉 =  ℤ𝑒, the ring of even integers (ℤ𝑒, +,∙) is an ideal 

of (ℤ, +,∙). 

Example(5-8): Suppose  (𝑅, +,∙) is the commutative ring of functions  

𝑓: ℝ ⟶ ℝ. The sum 𝑓 + 𝑔 and product 𝑓 ∙ 𝑔 of two functions 𝑓, 𝑔 ∈ 𝑅 

are defined as usual, by the equations  

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥), 

(𝑓 ∙ 𝑔)(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥), 𝑥 ∈ ℝ. 

Define  

𝐼 = {𝑓 ∈ 𝑅: 𝑓(1) = 0}. 

For functions 𝑓, 𝑔 ∈ 𝐼 and ℎ ∈ 𝑅, we have 

(𝑓 − 𝑔)(1) = 𝑓(1) − 𝑔(1) = 0 − 0 = 0 
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And also 

(ℎ ∙ 𝑓)(1) = ℎ(1) ∙ 𝑓(1) = ℎ(1) ∙ 0 = 0. 

Since both 𝑓 − 𝑔 and  ℎ ∙ 𝑓 belong to 𝐼, (𝐼, +,∙) is an ideal of (𝑅, +,∙). 

Example(5-9): Let (𝑀2(ℝ), +,∙) be a ring, then 𝐼 = ({(
𝑎 0
𝑏 0

) : 𝑎, 𝑏 ∈

ℝ} , +,∙) is a left ideal of (𝑀2(ℝ), +,∙), but it is not right ideal of 

(𝑀2(ℝ), +,∙). 

(
0 0
0 0

) ∈ 𝐼 ⟹ ∅ ≠ 𝐼 ⊆ 𝑀2(ℝ) 

Let (
𝑎 0
𝑏 0

) , (
𝑐 0
𝑑 0

) ∈ 𝐼 and (
𝑥 𝑦
𝑧 𝑤

) ∈ 𝑀2(ℝ) 

(
𝑎 0
𝑏 0

) − (
𝑐 0
𝑑 0

) = (
𝑎 − 𝑐 0
𝑏 − 𝑑 0

) ∈ 𝐼 

(
𝑥 𝑦
𝑧 𝑤

) ∙ (
𝑎 0
𝑏 0

) = (
𝑎𝑥 + 𝑏𝑦 0
𝑎𝑧 + 𝑏𝑤 0

) ∈ 𝐼 

Therefore, (𝐼, +,∙) is a left ideal of  (𝑀2(ℝ), +,∙) 

(𝐼, +,∙) is not right ideal of  (𝑀2(ℝ), +,∙), since 

(
0 1
0 0

) ∈ 𝑀2(ℝ) and  (
1 0
1 0

) ∈ 𝐼 
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But (
1 0
1 0

) ∙ (
0 1
0 0

) = (
0 1
0 1

) ∉ 𝐼 

Example(5-10): Let (𝑅, +,∙) be the set of all functions on ℝ, then 𝐼 =

{𝑓 ∈ 𝑅: 𝑓(3) = 0} is an ideal of  (𝑅, +,∙). 

Example(5-11): Prove or disprove, the triple (ℤ, +,∙) is an ideal of 

(ℚ, +,∙). 

Theorem(5-12): If (𝐼, +,∙) is a proper ideal of a ring (𝑅, +,∙) with 

identity, then no element of 𝐼 has a multiplicative inverse; that is, 𝐼 ∩

𝑅∗ = ∅. 

Proof: suppose 0 ≠ 𝑎 ∈ 𝐼 ∋ 𝑎−1 exists 

𝑎−1 ∙ 𝑎 = 1 ∈ 𝐼 (since 𝐼  is closed under multiplication) 

Thus, 𝑟 ∙ 1 = 𝑟  ∀𝑟 ∈ 𝑅 ⟹ 𝑅 ⊆ 𝐼, but 𝐼 ⊆ 𝑅 ⟹ 𝐼 = 𝑅 this is 

contradiction. (𝐼 a proper). 

Theorem(5-13): If (𝐼𝑖 , +,∙) is an arbitrary indexed collection of ideals 

of the ring (𝑅, +,∙), then so also is (⋂ 𝐼𝑖 , +,∙). 

Proof: 0 ∈ 𝐼𝑖 ⟹ 0 ∈ ⋂ 𝐼𝑖 ⟹ ⋂ 𝐼𝑖 ≠ ∅ 

Let 𝑎, 𝑏 ∈ ⋂ 𝐼𝑖  and 𝑟 ∈ 𝑅 ⟹ 𝑎, 𝑏 ∈ 𝐼𝑖 ⟹ 𝑎 − 𝑏, 𝑟 ∙ 𝑎 and 𝑎 ∙ 𝑟 ∈ 𝐼𝑖 
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⟹ 𝑎 − 𝑏, 𝑟 ∙ 𝑎 and 𝑎 ∙ 𝑟 ∈ ⋂ 𝐼𝑖  

Therefore, (⋂ 𝐼𝑖 , +,∙) is an ideal of (𝑅, +,∙). 

Example(5-14): Prove or disprove, the union of two ideals is an ideal. 

Solution: In general, it is not true, for example, in (𝑍12, +12,∙12) 

〈4〉 = {0,4,8}, 〈6〉 = {0,6} ⟹ 〈4〉 ∪ 〈6〉 = {0,4,6,8} is not ideal, since  

6 − 4 = 2 ∉ 〈4〉 ∪ 〈6〉 

Note(5-15): Consider (𝑅, +,∙) be a ring and ∅ ≠ 𝑆 ⊆ 𝑅. Define the set 

〈𝑆〉 = ⋂{𝐼: 𝑆 ⊆ 𝐼; (𝐼, +,∙)  𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓  (𝑅, +,∙)}. 

〈𝑆〉 ≠ ∅, since 𝑆 ⊆ 〈𝑆〉 

Theorem(5-16): The triple (〈𝑆〉, +,∙) is an ideal of the ring (𝑅, +,∙), 

known as the ideal generated by the set 𝑆. 

 Example(5-17): (𝑍18, +18,∙18), find 〈𝑆〉 where 𝑆 = {0,9}. 

Theorem(5-18): If (𝑅, +,∙) is a commutative ring with identity and  𝑎 ∈

𝑅, then the principle ideal (〈𝑎〉, +,∙) generated by 𝑎 is such that 〈𝑎〉 =

{𝑟 ∙ 𝑎: 𝑟 ∈ 𝑅}. 
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Theorem(5-19): If  (𝐼, +,∙) is an ideal of the ring (ℤ, +,∙), then 𝐼 = 〈𝑛〉 

for some nonnegative integer 𝑛. 

Proof: If 𝐼 = {0}, the theorem is trivially true, for the zero ideal 

({0}, +,∙) is the principal ideal generated by 0.  

Let 0 ≠ 𝑚 ∈ 𝐼 ⟹ −𝑚 ∈ 𝐼, suppose  𝑛 the least positive integer in 𝐼 

Thus,  〈𝑛〉 ⊆ 𝐼, any integer 𝑘 ∈ 𝐼 ⟹ 𝑘 = 𝑞𝑛 + 𝑟 where 𝑞, 𝑟 ∈ ℤ, 0 ≤

𝑟 < 𝑛 

Since 𝑘, 𝑞𝑛 ∈ 𝐼 ⟹ 𝑘 − 𝑞𝑛 = 𝑟 ∈ 𝐼 ⟹ 𝑟 = 0 ⟹ 𝑘 = 𝑞𝑛 

Thus every member of 𝐼 is a multiple of 𝑛 ⟹ 𝐼 ⊆ 〈𝑛〉 ⟹ 𝐼 = 〈𝑛〉. 

Theorem(5-20): Let 𝑎1, 𝑎2, … , 𝑎𝑛 be nonzero element of a principal 

ideal ring (𝑅, +,∙). Then (⋂〈𝑎𝑖〉 , +,∙) = (〈𝑎〉, +,∙), where 𝑎 is a least 

common multiple of 𝑎1, 𝑎2, … , 𝑎𝑛. 

Proof: (⋂〈𝑎𝑖〉 , +,∙) is an ideal of (𝑅, +,∙). 

But every ideal of (𝑅, +,∙) is a principle ideal; ∃𝑎 ∈ 𝑅 ∋ 〈𝑎〉 = ⋂〈𝑎𝑖〉 

Since 〈𝑎〉 ⊆ 〈𝑎𝑖〉[𝑖 = 1,2, . . , 𝑛], 𝑎 = 𝑟𝑖 ∙ 𝑎𝑖  for some 𝑟𝑖 ∈ 𝑅. 

So, 𝑎 is a common multiple of 𝑎1, 𝑎2, … , 𝑎𝑛. 
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Let 𝑏 any common multiple of 𝑎1, 𝑎2, … , 𝑎𝑛, say 𝑏 = 𝑠𝑖 ∙ 𝑎𝑖 , 𝑠𝑖 ∈ 𝑅[𝑖 =

1,2, … , 𝑛] 

If 𝑟 ∈ 𝑅, then 𝑟 ∙ 𝑏 = 𝑟 ∙ (𝑠𝑖 ∙ 𝑎𝑖) = (𝑟 ∙ 𝑠𝑖) ∙ 𝑎𝑖 ∈ 〈𝑎𝑖〉 ⟹ 〈𝑏〉 ⊆ 〈𝑎𝑖〉 

Therefore, 〈𝑏〉 ⊆ ⋂〈𝑎𝑖〉 = 〈𝑎〉 and 𝑏 must be a multiple of 𝑎, thus 𝑎 is a 

least common multiple of 𝑎1, 𝑎2, … , 𝑎𝑛. 

Example(5-21): Consider the principal ideal (〈4〉, +,∙) and (〈6〉, +,∙) 

generated by the integers 4 and  6 in the ring (ℤ, +,∙).Then  (〈4〉 ∩

〈6〉, +,∙) = (〈12〉, +,∙), where 12 is the least common multiple of 4 

and  6. 

6. Quotient Ring and Related Concepts. 

Notes(6-1): Let (𝐼, +,∙) is an ideal of the ring (𝑅, +,∙), then 

(1)  𝑎 + 𝐼 = {𝑎 + 𝑖: 𝑖 ∈ 𝐼}, 

(2)   (𝑎 + 𝐼) + (𝑏 + 𝐼) = (𝑎 + 𝑏) + 𝐼, 

(3)   (𝑎 + 𝐼) ∙ (𝑏 + 𝐼) = (𝑎 ∙ 𝑏) + 𝐼. 

Theorem(6-2): If (𝐼, +,∙) is an ideal of the ring (𝑅, +,∙), then (
𝑅

𝐼
, +,∙) is 

a ring, known as the quotient ring of 𝑅 by 𝐼. 
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The zero element of (
𝑅

𝐼
, +,∙) is the cose  0 + 𝐼 = 𝐼, while −(𝑎 + 𝐼) =

(−𝑎) + 𝐼. 

Example(6-3): In the ring (ℤ, +,∙) of integers, consider the principal 

ideal (〈𝑛〉, +,∙), where 𝑛 is a nonnegative integer. The coset of 〈𝑛〉 in ℤ 

take the form 

𝑎 + 〈𝑛〉 = {𝑎 + 𝑘𝑛: 𝑘 ∈ ℤ} 

(𝑍𝑛, +𝑛,∙𝑛) ≅ (
ℤ

〈𝑛〉
, +,∙) 

Example(6-4): The triple (6ℤ, +,∙) is an ideal of the ring (2ℤ, +,∙) , 

then  

2ℤ

6ℤ
= {0 + 6ℤ, 2 + 6ℤ, 4 + 6ℤ} 

is a ring with an identity. 

Example(6-5): Let (𝑅 = ({(
𝑎 𝑏
0 𝑎

) : 𝑎, 𝑏 ∈ ℤ} , +,∙) be a ring and (𝐼 =

({(
0 𝑏
0 0

) : 𝑏 ∈ ℤ} , +,∙) is an ideal of the ring (𝑅, +,∙), then (
𝑅

𝐼
, +,∙) is a 

commutative ring with identity. 

𝑅

𝐼
= {(

𝑎 𝑏
0 𝑎

) + 𝐼: 𝑎, 𝑏 ∈ ℤ} 
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(
𝑎 𝑏
0 𝑎

) + 𝐼 = {(
𝑎 𝑏
0 𝑎

) + (
0 𝑐
0 0

) : 𝑎, 𝑏, 𝑐 ∈ ℤ} 

7. Homomorphisms of Ring.  Examples and Properties 

Definition(7-1): Let (𝑅, +,∙) and (𝑅′, +′,∙′) be two rings and 𝑓 a 

function from 𝑅 into 𝑅′; in symbols, 𝑓: 𝑅 ⟶ 𝑅′. Then 𝑓 is said to be a 

ring homomorphism from (𝑅, +,∙) into (𝑅′, +′,∙′) if and only if  

𝑓(𝑎 + 𝑏) = 𝑓(𝑎)+′𝑓(𝑏) 

𝑓(𝑎 ∙ 𝑏) = 𝑓(𝑎) ∙′ 𝑓(𝑏) 

for every pair of elements 𝑎, 𝑏 ∈ 𝑅. 

Example(7-2): Let (𝑅, +,∙) and (𝑅′, +′,∙′) be arbitrary rings and  

𝑓: 𝑅 ⟶ 𝑅′ be the function that maps each element of 𝑅 onto the zero 

element 0′ of (𝑅′, +′,∙′).  

𝑓(𝑎 + 𝑏) =  0′ =  0′+′ 0′ = 𝑓(𝑎)+′𝑓(𝑏), 

𝑓(𝑎 ∙ 𝑏) =  0′ =  0′ ∙′  0′ = 𝑓(𝑎) ∙′ 𝑓(𝑏), 𝑎, 𝑏 ∈ 𝑅. 

As with the case of groups, this mapping is called the trivial 

homomorphism. 
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Example(7-3): The mapping 𝑓: ℤ ⟶ ℤ𝑒 defined by 𝑓(𝑎) = 2𝑎 is not a 

homomorphism from (ℤ, +,∙) into (ℤ𝑒, +,∙),  

𝑓(𝑎 + 𝑏) = 2(𝑎 + 𝑏) = 2𝑎 + 2𝑏 = 𝑓(𝑎) + 𝑓(𝑏) 

but 

𝑓(𝑎 ∙ 𝑏) = 2(𝑎 ∙ 𝑏) ≠ (2𝑎) ∙ (2𝑏) = 𝑓(𝑎) ∙ 𝑓(𝑏) 

Example(7-4): Consider (ℤ, +,∙), the ring of integers, and (𝑍𝑛, +𝑛,∙𝑛), 

the ring of integers modulo 𝑛. Define 𝑓: ℤ ⟶ ℤ𝑛 by taking 𝑓(𝑎) = [𝑎]; 

that is, map each integer into the congruence class containing it. Then  

𝑓(𝑎 + 𝑏) = [𝑎 + 𝑏] = [𝑎]+𝑛[𝑏] = 𝑓(𝑎)+𝑛𝑓(𝑏), 

𝑓(𝑎 ∙ 𝑏) = [𝑎 ∙ 𝑏] = [𝑎] ∙𝑛 [𝑏] = 𝑓(𝑎) ∙𝑛 𝑓(𝑏), 

so that  𝑓 is a homomorphism mapping. 

Example(7-5): Let (𝑅, +,∙) be any ring with identity. For each 

invertible element 𝑎 ∈ 𝑅∗, the function 𝑓𝑎: 𝑅 ⟶ 𝑅 given by  

𝑓𝑎(𝑥) = 𝑎 ∙ 𝑥 ∙ 𝑎−1 

is a homomorphism from  (𝑅, +,∙) into itself. Indeed, if  𝑥, 𝑦 ∈ 𝑅, we 

see that 
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𝑓𝑎(𝑥 + 𝑦) = 𝑎 ∙ (𝑥 + 𝑦) ∙ 𝑎−1 = 𝑎 ∙ 𝑥 ∙ 𝑎−1 + 𝑎 ∙ 𝑦 ∙ 𝑎−1 = 𝑓𝑎(𝑥) +

𝑓𝑎(𝑦), 

𝑓𝑎(𝑥 ∙ 𝑦) = 𝑎 ∙ (𝑥 ∙ 𝑦) ∙ 𝑎−1 = (𝑎 ∙ 𝑥 ∙ 𝑎−1) ∙ (𝑎 ∙ 𝑦 ∙ 𝑎−1) = 𝑓𝑎(𝑥) ∙

𝑓𝑎(𝑦), 

Theorem(7-6): Let 𝑓 be a homomorphism from the ring (𝑅, +,∙) into 

the ring (𝑅′, +′,∙′). Then the following hold: 

(1)  𝑓(0) = 0′, where 0′ is the zero element of (𝑅′, +′,∙′). 

(2)  𝑓(−𝑎) = −𝑓(𝑎) for all 𝑎 ∈ 𝑅. 

(3) The triple (𝑓(𝑅), +′,∙′) is a subring of  (𝑅′, +′,∙′). 

(4) 𝑓(1) = 1′. 

(5) 𝑓(𝑎−1) = 𝑓(𝑎)−1 for each invertible element 𝑎 ∈ 𝑅. 

(6) If 𝑆 is a subring in 𝑅, then 𝑓(𝑆) is a subring in 𝑅′. 

(7) If 𝐼 is an ideal in 𝑅, then 𝑓(𝐼) is an ideal in 𝑅′. 

(8) If 𝑇 is a subring in 𝑅′, then 𝑓−1(𝑇) is a subring in 𝑅. 

(9) If 𝐽 is an ideal in 𝑅′, then 𝑓−1(𝐽) is an ideal in 𝑅. 

Proof: (1)𝑓(0 + 0) = 𝑓(0)+′𝑓(0) 

𝑓(0) = 𝑓(0)+′𝑓(0) 
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𝑓(0)+′0′ = 𝑓(0)+′𝑓(0) ⟹ 𝑓(0) = 0′ 

Proof:  (2)   𝑎 + (−𝑎) = 0 

 𝑓( 𝑎 + (−𝑎)) = 𝑓(0) ⟹ 𝑓(𝑎)+′𝑓(−𝑎) = 0′ ⟹ 𝑓(−𝑎) = −𝑓(𝑎) 

 

Theorem(7-7): If 𝑓 is a  homomorphism from the ring (𝑅, +,∙) into the 

ring (𝑅′, +′,∙′), then the triple (ker (𝑓), +,∙) is an ideal of (𝑅, +,∙). 

Proof: 𝑘𝑒𝑟(𝑓) = {𝑎 ∈ 𝑅: 𝑓(𝑎) = 0′} 

0 ∈ 𝑘𝑒𝑟(𝑓), since 𝑓(0) = 0′ ⟹ 𝑘𝑒𝑟(𝑓) ≠ ∅ 

Let 𝑎, 𝑏 ∈ 𝑘𝑒𝑟(𝑓) ⟹ 𝑓(𝑎) = 0′ = 𝑓(𝑏) 

𝑓(𝑎 − 𝑏) = 𝑓(𝑎) − 𝑓(𝑏) = 0′ − 0′ = 0′ ⟹ 𝑎 − 𝑏 ∈ 𝑘𝑒𝑟(𝑓) 

If 𝑟 ∈ 𝑅, 𝑎 ∈ 𝑘𝑒𝑟(𝑓) ⟹ 𝑓(𝑟 ∙ 𝑎) = 𝑓(𝑟) ∙′ 𝑓(𝑎) = 𝑓(𝑟) ∙ 0′ = 0′. 

Thus, 𝑟 ∙ 𝑎 ∈ 𝑘𝑒𝑟(𝑓) ⟹ (ker (𝑓), +,∙) is an ideal of (𝑅, +,∙). 

Theorem(7-8): If 𝑓 is a  homomorphism from the ring (𝑅, +,∙) into the 

ring (𝑅′, +′,∙′), then 𝑓  is a monomorphism iff ker (𝑓) = {0}. 
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Example(7-9): Consider an arbitrary ring (𝑅, +,∙) with identity element 

1 and the mapping 𝑓: ℤ ⟶ 𝑅 given by 𝑓(𝑛) = 𝑛1. Then 𝑓 is a 

homomorphism from the ring of integers (ℤ, +,∙) into the ring (𝑅, +,∙): 

𝑓(𝑛 + 𝑚) = (𝑛 + 𝑚)1 = 𝑛1 + 𝑚1 = 𝑓(𝑛) + 𝑓(𝑚), 

𝑓(𝑛 ∙ 𝑚) = (𝑛 ∙ 𝑚)1 = (𝑛 ∙ 𝑚)12 = (𝑛1) ∙ (𝑚1) = 𝑓(𝑛) ∙ 𝑓(𝑚). 

Theorem(7-10):  That  𝑘𝑒𝑟(𝑓) = {𝑛 ∈ ℤ: 𝑛1 = 0} = 〈𝑚〉 for some 

nonnegative integer 𝑚. 

Definition(7-11): A ring (𝑅, +,∙) is embedded in a ring (𝑅′, +′,∙′) if 

there exists some subring (𝑆, +′,∙′) of (𝑅′, +′,∙′) such that (𝑅, +,∙) ≅

(𝑆, +′,∙′). 

Theorem(7-12): Any ring can be embedded in a ring with identity. 

Proof: Let (𝑅, +,∙)  be an arbitrary ring and 

𝑅 × ℤ = {(𝑟, 𝑛): 𝑟 ∈ 𝑅, 𝑛 ∈ ℤ} 

Define  

(𝑎, 𝑛) + (𝑏, 𝑚) = (𝑎 + 𝑏, 𝑛 + 𝑚), 

(𝑎, 𝑛) ∙ (𝑏, 𝑚) = (𝑎 ∙ 𝑏 + 𝑚 ∙ 𝑎 + 𝑛 ∙ 𝑏, 𝑛 ∙ 𝑚), 
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The triple  (𝑅 × ℤ, +,∙) forms a ring. This ring has multiplicative 

identity, namely the pair  (0,1); for  

(𝑎, 𝑛) ∙ (0,1) = (𝑎 ∙ 0 + 1 ∙ 𝑎 + 𝑛 ∙ 0, 𝑛 ∙ 1) = (𝑎, 𝑛), 

(0,1) ∙ (𝑎, 𝑛) = (𝑎, 𝑛). 

Next, consider the subset 𝑅 × 0 of 𝑅 × ℤ consisting of all pairs of the 

form (𝑎, 0). Since  

(𝑎, 0) − (𝑏, 0) = (𝑎 − 𝑏, 0),     (𝑎, 0) ∙ (𝑏, 0) = (𝑎 ∙ 𝑏, 0) 

Therefore,  (𝑅 × 0, +,∙) is a subring of  (𝑅 × ℤ, +,∙). 

The proof  is completed by showing (𝑅 × 0, +,∙) is isomorphic to the 

given ring (𝑅, +,∙). To this end, define the function 𝑓: 𝑅 ⟶ 𝑅 × 0 by 

taking  

𝑓(𝑎) = (𝑎, 0). 

The function 𝑓 is a one-to-one mapping of  𝑅 onto the set 𝑅 × 0. 

𝑓(𝑎 + 𝑏) = (𝑎 + 𝑏, 0) = (𝑎, 0) + (𝑏, 0) = 𝑓(𝑎) + 𝑓(𝑏), 

𝑓(𝑎 ∙ 𝑏) = (𝑎 ∙ 𝑏, 0) = (𝑎, 0) ∙ (𝑏, 0) = 𝑓(𝑎) ∙ 𝑓(𝑏). 

Thus, (𝑅, +,∙) ≅ (𝑅 × 0 , +,∙). 
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8. Fundamental Theorems of Homomorphisms of Rings. 

Theorem(8-1): (The first fundamental theorem of homomorphism of 

ring) 

Let 𝜑 be a homomorphism from (𝑅, +,∙) into (𝑅, +,∙), then 

(
𝑅

𝑘𝑒𝑟𝜑
, +,∙) ≅ (𝜑(𝑅), +,∙) 

Proof: let 𝛹:
𝑅

𝑘𝑒𝑟𝜑
⟶ 𝜑(𝑅) defined by 𝛹(𝑥 + 𝑘𝑒𝑟𝜑) = 𝜑(𝑥)  ∀𝑥 ∈ 𝑅 

To prove that 𝛹 is well define  

  ∀𝑥 + 𝑘𝑒𝑟𝜑, 𝑦 + 𝑘𝑒𝑟𝜑 ∈
𝑅

𝑘𝑒𝑟𝜑
, 𝑥 + 𝑘𝑒𝑟𝜑 =  𝑦 + 𝑘𝑒𝑟𝜑  

(𝑥 − 𝑦) + 𝑘𝑒𝑟𝜑 = 𝑘𝑒𝑟𝜑 ⟹ (𝑥 − 𝑦) ∈ 𝑘𝑒𝑟𝜑 

⟹ 𝜑(𝑥 − 𝑦) = 0 ⟹ 𝜑(𝑥) = 𝜑(𝑦) ⟹ 𝛹(𝑥 + 𝑘𝑒𝑟𝜑) = 𝛹(𝑦 + 𝑘𝑒𝑟𝜑) 

To prove that 𝛹 is a homomorphism  

𝛹[(𝑥 + 𝑘𝑒𝑟𝜑) + (𝑦 + 𝑘𝑒𝑟𝜑)] = 𝛹[(𝑥 + 𝑦) + 𝑘𝑒𝑟𝜑] 

= 𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦) = 𝛹(𝑥 + 𝑘𝑒𝑟𝜑) + 𝛹(𝑦 + 𝑘𝑒𝑟𝜑) 

Also  
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𝛹[(𝑥 + 𝑘𝑒𝑟𝜑) ∙ (𝑦 + 𝑘𝑒𝑟𝜑)] = 𝛹[(𝑥 ∙ 𝑦) + 𝑘𝑒𝑟𝜑] 

= 𝜑(𝑥 ∙ 𝑦) = 𝜑(𝑥) ∙ 𝜑(𝑦) = 𝛹(𝑥 + 𝑘𝑒𝑟𝜑) ∙ 𝛹(𝑦 + 𝑘𝑒𝑟𝜑) 

To prove 𝛹 is an onto 

If 𝑧 ∈ 𝐼𝑚𝜑 ⟹ ∃𝑟 ∈ 𝑅 ∋ 𝑧 = 𝜑(𝑟), 𝑟 + 𝑘𝑒𝑟𝜑 ∈
𝑅

𝑘𝑒𝑟𝜑
 

∋ 𝛹(𝑟 + 𝑘𝑒𝑟𝜑) = 𝜑(𝑟) = 𝑧 

To prove  𝛹 is an one-to-one  

𝛹(𝑥 + 𝑘𝑒𝑟𝜑) = 𝛹(𝑦 + 𝑘𝑒𝑟𝜑) ⟹ 𝜑(𝑥) = 𝜑(𝑦) 

⟹ 𝜑(𝑥 − 𝑦) = 0 ⟹ 𝑥 − 𝑦 ∈ 𝑘𝑒𝑟𝜑 ⟹ (𝑥 − 𝑦) + 𝑘𝑒𝑟𝜑 = 𝑘𝑒𝑟𝜑 

⟹ 𝑥 + 𝑘𝑒𝑟𝜑 = 𝑦 + 𝑘𝑒𝑟𝜑 ⟹ (
𝑅

𝑘𝑒𝑟𝜑
, +,∙) ≅ (𝜑(𝑅), +,∙) 

Example(8-2): Let 𝑓: 𝑍4 ⟶ 𝑍2 be a function defined by 𝑓(0) =

𝑓(2) = 0, 𝑓(1) = 𝑓(3) = 1. 

𝑘𝑒𝑟𝑓 = {0,2},
𝑍4

𝑘𝑒𝑟𝑓
= {{0,2}, {1,3}} 

The operation tables for the quotient ring (
𝑍4

𝑘𝑒𝑟𝑓
, +,∙) are as shown: 

+ {0,2} {1,3} 
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{0,2} {0,2} {1,3} 

{1,3} {1,3} {0,2} 

 

∙ {0,2} {1,3} 

{0,2} {0,2} {0,2} 

{1,3} {0,2} {1,3} 

 

Therefore, (
𝑍4

𝑘𝑒𝑟𝑓
, +,∙) ≅ (𝑍2, +2,∙2) 

Theorem(8-3): (The second fundamental theorem of homomorphism of 

ring) 

Let (𝑅, +,∙) be a ring, 𝐼 be an ideal of 𝑅 and 𝐻 be a subring of 𝑅, then  

(𝐻 + 𝐼)

𝐼
≅

𝐻

(𝐻 ∩ 𝐼)
 

Proof: Let 𝜑: 𝐻 ⟶
(𝐻+𝐼)

𝐼
 defined by 𝜑(𝑎) = 𝑎 + 𝐼 ∀𝑎 ∈ 𝐻 

To prove that 𝜑 is a homomorphism 

∀𝑎, 𝑏 ∈ 𝐻, 𝜑(𝑎 + 𝑏) = (𝑎 + 𝑏) + 𝐼 = (𝑎 + 𝐼) + (𝑏 + 𝐼)

= 𝜑(𝑎) + 𝜑(𝑏) 
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Also  

𝜑(𝑎 ∙ 𝑏) = (𝑎 ∙ 𝑏) + 𝐼 = (𝑎 + 𝐼) ∙ (𝑏 + 𝐼) = 𝜑(𝑎) ∙ 𝜑(𝑏) 

To prove that 𝜑 is an onto 

∀𝑥 + 𝐼 ∈
(𝐻 + 𝐼)

𝐼
∋ 𝑥 ∈ 𝐻 + 𝐼, 𝑥 = 𝑎 + 𝑖 ∋ 𝑎 ∈ 𝐻, 𝑖 ∈ 𝐼 

𝑥 + 𝐼 = (𝑎 + 𝑖) + 𝐼 = 𝑎 + 𝐼 ⟹ 𝜑(𝑥) = 𝜑(𝑎) = 𝑥 + 𝐼 

By the first theorem, we get  

𝐻

𝑘𝑒𝑟𝜑
≅

(𝐻 + 𝐼)

𝐼
 

𝑘𝑒𝑟𝜑 = {𝑥 ∈ 𝐻: 𝜑(𝑥) = 𝐼} = {𝑥 ∈ 𝐻: 𝑥 + 𝐼 = 𝐼} = {𝑥 ∈ 𝐻: 𝑥 ∈ 𝐼} 

= {𝑥 ∈ 𝐻: 𝑥 ∈ 𝐻 ∩ 𝐼} = 𝐻 ∩ 𝐼 

Therefore, 
(𝐻+𝐼)

𝐼
≅

𝐻

(𝐻∩𝐼)
. 

Theorem(8-4): Let (𝑅, +,∙) be a ring with identity and 𝜑 be a 

homomorphism from (𝑅, +,∙) into (𝜑(𝑅), +′,∙′), then 

(1)  𝜑(1) is an identity of (𝜑(𝑅), +′,∙′). 

(2)  𝜑(𝑥−1) is an inverse 𝜑(𝑥) in (𝜑(𝑅), +′,∙′). 
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Proof: (1) if 𝑦 ∈ 𝜑(𝑅), ∃𝑥 ∈ 𝑅 ∋ 𝑦 = 𝜑(𝑥) 

1 ∙ 𝑥 = 𝑥 ∙ 1 = 𝑥 ⟹ 𝜑(1 ∙ 𝑥) = 𝜑(𝑥 ∙ 1) = 𝜑(𝑥) 

𝜑(1) ∙′ 𝜑(𝑥) = 𝜑(𝑥) ∙′ 𝜑(1) = 𝜑(𝑥) 

𝜑(1) ∙′ 𝑦 = 𝑦 ∙′ 𝜑(1) = 𝑦 ⟹ 𝜑(1) ∈ 𝜑(𝑅) 

Thus, 𝜑(1) is an identity element of (𝜑(𝑅), +′,∙′) 

Proof: (2) 𝑥 ∙ 𝑥−1 = 𝑥−1 ∙ 𝑥 = 1 ⟹ 𝜑(𝑥 ∙ 𝑥−1) = 𝜑(𝑥−1 ∙ 𝑥) = 𝜑(1) 

𝜑(𝑥) ∙′ 𝜑(𝑥−1) = 𝜑(𝑥−1) ∙′ 𝜑(𝑥) = 𝜑(1) ⟹ 𝜑(𝑥−1) ∈ 𝜑(𝑅) 

Hence, 𝜑(𝑥−1) is an inverse of 𝜑(𝑥) in 𝜑(𝑅). 

Theorem(8-5): (The third fundamental theorem of homomorphism of 

ring) 

If 𝐼, 𝐽 be two ideals in (𝑅, +,∙) with 𝐽 ⊆ 𝐼, then  
𝑅

𝐼
≅

𝑅

𝐽
𝐼

𝐽

. 

Proof: let 𝜑:
𝑅

𝐽
⟶  

𝑅

𝐼
 defined by 𝜑(𝑟 + 𝐽) = 𝑟 + 𝐼, ∀𝑟 ∈ 𝑅, 𝑟 + 𝐽 ∈  

𝑅

𝐽
 

To show that  𝜑 is a homomorphism  

𝜑[(𝑥 + 𝐽) + (𝑦 + 𝐽)] = 𝜑[(𝑥 + 𝑦) + 𝐽] = (𝑥 + 𝑦) + 𝐼 

= (𝑥 + 𝐼) + (𝑦 + 𝐼) = 𝜑(𝑥 + 𝐽) + 𝜑(𝑦 + 𝐽) 
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    Also 

𝜑[(𝑥 + 𝐽) ∙ (𝑦 + 𝐽)] = 𝜑[(𝑥 ∙∙ 𝑦) + 𝐽] = (𝑥 ∙ 𝑦) + 𝐼 

= (𝑥 + 𝐼) ∙ (𝑦 + 𝐼) = 𝜑(𝑥 + 𝐽) ∙ 𝜑(𝑦 + 𝐽) 

 To prove 𝑘𝑒𝑟𝜑 =
𝐼

𝐽
  

Let 𝑟 + 𝐽 ∈ 𝑘𝑒𝑟𝜑 ⟹ 𝜑(𝑟 + 𝐽) = 𝐼, 𝜑(𝑟 + 𝐽) = 𝑟 + 𝐼 

𝑟 + 𝐼 = 𝐼 ⟹ 𝑟 ∈ 𝐼 ⟹ 𝑟 + 𝐽 ∈
𝐼

𝐽
⟹ 𝑘𝑒𝑟𝜑 ⊆

𝐼

𝐽
 

Let 𝑧 + 𝐽 ∈
𝐼

𝐽
, 𝑧 ∈ 𝐼, 𝜑(𝑧 + 𝐽) = 𝑧 + 𝐼 = 𝐼 ⟹ 𝑧 + 𝐽 ∈ 𝑘𝑒𝑟𝜑 ⟹

𝐼

𝐽
⊆ 𝑘𝑒𝑟𝜑 

Hence, 
𝑅

𝐼
≅

𝑅

𝐽
𝐼

𝐽

. 

9. Properties of Ideals and Quotient Ring by Using 

Homomorphisms. 

Theorem(9-1): Let 𝐼, 𝐽 be two ideals in a ring (𝑅, +,∙), then 𝐼 + 𝐽 is an 

ideal in a ring (𝑅, +,∙). 

Proof: 𝐼 + 𝐽 = {𝑥 ∈ 𝑅: 𝑥 = 𝑎 + 𝑏; 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽} 

∅ ≠ 𝐼 + 𝐽 ⊆ 𝑅, 0 = 0 + 0 ∈ 𝐼 + 𝐽 
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𝑥, 𝑦 ∈ 𝐼 + 𝐽, 𝑥 = 𝑎 + 𝑏, 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽, 𝑦 = 𝑐 + 𝑑, 𝑐 ∈ 𝐼, 𝑑 ∈ 𝐽 

𝑥 − 𝑦 = (𝑎 + 𝑏) − (𝑐 + 𝑑) = (𝑎 − 𝑐) + (𝑏 − 𝑑) ∈ 𝐼 + 𝐽 

𝑟 ∈ 𝑅, 𝑟 ∙ 𝑥 = 𝑟 ∙ (𝑎 + 𝑏) = 𝑟 ∙ 𝑎 + 𝑟 ∙ 𝑏 ∈ 𝐼 + 𝐽 

𝑥 ∙ 𝑟 = (𝑎 + 𝑏) ∙ 𝑟 = 𝑎 ∙ 𝑟 + 𝑏 ∙ 𝑟 ∈ 𝐼 + 𝐽 

Therefore, 𝐼 + 𝐽 is an ideal in a ring (𝑅, +,∙). 

Theorem(9-2): Let 𝐼, 𝐽 be two ideals in a ring (𝑅, +,∙), then 𝐼 ∩ 𝐽 is an 

ideal in a ring (𝑅, +,∙). 

Proof: 𝐼 ∩ 𝐽 = {𝑥 ∈ 𝑅: 𝑥 ∈ 𝐼, 𝑥 ∈ 𝐽} 

∅ ≠ 𝐼 ∩ 𝐽 ⊆ 𝑅, 0 ∈ 𝐼, 0 ∈ 𝐽, 0 ∈ 𝐼 ∩ 𝐽 

𝑥, 𝑦 ∈ 𝐼 ∩ 𝐽, 𝑥, 𝑦 ∈ 𝐼, 𝑥, 𝑦 ∈ 𝐽, 𝑥 − 𝑦 ∈ 𝐼, 𝑥 − 𝑦 ∈ 𝐽, 𝑥 − 𝑦 ∈ 𝐼 ∩ 𝐽 

𝑎 ∈ 𝑅, 𝑦 ∈ 𝐼 ∩ 𝐽, 𝑦 ∈ 𝐼, 𝑦 ∈ 𝐽, 𝑎 ∙ 𝑦, 𝑦 ∙ 𝑎 ∈ 𝐼, 𝑎 ∙ 𝑦, 𝑦 ∙ 𝑎 ∈ 𝐽 

𝑎 ∙ 𝑦 ∈ 𝐼 ∩ 𝐽, 𝑦 ∙ 𝑎 ∈ 𝐼 ∩ 𝐽 

Hence, 𝐼 ∩ 𝐽 is an ideal in a ring (𝑅, +,∙). 

Theorem(9-3): Let 𝐼, 𝐽 be two ideals in a ring (𝑅, +,∙), then 𝐼 ∙ 𝐽 is an 

ideal in a ring (𝑅, +,∙). 

Proof: 𝐼 ∙ 𝐽 = {𝑥 ∈ 𝑅: 𝑥 = ∑ 𝑥𝑖
𝑛
𝑖=1 ∙ 𝑦𝑖; 𝑥𝑖 ∈ 𝐼, 𝑦𝑖 ∈ 𝐽, 𝑛 ∈ ℤ+} 
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∅ ≠ 𝐼 ∙ 𝐽 ⊆ 𝑅, 0 = 0 ∙ 0 ∈ 𝐼 ∙ 𝐽 

𝑥, 𝑦 ∈ 𝐼 ∙ 𝐽, 𝑥 = ∑ 𝑥𝑖

𝑛

𝑖=1

∙ 𝑦𝑖; 𝑥𝑖 ∈ 𝐼, 𝑦𝑖 ∈ 𝐽, 𝑛 ∈ ℤ+ 

𝑦 = ∑ 𝑥𝑗
′

𝑚

𝑗=1

∙ 𝑦𝑗
′; 𝑥𝑗

′ ∈ 𝐼, 𝑦𝑗
′ ∈ 𝐽, 𝑚 ∈ ℤ+ 

𝑥 − 𝑦 = ∑ 𝑥𝑖

𝑛

𝑖=1

∙ 𝑦𝑖 − ∑ 𝑥𝑗
′

𝑚

𝑗=1

∙ 𝑦𝑗
′ = ∑ 𝑥𝑖

𝑛

𝑖=1

∙ 𝑦𝑖 + ∑(−𝑥𝑗
′)

𝑚

𝑗=1

∙ 𝑦𝑗
′ ∈ 𝐼 ∙ 𝐽 

𝑦 ∈ 𝐼 ∙ 𝐽, 𝑎 ∈ 𝑅, 𝑎 ∙ 𝑦 = 𝑎 ∙ (∑ 𝑥𝑗
′

𝑚

𝑗=1

∙ 𝑦𝑗
′) = ∑(𝑎 ∙ 𝑥𝑗

′)

𝑚

𝑗=1

∙ 𝑦𝑗
′ ∈ 𝐼 ∙ 𝐽 

𝑦 ∙ 𝑎 = (∑ 𝑥𝑗
′

𝑚

𝑗=1

∙ 𝑦𝑗
′) ∙ 𝑎 = (∑ 𝑥𝑗

′

𝑚

𝑗=1

∙ (𝑦𝑗
′ ∙ 𝑎)) ∈ 𝐼 ∙ 𝐽 

Thus, 𝐼 ∙ 𝐽 is an ideal in a ring (𝑅, +,∙). 

Theorem(9-4): Let 𝐽 ⊆ 𝐼 be two ideals in a ring (𝑅, +,∙), then 
𝐼

𝐽
 is an 

ideal in a ring (𝑅, +,∙). 

Proof:  
𝐼

𝐽
= {𝑥 ∈ 𝑅: 𝑥 ∙ 𝐽 ⊆ 𝐼} 
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∅ ≠  
𝐼

𝐽
⊆ 𝑅, 0 ∙ 𝐽 = {0} ⊆ 𝐼, {0} ∈

𝐼

𝐽
 

𝑥, 𝑦 ∈
𝐼

𝐽
, 𝑥 = 𝑎 ∙ 𝐽, 𝑦 = 𝑏 ∙ 𝐽 

𝑥 − 𝑦 =  𝑎 ∙ 𝐽 − 𝑏 ∙ 𝐽 = (𝑎 − 𝑏) ∙ 𝐽 ⊆ 𝐼, 𝑥 − 𝑦 ∈
𝐼

𝐽
 

𝑟 ∈ 𝑅, 𝑟 ∙ 𝑥 = 𝑟 ∙ (𝑎 ∙ 𝐽) = (𝑟 ∙ 𝑎) ∙ 𝐽 ⊆ 𝐼 

Hence, 
𝐼

𝐽
 is an ideal in a ring (𝑅, +,∙). 

Theorem(9-5): Let (𝑅, +,∙) be a commutative ring, then √𝐼 is an ideal 

in (𝑅, +,∙) contains 𝐼. 

Proof: ∅ ≠ √𝐼 = {𝑥 ∈ 𝑅: ∃𝑛 ∈ ℤ+; 𝑥𝑛 ∈ 𝐼} ⊆ 𝑅, 0 ∈ 𝐼, 0 ∈ √𝐼 

𝑥, 𝑦 ∈ √𝐼, 𝑥𝑛 ∈ 𝐼, 𝑦𝑚 ∈ 𝐼 

(𝑥 − 𝑦)𝑚+𝑛−1 ∈ 𝐼, 𝑥 − 𝑦 ∈ √𝐼 

𝑥 ∈ √𝐼, 𝑎 ∈ 𝑅, 𝑥𝑛 ∈ 𝐼, (𝑎 ∙ 𝑥)𝑛 ∈ 𝐼, 𝑎 ∙ 𝑥 ∈ √𝐼  

To show 𝐼 ⊆ √𝐼 

𝑦 ∈ 𝐼, 𝑦1 ∈ 𝐼, 𝑦 ∈ √𝐼 
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Example(9-6): Find √〈6〉 . 

 Example(9-7): Show that √𝐼 ⊆ √√𝐼 . 

Example(9-8): Let 𝐼, 𝐽, 𝐾 be ideals in a ring (𝑅, +,∙) with 𝐼 ⊆ 𝐾, then 

𝐼 + (𝐽 ∩ 𝐾) = (𝐼 + 𝐽) ∩ 𝐾 

Solution: let 𝑥 ∈ 𝐼 + (𝐽 ∩ 𝐾) 

⟹ 𝑥 = 𝑎 + 𝑏 ∋ 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽 ∩ 𝐾 ⟹ 𝑏 ∈ 𝐽, 𝑏 ∈ 𝐾 

𝑏 ∈ 𝐽 ⟹ 𝑥 = 𝑎 + 𝑏 ∈ 𝐼 + 𝐽,  also  

𝑏 ∈ 𝑘, 𝑎 ∈ 𝐼 ⊆ 𝐾 ⟹ 𝑥 = 𝑎 + 𝑏 ∈ 𝐾 ⟹ 𝑥 = 𝑎 + 𝑏 ∈ (𝐼 + 𝐽) ∩ 𝐾 

⟹ 𝐼 + (𝐽 ∩ 𝐾) ⊆ (𝐼 + 𝐽) ∩ 𝐾 

Let 𝑦 ∈ (𝐼 + 𝐽) ∩ 𝐾 ⟹ 𝑦 ∈ 𝐼 + 𝐽, 𝑦 ∈ 𝐾 

⟹ 𝑦 = 𝑎 + 𝑏, 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽 

𝐼 ⊆ 𝐾 ⟹ 𝑎 ∈ 𝐾, 𝑏 = 𝑦 − 𝑎 ∈ 𝐾 ⟹ 𝑏 ∈ 𝐽 ∩ 𝐾 

⟹ 𝑦 = 𝑎 + 𝑏 ∈ 𝐼 + (𝐽 ∩ 𝐾) 

⟹ (𝐼 + 𝐽) ∩ 𝐾 ⊆ 𝐼 + (𝐼 ∩ 𝐾) 

⟹  𝐼 + (𝐽 ∩ 𝐾) = (𝐼 + 𝐽) ∩ 𝐾 
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10.  Zero Divisors Elements and Integral Domains. 

Definition(10-1): A ring  (𝑅, +,∙) is said to have divisors of zero if 

there exist nonzero elements 𝑎, 𝑏 ∈ 𝑅 such that the product 𝑎 ∙ 𝑏 = 0. 

Theorem(10-2): A ring (𝑅, +,∙) is without divisors of zero if and only 

if the cancellation law holds for multiplication. 

Proof:(⟹) Assume (𝑅, +,∙) contains no divisors of zero. 

let 𝑎, 𝑏, 𝑐 ∈ 𝑅 ∋ 𝑎 ≠ 0, 𝑎 ∙ 𝑏 = 𝑎 ∙ 𝑐, then 

𝑎 ∙ (𝑏 − 𝑐) = 𝑎 ∙ 𝑏 − 𝑎 ∙ 𝑐 = 0 

Since 𝑎 ≠ 0, (𝑅, +,∙) has no zero divisors, 𝑏 − 𝑐 = 0 or 𝑏 = 𝑐 

(⟸) suppose that the cancellation law holds and 𝑎 ∙ 𝑏 = 0  

If 𝑎 ≠ 0, then 𝑎 ∙ 𝑏 = 𝑎 ∙ 0 ⟹ 𝑏 = 0. 

𝑏 ≠ 0 ⟹ 𝑎 = 0 

This shows (𝑅, +,∙) is free of divisors of zero. 

Corollary(10-3): Let  (𝑅, +,∙) be a ring with identity which has no zero 

divisors. Then the only solutions of the equation 𝑎2 = 𝑎 are 𝑎 = 0 and 

𝑎 = 1. 
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Proof: if 𝑎2 = 𝑎 = 𝑎 ∙ 1, with 𝑎 ≠ 0, then 𝑎 = 1. 

Definition(10-4): An integral domain is a commutative ring with 

identity which does not have divisors of zero. 

Corollary(10-5): In an integral domain, all the nonzero elements have 

the same additive order, which is the characteristic of the domain. 

Proof: suppose the integral domain (𝑅, +,∙) has positive characteristic 

𝑛. 

Any 𝑎 ∈ 𝑅(𝑎 ≠ 0) will then possess a finite additive order 𝑚, with 

𝑚 ≤ 𝑛. 

But  0 = 𝑚𝑎 = (𝑚1) ∙ 𝑎 ⟹ 𝑚1 = 0, since  (𝑅, +,∙) is free of zero 

divisors. 

Corollary(10-6): The characteristic of an integral domain (𝑅, +,∙) is 

either zero or a prime number. 

Proof: let (𝑅, +,∙) be of positive characteristic 𝑛 and assume that 𝑛 is 

not a prime. 

     𝑛 = 𝑛1𝑛2 with  1 < 𝑛𝑖 < 𝑛(𝑖 = 1,2). 

0 = 𝑛1 = (𝑛1𝑛2)1 = (𝑛1𝑛2)12 = (𝑛11) ∙ (𝑛21). 
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    Since (𝑅, +,∙) is without zero divisors, either 𝑛11 = 0 or  𝑛21 = 0. 

    But this is contradiction,  𝑛 the least positive integer such that 𝑛1 = 0. 

    Hence, we are led to conclude that the characteristic must be prime. 

Example(10-7): Let (𝑀2(𝑅), +,∙) be a ring. Then (
0 0
𝑐 𝑑

) , 𝑐, 𝑑 ∈ 𝑅 is a 

right zero divisor and (
𝑎 0
𝑏 0

) , 𝑎, 𝑏 ∈ 𝑅 is a left zero divisor in (𝑀2(𝑅), +,∙

). 

Solution: (
0 0
𝑐 𝑑

) ≠ (
0 0
0 0

) , (
𝑎 0
𝑏 0

) ≠ (
0 0
0 0

) 

(
𝑎 0
𝑏 0

) ∙  (
0 0
𝑐 𝑑

) = (
0 0
0 0

) 

Example(10-8): The number 2 is a zero divisor in a ring (𝑍4, +4,∙4) and 

the numbers 2,3 are zero divisors in a ring (𝑍6, +6,∙6).  (check) 

Example(10-9): Let (𝑆 = {(𝑎, 𝑏): 𝑎, 𝑏 ∈ ℤ}, +,∙) be a commutative ring 

with identity and define  

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) 

(𝑎, 𝑏) ∙ (𝑐, 𝑑) = (𝑎 ∙ 𝑐, 𝑏 ∙ 𝑑) 

The identity element with  + is (0,0), and the identity with ∙ is (1,1). 
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Also, (1,0) is a zero divisor, since 

(1,0) ∙ (0,1) = (0,0) 

(0,1) ≠ (0,0), (1,0) ≠ (0,0). 

 Example(10-10): The triple  (ℤ, +,∙) is an integral domain, since  (ℤ, +,∙) 

is a commutative with identity . 

𝑥, 𝑦 ∈ ℤ ∋ 𝑥 ∙ 𝑦 = 0 ⟹ 𝑥 = 0 or 𝑦 = 0 . 

Example(10-11): Let (𝑍𝑝, +𝑝,∙𝑝) be a ring, where 𝑝 is a prime number, 

then (𝑍𝑝, +𝑝,∙𝑝) is an integral domain. 

Solution: the triple (𝑍𝑝, +𝑝,∙𝑝) is a commutative with  identity  [1]. 

To show (𝑍𝑝, +𝑝,∙𝑝) has no zero divisors. 

Let [𝑎], [𝑏] ∈ 𝑍𝑝 ∋ [𝑎] ∙𝑝 [𝑏] = [0] ⟹ [𝑎 ∙ 𝑏] = [0] ⟹
𝑝

𝑎∙𝑏
 

But 𝑝 is a prime number, ⟹
𝑝

𝑎
 or 

𝑝

𝑏
⟹ [𝑎] = [0]  or  [𝑏] = [0]. 

Example(10-12): (𝑀𝑛(𝑅), +,∙) is not an integral domain, since it is not 

commutative ring. 

Example(10-13): Solve the equation  𝑥2 − 4𝑥 + 3 = 0 in a ring 

(𝑍12, +12,∙12). 
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Solution: 𝑥2 − 4𝑥 + 3 = 0 ⟹ (𝑥 − 3)(𝑥 − 1) = 0 ⟹ 𝑥 = 3, 𝑥 = 1. 

But, in (𝑍12, +12,∙12), we have 

[0] ∙12 [𝑎] = [𝑎] ∙12 [0] = [0] 

Since  

2 ∙12 6 = 3 ∙12 4 = 3 ∙12 8 = 4 ∙12 9 = 6 ∙12 6 = 6 ∙12 8 = 6 ∙12 10

= 9 ∙12 8 = 0 

So,  

(9 − 3)(9 − 1) = 6 ∙12 8 = 0 

(7 − 3)(7 − 1) = 4 ∙12 6 = 0 

Hence, {1,3,7,9} is a set of solution of 𝑥2 − 4𝑥 + 3 = 0 in (𝑍12, +12,∙12). 

Example(10-14): Let (𝑅, +,∙) is an integral domain with 𝑥, 𝑦 ∈ 𝑅 ∋ 𝑥5 =

𝑦5 and 𝑥7 = 𝑦7. Show that 𝑥 = 𝑦. 

Solution: If 𝑥 = 0 ⟹ 𝑥5 = 0 ⟹ 𝑦5 = 0 ⟹ 𝑦 = 0. 

Let 𝑥 ≠ 0, 𝑥7 = 𝑦7 ⟹ 𝑥5 ∙ 𝑥2 = 𝑦5 ∙ 𝑦2 

⟹ 𝑥5 ∙ 𝑥2 = 𝑥5 ∙ 𝑦2 ⟹ 𝑥5 ∙ (𝑥2 − 𝑦2) = 0 
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Since, (𝑅, +,∙) is an integral domain and 𝑥 ≠ 0 

⟹ 𝑥5 ≠ 0 ⟹ 𝑥2 − 𝑦2 = 0 ⟹ 𝑥2 = 𝑦2 ⟹ 𝑥6 = 𝑦6 … (∗) 

𝑥7 = 𝑦7 ⟹ 𝑥6 ∙ 𝑥 = 𝑦6 ∙ 𝑦 

By (∗), we get  

𝑥6 ∙ (𝑥 − 𝑦) = 0, 𝑥 ≠ 0, 𝑥6 ≠ 0 ⟹ 𝑥 − 𝑦 = 0 ⟹ 𝑥 = 𝑦 

Corollary(10-15): Let (𝑅, +,∙) be a ring with identity and 𝑢 ∈ 𝑅 is an 

invertible, then 𝑢 is not zero divisor. 

Proof: let 𝑟 ∈ 𝑅 ∋  𝑢 ∙ 𝑟 = 0 ⟹ 𝑢−1(𝑢 ∙ 𝑟) = 𝑢−1(0) = 0 

⟹ (𝑢−1 ∙ 𝑢) ∙ 𝑟 = 0 ⟹ 1 ∙ 𝑟 = 0 ⟹ 𝑟 = 0 

Also, 

𝑟 ∙ 𝑢 = 0 ⟹ (𝑟 ∙ 𝑢) ∙ 𝑢−1 = (0) ∙ 𝑢−1 

⟹ 𝑟 ∙ (𝑢 ∙ 𝑢−1) = 𝑟 ∙ 1 = 0 ⟹ 𝑟 = 0. 

11.  Fields and their properties 

Definition(11-1): A ring (𝐹, +,∙) is said to be a field provided the pair 

(𝐹 − {0},∙) forms a commutative group. 
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Example(11-2): Both (ℝ, +,∙) and (ℚ, +,∙) are fields. (check) 

Example(11-3): The triple  (𝐹 = {𝑎 + 𝑏√3: 𝑎, 𝑏 ∈ ℚ}, +,∙) is a field. 

0 = 0 + 0√3, 1 = 1 + 0√3 

(𝑎 + 𝑏√3)−1 =
1

(𝑎 + 𝑏√3)
=

1

(𝑎 + 𝑏√3)

𝑎 − 𝑏√3

𝑎 − 𝑏√3
 

=
𝑎

𝑎2 − 3𝑏2
+

−𝑏

𝑎2 − 3𝑏2 √3 ∈ 𝐹 

Example(11-4): The triple (ℝ × ℝ, +,∙), is a field.  Where  

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑), 

(𝑎, 𝑏) ∙ (𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐). 

The pair (1,0) is the multiplicative identity and  (0,0) is the zero element 

of the ring. 

Now, suppose (𝑎, 𝑏) ≠ (0,0), either 𝑎 ≠ 0 or 𝑏 ≠ 0, so that 𝑎2 + 𝑏2 > 0; 

thus 

(𝑎, 𝑏)−1 = (
𝑎

𝑎2 + 𝑏2
,

−𝑏

𝑎2 + 𝑏2
) 

(𝑎, 𝑏) ∙  (
𝑎

𝑎2 + 𝑏2
,

−𝑏

𝑎2 + 𝑏2
) = (

𝑎2 + 𝑏2

𝑎2 + 𝑏2
,
−𝑎𝑏 + 𝑎𝑏

𝑎2 + 𝑏2
) = (1,0) 
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Example(11-5): The field  contains a subring which is isomorphic to the 

ring of real numbers. 

ℝ × 0 = {(𝑎, 0): 𝑎 ∈ ℝ} 

It follows that (ℝ, +,∙) ≅ (ℝ × 0, +,∙) via the mapping 𝑓 defined by  

𝑓(𝑎) = (𝑎, 0), 𝑎 ∈ ℝ (check) 

Example(11-6): The triple (𝑍𝑝, +𝑝,∙𝑝) is a field. 

Let [0] ≠ [𝑎] ∈ 𝑍𝑝 ⟹ gcd(𝑎, 𝑝) = 1 

⟹ ∃𝑠, 𝑡 ∈ ℤ ∋ 𝑎 ∙ 𝑠 + 𝑝 ∙ 𝑡 = 1 

⟹ [𝑎] ∙𝑝 [𝑠]+𝑝[𝑝] ∙𝑝 [𝑡] = [1] 

⟹ [𝑎] ∙𝑝 [𝑠] = [1] 

⟹ [𝑠] is a multiplicative inverse of  [𝑎]. 

Example(11-7): The triple (ℂ, +,∙) is a field. (check) 

Corollary(11-8): In a field (𝐹, +,∙), with 0 ≠ 𝑎, 𝑏 ∈ 𝐹, then there exist a 

unique element 𝑥 satisfies  𝑎 ∙ 𝑥 + 𝑏 = 0. 

Proof: (𝐹, +) is an abelian group, then  
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𝑎 ∙ 𝑥 + 𝑏 = 0 ⟺ 𝑎 ∙ 𝑥 = −𝑏 ⟺ 𝑥 = 𝑎−1(−𝑏) = −𝑎−1 ∙ 𝑏 

Example(11-9): The triple (ℝ,∗,∘) is a field, where  ∗,∘ are defined by  

𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 1, 𝑎 ∘ 𝑏 = 𝑎 ∙ 𝑏 + 𝑎 + 𝑏∀𝑎, 𝑏 ∈ ℝ (check) 

Theorem(11-10): If (𝐹, +,∙) is a field and 𝑎, 𝑏 ∈ 𝐹 with 𝑎 ∙ 𝑏 = 0, then 

either  𝑎 = 0  or  𝑏 = 0. 

Proof: if    𝑎 = 0, the theorem is already established. 

Suppose that  𝑎 ≠ 0 and prove that 𝑏 = 0. 

𝑎−1 ∈ 𝐹, 𝑎 ∙ 𝑏 = 0 

0 = 𝑎−1 ∙ 0 = 𝑎−1 ∙ (𝑎 ∙ 𝑏) = (𝑎−1 ∙ 𝑎) ∙ 𝑏 = 1 ∙ 𝑏 = 𝑏. 

12.  More Results of Fields and Integral Domains. 

Theorem(12-1): Any finite integral domain (𝑅, +,∙) is a field. 

Proof: suppose  𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝑅 and   0 ≠ 𝑎 ∈ 𝑅 

 𝑎 ∙  𝑎1, 𝑎 ∙ 𝑎2, … , 𝑎 ∙ 𝑎𝑛 are all distinct, for if   𝑎 ∙  𝑎𝑖 = 𝑎 ∙ 𝑎𝑗, then   𝑎𝑖 =

𝑎𝑗 by the cancellation law. So each element of   𝑅 is of  the form   𝑎 ∙  𝑎𝑖. 

In particular, ∃𝑎𝑖 ∈ 𝑅 ∋ 𝑎 ∙  𝑎𝑖 = 1; since multiplication is commutative, 
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we have 𝑎𝑖 = 𝑎−1. This shows that every nonzero element of 𝑅 is 

invertible, so (𝑅, +,∙) is a field. 

Example(12-2): Prove or disprove, every integral domain is a 

field.(check) 

Example(12-3): Prove or disprove, every ring is a field.(check) 

Example(12-4): Prove or disprove, every ring is an integral 

domain.(check) 

Theorem(12-5): The ring (𝑍𝑛, +𝑛,∙𝑛) of integers modulo  𝑛 is a field if 

and only if  𝑛 is a prime number. 

Proof: We first show that if 𝑛 is not prime, then (𝑍𝑛, +𝑛,∙𝑛) is not a field. 

Thus assume 𝑛 = 𝑎 ∙ 𝑏, where 0 < 𝑎 < 𝑛 and  0 < 𝑏 < 𝑛. 

[𝑎] ∙𝑛 [𝑏] = [𝑎 ∙ 𝑏] = [𝑛] = [0], 

Both [𝑎] ≠ 0, [𝑏] ≠ 0. This means that (𝑍𝑛, +𝑛,∙𝑛) is not an integral 

domain, and hence not a field. 

Suppose that 𝑛 is a prime number. To show that (𝑍𝑛, +𝑛,∙𝑛) is a field. 
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Let [𝑎] ∈ 𝑍𝑛, where  0 < 𝑎 < 𝑛.𝑔𝑐𝑚(𝑎, 𝑛) = 1 ⟹ ∃𝑟, 𝑠 ∈ ℤ ∋ 𝑎 ∙ 𝑟 + 𝑛 ∙

𝑠 = 1  

[𝑎] ∙𝑛 [𝑟] = [𝑎 ∙ 𝑟]+𝑛[0] = [𝑎 ∙ 𝑟]+𝑛[𝑛 ∙ 𝑠] = [𝑎 ∙ 𝑟 + 𝑛 ∙ 𝑠] = [1], 

Showing the congruence class [𝑟] to be the multiplicative inverse of [𝑎]. 

Therefore,  (𝑍𝑛, +𝑛,∙𝑛) is a field. 

Theorem(12-6): Let (𝑅, +,∙) be a commutative ring with identity. Then 

(𝑅, +,∙) is a field if and only if (𝑅, +,∙) has no nontrivial ideals. 

Proof: (⟹) Assume first that  (𝑅, +,∙) is a field. We wish to show that the 

trivial ideals ({0}, +,∙)  and  (𝑅, +,∙) are its only ideals. 

Let (𝐼, +,∙) be nontrivial ideal of  (𝑅, +,∙) ⟹ 𝐼 ≠ {0} and 𝐼 ≠ 𝑅  

⟹ ∃0 ≠ 𝑎 ∈ 𝐼, since (𝑅, +,∙) is a field ⟹ ∃𝑎−1 ∈ 𝑅 ∋ 𝑎−1 ∙ 𝑎 = 1 ∈

𝐼 ⟹ 𝐼 = 𝑅  

But, this is contradiction. 

(⟸) suppose that  (𝑅, +,∙) has no nontrivial ideals. 

Let 𝑎 ∈ 𝑅, consider the principal idea  (〈𝑎〉, +,∙)  generated by  𝑎: 

〈𝑎〉 = {𝑟 ∙ 𝑎: 𝑟 ∈ 𝑅} 
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Now   (〈𝑎〉, +,∙) cannot be the zero ideal, since 𝑎 = 𝑎 ∙ 1 ∈ 〈𝑎〉, with 𝑎 ≠

0. 

If (〈𝑎〉, +,∙) = (𝑅, +,∙): that is, 〈𝑎〉 = 𝑅, since 1 ∈ 〈𝑎〉, ∃𝑟′ ∈ 𝑅 ∋ 𝑟′ ∙ 𝑎 =

1 

⟹ 𝑟′ = 𝑎−1 

Hence each nonzero element of 𝑅 has a multiplicative inverse in 𝑅. 

Theorem(12-7): Let  𝑓 be a homomorphism from the field (𝐹, +,∙) onto 

the field  (𝐹′, +′,∙′). Then either 𝑓 is the trivial homomorphism or else 

(𝐹, +,∙) and (𝐹′, +′,∙′) are isomorphic. 

Proof: since (𝑘𝑒𝑟𝑓, +,∙) is an ideal of  (𝐹, +,∙), either 𝑘𝑒𝑟𝑓 = {0} or 

𝑘𝑒𝑟𝑓 = 𝐹. 

If 𝑘𝑒𝑟𝑓 = {0} ⟹ 𝑓 is a one-to-one, in which case  (𝐹, +,∙) ≅ (𝐹′, +′,∙′) 

via  𝑓. 

If  𝑘𝑒𝑟𝑓 = 𝐹, then each element of  (𝐹, +,∙) must map  onto zero; that is, 𝑓 

is the trivial homomorphism. 

Definition(12-8): By a subfield of the field (𝐹, +,∙) is meant any subring 

(𝐹′, +,∙) of (𝐹, +,∙) which is itself a field. 
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Example(12-9): The ring (ℚ, +,∙) is a subfield of the field (ℝ, +,∙). 

Theorem(12-10): The triple (𝐹′, +,∙) is a subfield of  (𝐹, +,∙) if and  only 

if  the following hold: 

(1)  𝐹′ is a nonempty subset of  𝐹 with at least one nonzero 

element. 

(2) 𝑎, 𝑏 ∈ 𝐹′ implies  𝑎 − 𝑏 ∈ 𝐹′. 

(3) 𝑎, 𝑏 ∈ 𝐹′, where 𝑏 ≠ 0, implies 𝑎 ∙ 𝑏−1 ∈ 𝐹′. 

Theorem(12-11): Let the integral domain (𝑅, +,∙) be a subring of the field  

(𝐹, +,∙). If the set 𝐹′ is defined by  

𝐹′ = {𝑎 ∙ 𝑏−1: 𝑎, 𝑏 ∈ 𝑅; 𝑏 ≠ 0}, 

then the triple  (𝐹′, +,∙) forms a subfield of (𝐹, +,∙) such that 𝑅 ⊆ 𝐹′. In 

fact, (𝐹′, +,∙) is the smallest subfield containing 𝑅. 

Proof: if  𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0, 𝑎 ∙ 𝑏−1 ∈ 𝐹 

Since 1 = 1 ∙ 1−1 ∈ 𝐹′, 𝐹′ ≠ ∅   

Let 𝑥, 𝑦 ∈ 𝐹′, we have  

𝑥 = 𝑎 ∙ 𝑏−1, 𝑦 = 𝑐 ∙ 𝑑−1, 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅, 𝑏 ≠ 0, 𝑑 ≠ 0 
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𝑥 − 𝑦 = (𝑎 ∙ 𝑑 − 𝑏 ∙ 𝑐) ∙ (𝑏 ∙ 𝑑)−1 ∈ 𝐹′ 

If 𝑦 ≠ 0, 𝑐 ≠ 0, 

𝑥 ∙ 𝑦−1 = (𝑎 ∙ 𝑑) ⋅ (𝑐 ∙ 𝑏)−1 ∈ 𝐹′ 

Note(12-12): Let (𝑅, +,∙) be an integral domain and 𝐾 the set of ordered 

pairs, 

𝐾 = {(𝑎, 𝑏): 𝑎, 𝑏 ∈ 𝑅; 𝑏 ≠ 0}. 

(𝑎, 𝑏) ≡ (𝑐, 𝑑) ⟺ 𝑎 ∙ 𝑑 = 𝑏 ∙ 𝑐 

Theorem(12-13): The relation ≡ is an equivalence relation in 𝐾.(check 

1,2) 

That is to say 

(1) (𝑎, 𝑏) ≡ (𝑎, 𝑏), 

(2)  If (𝑎, 𝑏) ≡ (𝑐, 𝑑), then (𝑐, 𝑑) ≡ (𝑎, 𝑏), 

(3)  If (𝑎, 𝑏) ≡ (𝑐, 𝑑) and  (𝑐, 𝑑) ≡ (𝑒, 𝑓), then (𝑎, 𝑏) ≡ (𝑒, 𝑓). 

The least obvious statement is (3). In this case, the hypothesis (𝑎, 𝑏) ≡

(𝑐, 𝑑) and  (𝑐, 𝑑) ≡ (𝑒, 𝑓) implies that 

𝑎 ∙ 𝑑 = 𝑏 ∙ 𝑐, 𝑐 ∙ 𝑓 = 𝑑 ∙ 𝑒. 
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Multiplying the first of these equations by 𝑓 and the second by 𝑏, we 

obtain 

𝑎 ∙ 𝑑 ∙ 𝑓 = 𝑏 ∙ 𝑐 ∙ 𝑓 = 𝑏 ∙ 𝑑 ∙ 𝑒, 

and, from the commutativity of multiplication, 𝑎 ∙ 𝑓 ∙ 𝑑 = 𝑏 ∙ 𝑒 ∙ 𝑑. Since 

𝑑 ≠ 0, this factor may be cancelled to yield 𝑎 ∙ 𝑓 = 𝑏 ∙ 𝑒. But then 

(𝑎, 𝑏) ≡ (𝑒, 𝑓). 

Note(12-14): We label those elements which are equivalent to the pair 

(𝑎, 𝑏) by the symbol [𝑎, 𝑏]; in other words, 

[𝑎, 𝑏] = {(𝑐, 𝑑) ∈ 𝐾: (𝑎, 𝑏) ≡ (𝑐, 𝑑)} 

= {(𝑐, 𝑑) ∈ 𝐾: 𝑎 ∙ 𝑑 = 𝑏 ∙ 𝑐}. 

[𝑎, 𝑏]+′[𝑐, 𝑑] = [𝑎 ∙ 𝑑 + 𝑏 ∙ 𝑐, 𝑏 ∙ 𝑑], 

[𝑎, 𝑏] ∙′ [𝑐, 𝑑] = [𝑎 ∙ 𝑐, 𝑏 ∙ 𝑑]. 

let [𝑎, 𝑏] = [𝑎′, 𝑏′] and [𝑐, 𝑑] = [𝑐′, 𝑑′]. From the equations 

𝑎 ∙ 𝑏′ = 𝑏 ∙ 𝑎′, 𝑐 ∙ 𝑑′ = 𝑑 ∙ 𝑐′ 

it follows that  

(𝑎 ∙ 𝑑 + 𝑐 ∙ 𝑏) ∙ (𝑏′ ∙ 𝑑′) − (𝑎′ ∙ 𝑑′ + 𝑐′ ∙ 𝑏′) ∙ (𝑏 ∙ 𝑑) 
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= (𝑎 ∙ 𝑏′ − 𝑏 ∙ 𝑎′) ∙ (𝑑 ∙ 𝑑′) + (𝑐 ∙ 𝑑′ − 𝑑 ∙ 𝑐′) ∙ (𝑏 ∙ 𝑏′) 

= 0 ∙ (𝑑 ∙ 𝑑′) + 0 ∙ (𝑏 ∙ 𝑏′) = 0 

Thus, by the definition of equality of classes, 

[𝑎 ∙ 𝑑 + 𝑐 ∙ 𝑏, 𝑏 ∙ 𝑑] = [𝑎′ ∙ 𝑑′ + 𝑐′ ∙ 𝑏′, 𝑏′ ∙ 𝑑′], 

Proving addition to be well-defined. In much the same way, one can show 

that  

[𝑎 ∙ 𝑐, 𝑏 ∙ 𝑑] = [𝑎′ ∙ 𝑐′, 𝑏′ ∙ 𝑑′]. 

Lemma(12-15): The triple  (𝐹, +′,∙′) is a field, generally known as the 

field of quotients  of  the integral domain (𝑅, +,∙). 

Proof: the multiplicative identity , where 𝑎 is any nonzero element is 

[𝑎, 𝑎] ∙′ [𝑐, 𝑑] = [𝑎 ∙ 𝑐, 𝑎 ∙ 𝑑] = [𝑐, 𝑑] 

with [𝑐, 𝑑] in 𝐹. 

[0, 𝑏] as the zero element while [−𝑎, 𝑏] is the negative of [𝑎, 𝑏]. 

To show [𝑎, 𝑏] ≠ [0, 𝑏], 𝑎 ≠ 0 has an inverse under multiplication. 

[𝑎, 𝑏] ∙′ [𝑏, 𝑎] = [𝑎 ∙ 𝑏, 𝑏 ∙ 𝑎] = [𝑎 ∙ 𝑏, 𝑎 ∙ 𝑏]. 
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Since 𝑎 ∙ 𝑏 ≠ 0, [𝑎 ∙ 𝑏, 𝑎 ∙ 𝑏] is the identity element, so that [𝑎, 𝑏]−1 =

[𝑏, 𝑎]. 

Theorem(12-16): The integral domain  (𝑅, +,∙) can be embedded in its 

field of quotients (𝐹, +′,∙′). 

Proof: Consider the subset 𝐹′ of  𝐹 consisting of all element of the form 

[𝑎, 1], 

Where 1 is the multiplicative identity of  (𝑅, +,∙): 

𝐹′ = {[𝑎, 1]: 𝑎 ∈ 𝑅} 

Let 𝑓: 𝑅 ⟶ 𝐹′ be the onto mapping defined by  

𝑓(𝑎) = [𝑎, 1], ∀𝑎 ∈ 𝑅 

Since [𝑎, 1] = [𝑏, 1] implies 𝑎 ∙ 1 = 1 ∙ 𝑏 or  𝑎 = 𝑏, we see that 𝑓 is a one-

to-one function. 

𝑓(𝑎 + 𝑏) = [𝑎 + 𝑏, 1] = [𝑎, 1]+′[𝑏, 1] = 𝑓(𝑎)+′𝑓(𝑏), 

𝑓(𝑎 ∙ 𝑏) = [𝑎 ∙ 𝑏, 1] = [𝑎, 1] ∙′ [𝑏, 1] = 𝑓(𝑎) ∙′ 𝑓(𝑏). 

Therefore, (𝑅, +,∙) ≅ (𝐹, +′,∙′). 

Note(12-17): Any member [𝑎, 𝑏] of  𝐹 can be written in the form  
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[𝑎, 𝑏] = [𝑎, 1] ∙′ [1, 𝑏] = [𝑎, 1] ∙′ [𝑏, 1]−1. 

Note(12-18): It should also be observed that for any 𝑎 ≠ 0, we have 

[𝑎, 1] ∙′ [𝑏, 𝑎] = [𝑎 ∙ 𝑏, 𝑎] = [𝑏, 1]. 

Note(12-19): The field of quotients constructed from the integral domain 

(ℤ, +,∙) is, of course, the rational number field (ℚ, +,∙). 

Definition(12-20): A field which does not have any proper subfields is 

called a prime field. 

Example(12-21): The field of rational numbers, (ℚ, +,∙), is a prime field. 

To see this, suppose (𝐹, +,∙) is a subfield of  (ℚ, +,∙)  and let   0 ≠ 𝑎 ∈ 𝐹. 

Since (𝐹, +,∙) is a subfield, it must contain the product 𝑎 ∙ 𝑎−1 = 1. 

𝑛 = 𝑛 ∙ 1−1 ∈ 𝐹  ∀𝑛 ∈ ℤ: in other words, 𝐹 contains all the integers. It 

follows then that every rational number 
𝑛

𝑚
= 𝑛 ∙ 𝑚−1, 𝑚 ≠ 0, also belongs 

to 𝐹, so that 𝐹 = ℚ. 

Example(12-22): For every prime 𝑝, the field (𝑍𝑝, +𝑝,∙𝑝) of integers 

modulo 𝑝 is a prime field. The reasoning here depends on the fact that the 
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additive group (𝑍𝑝, +𝑝) of (𝑍𝑝, +𝑝,∙𝑝) is a finite group of prime order, and 

therefore has no nontrivial subgroups. 

Theorem(12-23): Any prime field (𝐹, +,∙) is isomorphic either to (ℚ, +,∙), 

the field of rational numbers, or to one of the fields (𝑍𝑝, +𝑝,∙𝑝), where 𝑝 is 

a prime number. 

Proof: let 1 be the identity element of (𝐹, +,∙) and define the mapping 

𝑓: ℤ ⟶ 𝐹 by  

𝑓(𝑛) = 𝑛1  ∀𝑛 ∈ ℤ 

Then 𝑓 is a homomorphism from (ℤ, +,∙) onto the subring (𝑓(ℤ), +,∙) 

consisting of integral multiples of 1, we see that 

(
ℤ

𝑘𝑒𝑟𝑓
, +,∙) ≅ (𝑓(ℤ), +,∙). 

But the triple (𝑘𝑒𝑟𝑓, +,∙) is an ideal of  (ℤ, +,∙) a principal  ideal ring, 

𝑘𝑒𝑟𝑓 = 〈𝑛〉 for some nonnegative integer 𝑛. if 𝑛 ≠ 0, then 𝑛 must in fact 

be a prime. Suppose  𝑛 = 𝑛1𝑛2 where  1 < 𝑛𝑖 < 𝑛(𝑖 = 1,2). Since 𝑛 ∈

𝑘𝑒𝑟𝑓, 

(𝑛11) ∙ (𝑛21) = (𝑛1𝑛2)1 = 𝑛1 = 0, 
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yielding the contradiction  that the field  (𝐹, +,∙) has divisors of zero.  

Therefore, 𝑛 is the characteristic of (𝐹, +,∙) and as such must be prime. So 

(1)  (𝑓(ℤ), +,∙) ≅ (
ℤ

〈𝑝〉
, +,∙) = (𝑍𝑝, +𝑝,∙𝑝) for some prime 𝑝, or 

(2)  (𝑓(ℤ), +,∙) ≅ (
ℤ

〈0〉
, +,∙) = (ℤ, +,∙). 

Suppose first that  (𝑓(ℤ), +,∙) ≅ (𝑍𝑝, +𝑝,∙𝑝) the subring (𝑓(ℤ), +,∙) must 

itself be a field. But  (𝐹, +,∙) contains no proper subfield. 𝑓(ℤ) = 𝐹 and 

(𝐹, +,∙) ≅ (𝑍𝑝, +𝑝,∙𝑝). 

Next, (𝑓(ℤ), +,∙) ≅ (ℤ, +,∙), the subring (𝑓(ℤ), +,∙) is an integral domain, 

but not a field. The hypothesis  (𝐹, +,∙)  is a prime field, then implies  

𝐹 = {𝑎 ∙ 𝑏−1: 𝑎, 𝑏 ∈ 𝑓(ℤ); 𝑏 ≠ 0} 

= {(𝑛1) ∙ (𝑚1)−1: 𝑛, 𝑚 ∈ ℤ; 𝑚 ≠ 0}. 

The fields (𝐹, +,∙) and  (ℚ, +,∙) are isomorphic under the mapping 

𝑔 (
𝑛

𝑚
) = (𝑛1) ∙ (𝑚1)−1. 

Corollary(12-24): Every field contains a subfield which isomorphic either 

to the field  (ℚ, +,∙)  or to one of the fields  (𝑍𝑝, +𝑝,∙𝑝), 𝑝 a prime. 
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13.  Maximal Ideals. Examples, Properties and Results. 

Definition(13-1): An ideal (𝐼, +,∙) of the ring  (𝑅, +,∙) is a maximal ideal 

provided 𝐼 ≠ 𝑅 and whenever (𝐽, +,∙) is an ideal of (𝑅, +,∙) with  𝐼 ⊂ 𝐽 ⊆

𝑅, then   𝐽 = 𝑅. 

Theorem(13-2): Let (ℤ, +,∙) be the ring of integers and 𝑛 > 1. Then the 

principal ideal (〈𝑛〉, +,∙) is maximal if and only if  𝑛 is a prime number. 

Proof: (⟹) suppose (〈𝑛〉, +,∙) is a maximal ideal of  (ℤ, +,∙). If the 

integer 𝑛 is not prime, then  𝑛 = 𝑛1𝑛2, where  1 < 𝑛1 ≤ 𝑛2 < 𝑛. This 

implies the ideals  (〈𝑛1〉, +,∙) and (〈𝑛2〉, +,∙) are such that 

〈𝑛〉 ⊂ 〈𝑛1〉 ⊂ ℤ, 〈𝑛〉 ⊂ 〈𝑛2〉 ⊂ ℤ,     

contrary  to the maximality of (〈𝑛〉, +,∙) 

(⟸) assume that 𝑛 is prime. 

If the ideal (〈𝑛〉, +,∙) is not maximal in (ℤ, +,∙), then either 〈𝑛〉 = ℤ or else 

there exists some proper ideal (〈𝑚〉, +,∙) with 〈𝑛〉 ⊂ 〈𝑚〉 ⊂ ℤ. The first 

case is immediately ruled out by the fact that 1 is not a multiple of a prime 

number. 
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The alternative possibility 〈𝑛〉 ⊂ 〈𝑚〉 means 𝑛 = 𝑘𝑚 for some integer  

𝑘 > 1; this also is untenable, since 𝑛 is prime, not composite. We therefore 

conclude that (〈𝑛〉, +,∙) is a maximal ideal. 

Example(13-3): Let 𝑅 denote the collection of all functions 𝑓: ℝ ⟶ ℝ. 

For two such functions 𝑓 and 𝑔, we have  

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) 

(𝑓 ∙ 𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥), 𝑥 ∈ ℝ. 

Then (𝑅, +,∙) is a commutative ring with identity. Consider  

𝑀 = {𝑓 ∈ 𝑅: 𝑓(0) = 0}. 

The triple (𝑀, +,∙) forms an ideal of (𝑅, +,∙); we observe that it is a 

maximal ideal. 

Zorns Lemma(13-4): Let 𝛭 be a nonempty family of subsets of some 

fixed set with the property that for each chain 𝜒 in 𝛭, the union ⋃ 𝜒 also 

belongs to 𝛭. Then 𝛭 contains a set which is maximal in the sense that it 

is not properly contained in any member of 𝛭. 

Theorem(13-5): (Krull-Zorn). In a commutative ring with identity, each 

proper ideal is contained in a maximal ideal. 



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

59 

Proof: let (𝐼, +,∙) be any proper ideal of (𝑅, +,∙). Define  

𝛭 = {𝐽: 𝐼 ⊆ 𝐽; (𝐽, +,∙) is a proper ideal of  (𝑅, +,∙)}. 

𝛭 ≠ ∅, since 𝐼 ∈ 𝛭. Let a chain {𝐼𝑖} in 𝛭. Notice that ⋃ 𝐼𝑖 ≠ 𝑅, since 1 ∉

𝐼𝑖  for any 𝑖. 

Let 𝑎, 𝑏 ∈ ⋃ 𝐼𝑖  and 𝑟 ∈ 𝑅 ⟹ ∃𝑖, 𝑗 for which 𝑎 ∈ 𝐼𝑖 , 𝑏 ∈ 𝐼𝑗 

The collection {𝐼𝑖} forms a chain, either 𝐼𝑖 ⊆ 𝐼𝑗 or else 𝐼𝑗 ⊆ 𝐼𝑖; say, for 

definiteness,  𝐼𝑖 ⊆ 𝐼𝑗. But (𝐼𝑗 , +,∙) is an ideal, so 𝑎 − 𝑏 ∈ 𝐼𝑗 ⊆ ⋃ 𝐼𝑖. For the 

same reason , 𝑟 ∙ 𝑎 ∈ 𝐼𝑗 . This shows the triple (⋃ 𝐼𝑖 , +,∙) to be a proper 

ideal of the ring (𝑅, +,∙). 𝐼 ⊆ ⋃ 𝐼𝑖, hence ⋃ 𝐼𝑖 ∈ 𝛭. 

Thus, on the basis of Zorns Lemma, 𝛭 contains a maximal element 𝑁. The 

triple (𝑁, +,∙) is a proper ideal of the ring (𝑅, +,∙) with 𝐼 ⊆ 𝑁. (𝑁, +,∙) is a 

maximal ideal. To see this, suppose (𝐽, +,∙) is any ideal of (𝑅, +,∙) for 

which 𝑁 ⊂ 𝐽 ⊆ 𝑅. Since 𝑁 is a maximal element of 𝛭, the set 𝐽 ∉ 𝛭, the 

ideal (𝐽, +,∙) must be improper, which implies 𝐽 = 𝑅. We therefore 

conclude (𝑁, +,∙) is a maximal ideal of (𝑅, +,∙). 

Corollary(13-6): An element is invertible if and only if it belongs to no 

maximal ideal. 
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Definition(13-7): Let (𝑅, +,∙) be a ring and 𝑎 ∈ 𝑅, then 𝑎 is said to be an 

idempotent element, if  𝑎2 = 𝑎. 

Theorem(13-8): In a ring (𝑅, +,∙) having exactly one maximal ideal 

(𝑀, +,∙), the only idempotent elements are 0 and 1. 

Proof: assume the theorem is false; that is, suppose there exists an 

idempotent 𝑎 ∈ 𝑅 with 𝑎 ≠ 0,1. The relation 𝑎2 = 𝑎 implies 𝑎 ∙ (1 − 𝑎) =

0, so that 𝑎 and 1 − 𝑎 are zero divisors. Hence, neither the element 𝑎 nor 

1 − 𝑎 is invertible in  𝑅. But this means the principle ideals (〈𝑎〉, +,∙) and 

(〈1 − 𝑎〉, +,∙) are both proper ideals of the ring (𝑅, +,∙).  As such, they 

must be contained in (𝑀, +,∙): 〈𝑎〉 ⊆ 𝑀 and 〈1 − 𝑎〉 ⊆ 𝑀, both 𝑎 and 1 −

𝑎 lie in 𝑀,  

1 = 𝑎 + (1 − 𝑎) ∈ 𝑀 

This leads at once to the contradiction 𝑀 = 𝑅. 

Theorem(13-9): Let (𝐼, +,∙) be a proper ideal of the commutative ring 

(𝑅, +,∙) with identity. Then (𝐼, +,∙) is a maximal ideal if and only if the 

quotient ring (
𝑅

𝐼
, +,∙) is a field. 
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Proof: (⟹) let (𝐼, +,∙) be a maximal ideal of (𝑅, +,∙). Since (𝑅, +,∙) is a 

commutative ring with identity, the quotient ring (
𝑅

𝐼
, +,∙) also has these 

properties. If 𝑎 + 𝐼 ≠ 0 + 𝐼, then 𝑎 ∉ 𝐼. The ideal (〈𝐼, 𝑎〉, +,∙) generated by 

𝐼 and 𝑎 must be the whole ring (𝑅, +,∙): 

𝑅 = 〈𝐼, 𝑎〉 = {𝑖 + 𝑟 ∙ 𝑎: 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅}. 

The identity element 1, 1 = 𝑖′ + 𝑟′ ∙ 𝑎, 1 − 𝑟′ ∙ 𝑎 ∈ 𝐼 

1 + 𝐼 = 𝑟′ ∙ 𝑎 + 𝐼 = (𝑟′ + 𝐼) ∙ (𝑎 + 𝐼), 

𝑟′ + 𝐼 = (𝑎 + 𝐼)−1. Hence (
𝑅

𝐼
, +,∙) is a field. 

(⟸) suppose (
𝑅

𝐼
, +,∙) is a field and (𝐽, +,∙) is any ideal of (𝑅, +,∙) such 

that  𝐼 ⊂ 𝐽 ⊆ 𝑅. Since 𝐼 is a proper subset of 𝐽, there exists an element 𝑎 ∈

 𝐽 with  𝑎 ∉ 𝐼. The coset 𝑎 + 𝐼 ≠ 0 + 𝐼. (
𝑅

𝐼
, +,∙) is a field,  

(𝑎 + 𝐼) ∙ (𝑏 + 𝐼) = 1 + 𝐼 

for some coset 𝑏 + 𝐼 ∈
𝑅

𝐼
 .  1 − 𝑎 ∙ 𝑏 ∈ 𝐼 ⊂ 𝐽. But  𝑎 ∙ 𝑏 ∈ 𝐽, 1 ∈ 𝐽, 𝐽 = 𝑅. 

Example(13-10): Consider the ring of even integers (ℤ𝑒, +,∙), a 

commutative ring without identity. In this ring, the principle ideal 

(〈4〉, +,∙) generated by the integer 4 is a maximal ideal. 
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Solution: if 𝑛 is any element not in 〈4〉, then 𝑛 is an even integer not 

divisible by 4; the greatest common divisor of 𝑛 and 4 must be 2. We have 

〈〈4〉, 𝑛〉 = 〈2〉 = ℤ𝑒, 

This reasoning shows that there is no ideal of (ℤ𝑒, +,∙) contained between 

(〈4〉, +,∙) and (ℤ𝑒 , +,∙). 

Now note that in (
ℤ𝑒

〈4〉
, +,∙), 

(2 + 〈4〉) ∙ (2 + 〈4〉) = 0 + 〈4〉. 

The ring (
ℤ𝑒

〈4〉
, +,∙) therefore has divisors of zero and cannot be a field. 

Definition(13-10): Let (𝑅, +,∙) be a ring and 𝑎 ∈ 𝑅, then 𝑎 is said to be a 

nilpotent element, if there exists a positive integer   𝑛 such that 𝑎𝑛 = 0. 

Example(13-11): Find the set of all nilpotent elements of (ℤ, +,∙) and 

(𝑍9, +9,∙9). 

Example(13-12): If (𝑅, +,∙) is an integral domain, then the zero element is 

the only nilpotent of 𝑅. 

Example(13-13): The converse of example (13-12) is no true in general, 

for example 0 ∈ 𝑍6 is a nilpotent, but (𝑍6, +6,∙6) is not an integral domain. 
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Example(13-14): Let (𝑅, +,∙) be a ring and 𝑎 ∈ 𝑅. If 𝑎 is a nilpotent and 

𝑎 ≠ 0, then 𝑎 is a zero divisor. 

Example(13-15): The converse of example (13-14) is not true in general, 

for example 2 ∈ 𝑍6 is a zero divisor, but it is not nilpotent. 

Example(13-16): Find the set of idempotent elements in (ℤ, +,∙) and 

(𝑍6, +6,∙6). 

Example(13-17): Find all the maximal ideals in (𝑍12, +12,∙12). 

14. Prime Ideals. Examples, Properties and Results. 

Definition(14-1): An ideal (𝐼, +,∙) of the ring(𝑅, +,∙)  is a prime ideal if 

for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ∙ 𝑏 ∈ 𝐼 implies either 𝑎 ∈ 𝐼 or  𝑏 ∈ 𝐼. 

Example(14-2): The prime ideals of the ring (ℤ, +,∙) are precisely the 

ideals (〈𝑝〉, +,∙), where 𝑝 is a prime number, together with the trivial ideals 

({0}, +,∙) and  (ℤ, +,∙). 

Theorem(14-3): A commutative ring with identity (𝑅, +,∙) is an integral 

domain if and only if the zero ideal ({0}, +,∙) is a prime ideal. 

Proof: (⟹) if (𝑅, +,∙) is an integral domain 
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Let 𝑎, 𝑏 ∈ 𝑅 and 𝑎. 𝑏 ∈ {0} ⟹ 𝑎. 𝑏 = 0 ⟹ either 𝑎 = 0 or 𝑏 = 0, since 

(𝑅, +,∙) is an integral domain⟹ 𝑎 ∈ {0} or 𝑏 ∈ {0} ⟹ {0} is a prime ideal 

(⟸) let {0} is a prime ideal and 𝑎. 𝑏 = 0 ⟹ 𝑎. 𝑏 ∈ {0} ⟹ either 𝑎 ∈ {0} 

or 𝑏 ∈ {0}, since {0} is a prime ideal⟹ 𝑎 = 0 or 𝑏 = 0 ⟹ (𝑅, +,∙) is an 

integral domain. 

Example(14-4): Let (𝐹, +,∙) be a field, then ({0}, +,∙) and (𝐹, +,∙) are 

only prime ideals in (𝐹, +,∙). 

Example(14-5): the triples (ℚ, +,∙), (ℝ, +,∙), (ℂ, +,∙) and (𝑍𝑝, +𝑝,∙𝑝), 

where 𝑝 is a prime have trivial prime ideals. 

Example(14-6): The prime ideals of (ℤ, +,∙) are (〈𝑝〉, +,∙), ({0}, +,∙) and 

(ℤ, +,∙). 

Example(14-7): In (𝑍𝑛, +𝑛,∙𝑛), an ideal (〈𝑝〉, +,∙) is a prime. 

Example(14-8): The prime ideals of (𝑍12, +12,∙12) are (〈2〉, +12,∙12) and 

(〈3〉, +12,∙12). 

Example(14-9): Find all prime and maximal ideals of (𝑍15, +15,∙15). 
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Theorem(14-10): Let (𝐼, +,∙) be a proper ideal of the commutative ring 

(𝑅, +,∙) with identity. Then (𝐼, +,∙) is a prime ideal if and only if the 

quotient ring (
𝑅

𝐼
, +,∙) is an integral domain. 

Proof: (⟹) take (𝐼, +,∙) is a prime ideal. Since (𝑅, +,∙) is a commutative 

ring with identity, so is the quotient ring (
𝑅

𝐼
, +,∙). Assume that  

(𝑎 + 𝐼) ∙ (𝑏 + 𝐼) = 𝐼 = 𝑎 ∙ 𝑏 + 𝐼 

𝑎 ∙ 𝑏 ∈ 𝐼. Since (𝐼, +,∙) is a prime ideal, 𝑎 ∈ 𝐼 or  𝑏 ∈ 𝐼. But this means 

either 𝑎 + 𝐼 = 𝐼 or  𝑏 + 𝐼 = 𝐼, hence (
𝑅

𝐼
, +,∙) is without zero divisors. 

(⟸) suppose (
𝑅

𝐼
, +,∙) is an integral domain and 𝑎 ∙ 𝑏 ∈ 𝐼. 

(𝑎 + 𝐼) ∙ (𝑏 + 𝐼) = 𝑎 ∙ 𝑏 + 𝐼 = 𝐼. 

By hypothesis, (
𝑅

𝐼
, +,∙) contains no divisors of zero, so that either 𝑎 + 𝐼 =

𝐼  or  𝑏 + 𝐼 = 𝐼. So 𝑎 ∈ 𝐼  or   𝑏 ∈ 𝐼, therefore (𝐼, +,∙) is a prime ideal. 

Theorem(14-11): In a commutative ring with identity, every maximal 

ideal is a prime ideal. 
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Proof: Assume(𝐼, +,∙) is a maximal ideal of the ring (𝑅, +,∙) and that 𝑎 ∙

𝑏 ∈ 𝐼 with 𝑎 ∉ 𝐼. (𝐼, +,∙) is a maximal implies that 𝑅 = 〈𝐼, 𝑎〉. Hence there 

exist elements 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅 for which  

1 = 𝑖 + 𝑟 ∙ 𝑎. 

Since both 𝑎 ∙ 𝑏 and 𝑖 are in 𝐼, we conclude  

𝑏 = (𝑖 + 𝑟 ∙ 𝑎) ∙ 𝑏 = 𝑖 ∙ 𝑏 + 𝑟 ∙ (𝑎 ∙ 𝑏) ∈ 𝐼, 

from  which it is clear that (𝐼, +,∙) is a prime ideal. 

Example(14-12): The ring (ℤ𝑒, +,∙), where (〈4〉, +,∙) forms a maximal 

ideal which is not prime. 

Theorem(14-13): Let (𝑅, +,∙) be a principal ideal domain. A (nontrivial) 

ideal of (𝑅, +,∙) is prime if and only if it is a maximal ideal. 

Proof: (⟹) suppose (𝐼, +,∙) is any ideal with 〈𝑎〉 ⊂ 𝐼 ⊆ 𝑅. Since (𝑅, +,∙) 

is a principal ideal ring, there exists 𝑏 ∈ 𝑅 for which 𝐼 = 〈𝑏〉. Now 𝑎 ∈

𝐼 = 〈𝑏〉, hence 𝑎 = 𝑟 ∙ 𝑏, 𝑟 ∈ 𝑅. But (〈𝑎〉, +,∙) is a prime ideal, so either 

𝑟 ∈ 〈𝑎〉 or  𝑏 ∈ 〈𝑎〉. 𝑏 ∈ 〈𝑎〉 leads to the contradiction 〈𝑏〉 ⊆ 〈𝑎〉. Therefore 

𝑟 ∈ 〈𝑎〉, which implies 𝑟 = 𝑠 ∙ 𝑎, 𝑠 ∈ 𝑅, or 𝑎 = 𝑟 ∙ 𝑏 = (𝑠 ∙ 𝑎) ∙ 𝑏. Since 

𝑎 ≠ 0 and (𝑅, +,∙) is an integral domain, we have 1 = 𝑠 ∙ 𝑏. This means 
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1 ∈ 〈𝑏〉 = 𝐼, or 𝐼 = 𝑅. Since no ideal lies between (〈𝑎〉, +,∙) and (𝑅, +,∙), 

we conclude that (〈𝑎〉, +,∙) is a maximal ideal. 

(⟸) from theorem (14-5). 

Corollary(14-14): A nontrivial ideal of the ring (ℤ, +,∙) is prime if and 

only if it is maximal. 

Definition(14-15): A nonzero element 𝑎 of the ring (𝑅, +,∙) is called a 

prime element of 𝑅 if 𝑎 is not invertible and in every factorization 𝑎 = 𝑏 ∙

𝑐 with 𝑏, 𝑐 ∈ 𝑅, either 𝑏 or 𝑐 is invertible. 

Theorem(14-16): Let (𝑅, +,∙) be a principal ideal domain. The ideal 

(〈𝑎〉, +,∙) is a prime (maximal) ideal of (𝑅, +,∙) if and only if 𝑎 is a prime 

element of 𝑅. 

Proof: (⟸) suppose 𝑎 is a prime element of 𝑅 and (𝐼, +,∙) is any ideal for 

which 〈𝑎〉 ⊂ 𝐼 ⊆ 𝑅. By hypothesis, (𝑅, +,∙) is a principal ideal ring, so 

there is 𝑏 ∈ 𝑅 with 𝐼 = 〈𝑏〉. As 𝑎 ∈ 〈𝑏〉, 𝑎 = 𝑟 ∙ 𝑏 for some 𝑟 ∈ 𝑅. Since 𝑎 

is a prime element that either 𝑟 or  𝑏 is invertible. 𝑏 = 𝑟−1 ∙ 𝑎 ∈ 〈𝑎〉, which 

implies 𝐼 = 〈𝑏〉 ⊆ 〈𝑎〉, an obvious contradiction. The element 𝑏 must be 

invertible, so that 〈𝑏〉 = 𝑅. This argument shows that (〈𝑎〉, +,∙) is a 

maximal ideal of (𝑅, +,∙) and prime. 
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(⟹) Let (〈𝑎〉, +,∙) be a prime ideal of (𝑅, +,∙). Assume that 𝑎 is not a 

prime element of 𝑅. Then 𝑎 = 𝑏 ∙ 𝑐, where 𝑏, 𝑐 ∈ 𝑅, and neither 𝑏 nor 𝑐 is 

invertible. Now if 𝑏 ∈ 〈𝑎〉, 𝑏 = 𝑟 ∙ 𝑎, 𝑟 ∈ 𝑅, and  𝑎 = 𝑏 ∙ 𝑐 = (𝑟 ∙ 𝑎) ∙ 𝑐. 

From the cancellation law, 𝑟 ∙ 𝑐 = 1. But this contradiction that 𝑐 is 

invertible. By the same reasoning, if 𝑐 lies in 〈𝑎〉, then 𝑏 ∙ 𝑐 ∈ 〈𝑎〉, with 

𝑏 ∉ 〈𝑎〉, 𝑐 ∉ 〈𝑎〉, (〈𝑎〉, +,∙) is a prime ideal. Hence our supposition is false 

and 𝑎 must be a prime element of 𝑅. 

Definition(14-17): The radical of a ring (𝑅, +,∙), denoted by rad 𝑅, is the 

set  

rad 𝑅 = ⋂{𝑀: (𝑀, +,∙) is a maximal ideal of(𝑅, +,∙)} . 

If  rad 𝑅 = {0}, then we say (𝑅, +,∙) is a ring without radical or is a  

semisimple ring. 

Example(14-18): The ring of integers (ℤ, +,∙) is a semisimple ring. 

Solution: the maximal ideals of (ℤ, +,∙) are the principal ideals (〈𝑝〉, +,∙), 

where 𝑝 is a prime; that is,  

rad ℤ = ⋂{ 〈𝑝〉: 𝑝 a prime number}. 

Since no nonzero integer is divisible by every prime, rad ℤ = {0}. 
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Example(14-19): Find rad (𝑍15) and  rad (𝑍23). 

Theorem(14-20): Let  (𝐼, +,∙) be an ideal of the ring(𝑅, +,∙). Then the set 

𝐼 ⊆ rad 𝑅 if and only if each element of the coset 1 + 𝐼 has an inverse in 

𝑅. 

Proof: (⟹) assume that 𝐼 ⊆ rad 𝑅 and that there is 𝑎 ∈ 𝐼, for which 1 +

𝑎 is not invertible. The element 1 + 𝑎 must belong to some maximal ideal 

(𝑀, +,∙) of the ring (𝑅, +,∙). Since 𝑎 ∈ rad 𝑅, 𝑎 ∈ 𝑀, and therefore 1 =

(1 + 𝑎) − 𝑎 ∈ 𝑀. But this means 𝑀 = 𝑅, which is clearly impssible. 

(⟸) suppose each element of the coset 1 + 𝐼 has an inverse in 𝑅, but 𝐼 ⊈

rad 𝑅. There exist a maximal ideal (𝑀, +,∙) of (𝑅, +,∙) with 𝐼 ⊈ 𝑀. If 𝑎 ∈

𝐼, 𝑎 ∉ 𝑀, 〈𝑀, 𝑎〉 = 𝑅. 

1 = 𝑚 + 𝑟 ∙ 𝑎 

Let 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅, 𝑚 = 1 − 𝑟 ∙ 𝑎 ∈ 1 + 𝐼, so that 𝑚 possesses an inverse. 

The conclusion is untenable, since no proper ideal contains an invertible 

element. 

Theorem(14-21): In any ring (𝑅, +,∙) an element 𝑎 ∈ rad 𝑅 if and only if 

1 + 𝑟 ∙ 𝑎 has an inverse for each 𝑟 ∈ 𝑅. 



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

70 

Corollary(14-22): An element 𝑎 is invertible in the ring (𝑅, +,∙) if and 

only if  the coset 𝑎 + rad 𝑅 is invertible in the quotient ring (
𝑅

rad 𝑅
, +,∙). 

Proof: (⟸) assume the coset 𝑎 + rad 𝑅 has an inverse in (
𝑅

rad 𝑅
, +,∙), so 

that  

(𝑎 + rad 𝑅) ∙ (𝑏 + rad 𝑅) = 1 + rad 𝑅 

for some 𝑏 ∈ 𝑅. Then 𝑎 ∙ 𝑏 − 1 ∈ rad 𝑅. With r = 1, to conclude that 𝑎 ∙

𝑏 = 1 + 1 ∙ (𝑎 ∙ 𝑏 − 1) is invertible: this means 𝑎 has an inverse. 

(⟹) (check) 

Corollary(14-23): The only idempotent in the radical of the ring (𝑅, +,∙) 

is 0. 

Proof: let 𝑎 ∈rad (𝑅) with 𝑎2 = 𝑎. Taking 𝑟 = −1 in the preceding 

theorem, we see that 1 − 𝑎 has an inverse in 𝑅; say 

(1 − 𝑎) ∙ 𝑏 = 1, 𝑏 ∈ 𝑅 

𝑎 = 𝑎2 + 𝑎 ∙ 𝑏 − 𝑎 ∙ 𝑏 = 𝑎 ∙ (𝑎 + 𝑎 ∙ 𝑏 − 𝑏) = 𝑎 ∙ (𝑎 − 1) = 0 
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Corollary(14-24): Let 𝑁 denote the set of all noninvertible elements of 𝑅. 

Then the triple (𝑁, +,∙) is an ideal of the ring (𝑅, +,∙) if and only if  𝑁 =

rad 𝑅. 

Proof: (⟹) rad 𝑅 ⊆ 𝑁 clearly holds. Suppose a ∈ N. (𝑁, +,∙) is an ideal 

of the ring (𝑅, +,∙), then r ∙ a ∈ N, r ∈ R. 1 + r ∙ a ∉ N, for otherwise 

1 = (1 + r ∙ a) − (r ∙ a) ∈ N 

So 1 + r ∙ a must be invertible, a ∈ rad 𝑅. This shows N ⊆ rad 𝑅, then 

N = rad 𝑅. 

(⟸) is clear. 

Theorem(14-25): For any ring (𝑅, +,∙), the quotient ring (
𝑅

rad 𝑅
, +,∙) is 

semisimple. 

Proof: suppose a + 𝐼 ∈ rad (
𝑅

𝐼
) 

(1 + 𝐼) + (𝑟 + 𝐼) ∙ (𝑎 + 𝐼) = 1 + 𝑟 ∙ 𝑎 + 𝐼 

is invertible in 
𝑅

𝐼
 for each 𝑟 ∈ 𝑅. There exists a coset 𝑏 + 𝐼, such that 

(1 + 𝑎 ∙ 𝑟 + 𝐼) ∙ (𝑏 + 𝐼) = 1 + 𝐼 

𝑏 + 𝑎 ∙ 𝑟 ∙ 𝑏 − 1 ∈ 𝐼 = rad 𝑅 
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𝑏 + 𝑎 ∙ 𝑟 ∙ 𝑏 = 1 + 1 ∙ (𝑏 + 𝑎 ∙ 𝑟 ∙ 𝑏 − 1) 

has an inverse 𝑐 ∈ 𝑅. But 

(1 + 𝑟 ∙ 𝑎) ∙ (𝑏 ∙ 𝑐) = (𝑏 + 𝑎 ∙ 𝑟 ∙ 𝑏) ∙ 𝑐 = 1 

so that  1 + 𝑟 ∙ 𝑎 is invertible in 𝑅. 𝑎 ∈ rad 𝑅. 

Definition(14-26): An ideal (𝐼, +,∙) of a ring (𝑅, +,∙) is called a primary 

ideal, if for all  𝑎, 𝑏 ∈ 𝑅 such that 𝑎, 𝑏 ∈ 𝐼, implies that, if 𝑎 ∉ 𝐼, then 𝑏𝑛 ∈

𝐼 or if 𝑏 ∉ 𝐼, then 𝑎𝑛 ∈ 𝐼, for some 𝑛 ∈ ℤ+. 

Example(14-27): Show that, (𝐼 = 〈4〉, +12,∙12) is a primary ideal of 

(𝑍12, +12,∙12). 

Solution: 𝐼 = 〈4〉 = {0,4,8}, 𝑍12 = {0,1,2,3,4,5,6,7,8,9,10,11} 

 2 ∙12 6 = 0 ∈ 𝐼 ⟹ 6 ∉ 𝐼, 22 = 4 ∈ 𝐼 

10 ∙12 2 = 8 ∈ 𝐼 ⟹ 2 ∉ 𝐼, 102 = 4 ∈ 𝐼 

6 ∙12 8 = 0 ∈ 𝐼 ⟹ 6 ∉ 𝐼, 8 ∈ 𝐼 

6 ∙12 6 = 0 ∈ 𝐼 ⟹ 6 ∉ 𝐼, 62 = 0 ∈ 𝐼 

4 ∙12 5 = 8 ∈ 𝐼 ⟹ 5 ∉ 𝐼, 4 ∈ 𝐼 

⋮ 



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

73 

Therefore, 𝐼 is a primary ideal. 

Theorem(14-28): Every prime ideal is a primary. 

Proof: Let (𝐼, +,∙) be a prime ideal of a ring (𝑅, +,∙). 

Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎. 𝑏 ∈ 𝐼 

If 𝑎 ∉ 𝐼, then 𝑏 ∈ 𝐼  (since 𝐼 is a prime ideal) 

Thus, 𝑏𝑛 ∈ 𝐼, so 𝐼 is a primary ideal. 

Example(14-29): Prove or disprove, every primary ideal is a prime. 

Solution: In general, it is not true, for example: in (𝑍12, +12,∙12) the ideal 

(𝐼 = 〈4〉, +12,∙12) is a primary ideal, but it's not a prime ideal, since 

2 ∙12 2 = 4 ∈ 𝐼, but 2 ∉ 𝐼. 

Example(14-30): Every maximal ideal is a primary ideal. (check) 

Theorem(14-31): Let (𝐼, +,∙) be a proper ideal of a commutative ring with 

identity (𝑅, +,∙), then 𝐼 is a primary iff all zero divisors in 
𝑅

𝐼
 are nilpotent 

elements. 

Proof: ⟹) suppose 𝐼 is a primary. 

Let 𝑎 + 𝐼 ∈
𝑅

𝐼
 such that 𝑎 + 𝐼 is a zero divisor  
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⟹ 𝑎 + 𝐼 ≠ 𝐼, ∃  𝑏 + 𝐼 ≠ 𝐼 ∈
𝑅

𝐼
  such that (𝑎 + 𝐼)⨀(𝑏 + 𝐼) = 𝐼 ⟹ 𝑎. 𝑏 +

𝐼 = 𝐼 ⟹ 𝑎. 𝑏 ∈ 𝐼 

𝑏 + 𝐼 ≠ 𝐼 ⟹ 𝑏 ∉ 𝐼 ⟹ 𝑎𝑛 ∈ 𝐼, for some 𝑛 ∈ ℤ+( since 𝐼 is a primary 

ideal) 

⟹ 𝑎𝑛 + 𝐼 = 𝐼 ⟹ (𝑎 + 𝐼)𝑛 = 𝐼 

So, all zero divisors in 
𝑅

𝐼
  are nilpotent elements. 

⟸) suppose all zero divisors in 
𝑅

𝐼
  are nilpotent elements. 

Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎, 𝑏 ∈ 𝐼, 𝑎 ∉ 𝐼 ⟹ 𝑎 + 𝐼 ≠ 𝐼 

𝑎, 𝑏 ∈ 𝐼 ⟹ 𝑎. 𝑏 + 𝐼 = 𝐼 ⟹ (𝑎 + 𝐼)⨀(𝑏 + 𝐼) = 𝐼 

If 𝑏 + 𝐼 = 𝐼 ⟹ 𝑏 ∈ 𝐼 ⟹ 𝐼 is a prime ideal ⟹ 𝐼 is a primary ideal. 

If 𝑏 + 𝐼 ≠ 𝐼 ⟹ 𝑏 + 𝐼 is a zero divisor ⟹ 𝑏 + 𝐼 is a nilpotent element. 

⟹ ∃𝑛 ∈ ℤ+ such that (𝑏 + 𝐼)𝑛 = 𝐼 ⟹ 𝑏𝑛 + 𝐼 = 𝐼 ⟹ 𝑏𝑛 ∈ 𝐼 

Thus, 𝐼 is a primary ideal. 
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15. Polynomials Rings. Examples and Basic Properties. 

Definition(15-1): For an arbitrary ring (𝑅, +,∙). The set of polynomials 

over 𝑅  may be regarded as the set  

poly 𝑅 = {(𝑎0, 𝑎1, … , 𝑎𝑛, 0,0, … ): 𝑎𝑘 ∈ 𝑅, 𝑛 ≥ 0}   

𝑓 = (𝑎0, 𝑎1, 𝑎2, … ) and 𝑔 = (𝑏0, 𝑏1, 𝑏2, … ) 

𝑓 + 𝑔 = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, … ). 

𝑓 ∙ 𝑔 = (𝑎0 ∙ 𝑏0, 𝑎0 ∙ 𝑏1 + 𝑎1 ∙ 𝑏0, 𝑎0 ∙ 𝑏2 + 𝑎1 ∙ 𝑏1 + 𝑎2 ∙ 𝑏0, … ) 

= (𝑐0, 𝑐1, 𝑐2, … ), 

Where  

𝑐𝑘 = ∑ 𝑎𝑖
𝑖+𝑗=𝑘

∙ 𝑏𝑗 = 𝑎0 ∙ 𝑏𝑘 + 𝑎1 ∙ 𝑏𝑘−1 + ⋯ + 𝑎𝑘 ∙ 𝑏0 

Theorem(15-2): The triple (poly 𝑅, +,∙) forms a ring, known as the ring 

of polynomials over 𝑅. Furthermore, the ring (poly 𝑅, +,∙) is commutative 

with identity if and only if (𝑅, +,∙) is a commutative ring with identity. 

Definition(15-3): If 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛, 𝑎𝑛 ≠ 0 is a nonzero 

polynomial in 𝑅[𝑥](the set of poly 𝑅), we call the coefficient 𝑎𝑛 the 

leading coefficient of 𝑓(𝑥) and the integer 𝑛, the degree of the polynomial. 
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Theorem(15-4): Let (𝑅, +,∙) be an integral domain and 𝑓(𝑥), 𝑔(𝑥) be two 

nonzero elements of (𝑅[𝑥], +,∙). Then 

(1) deg (𝑓(𝑥) ∙ 𝑔(𝑥)) ≤deg𝑓(𝑥) +deg𝑔(𝑥), and 

(2) either 𝑓(𝑥) + 𝑔(𝑥) = 0 or  deg  (𝑓(𝑥) + 𝑔(𝑥)) ≤

max {deg𝑓(𝑥),deg𝑔(𝑥)}. 

Example(15-5): Consider (𝑍8, +8,∙8). Taking 

𝑓(𝑥) = 1 + 2𝑥, 

𝑔(𝑥) = 4 + 𝑥 + 4𝑥2 

we then have  𝑓(𝑥) ∙ 𝑔(𝑥) = 4 + 𝑥 + 6𝑥2, so that  

deg  (𝑓(𝑥) ∙ 𝑔(𝑥)) = 2 < 1 + 2 = deg𝑓(𝑥) + deg𝑔(𝑥). 

Theorem(15-6): (Division Algorithm). Let (𝑅, +,∙) be a commutative ring 

with identity and 𝑓(𝑥), 𝑔(𝑥) ≠ 0 be polynomials in 𝑅[𝑥], with the leading 

coefficient of  𝑔(𝑥) an invertible element. Then there exist unique 

polynomials 𝑞(𝑥), 𝑟(𝑥) ∈ 𝑅[𝑥] such that  

𝑓(𝑥) = 𝑞(𝑥) ∙ 𝑔(𝑥) + 𝑟(𝑥), 

where either  𝑟(𝑥) = 0 or  deg  𝑟(𝑥) <  deg  𝑔(𝑥). 
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Theorem(15-7): (Remainder Theorem). Let (𝑅, +,∙) be a commutative 

ring with identity. If 𝑓(𝑥) ∈ 𝑅[𝑥] and 𝑎 ∈ 𝑅, then there is a unique 

polynomial 𝑞(𝑥) in 𝑅[𝑥] such that 𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥) + 𝑓(𝑎). 

Proof: Applying the division algorithm to 𝑓(𝑥) and 𝑥 − 𝑎, we obtain 

𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥) + 𝑟(𝑥), 

where 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg (𝑥 − 𝑎) = 1. It follows in either case 

that 𝑟(𝑥) is a constant polynomial 𝑟 ∈ 𝑅. Substituting 𝑎 for 𝑥, we have  

𝑓(𝑎) = (𝑎 − 𝑎) ∙ 𝑞(𝑎) + 𝑟(𝑎) = 0 + 𝑟 = 𝑟. 

Corollary(15-8): (Factorization Theorem). The polynomial 𝑓(𝑥) ∈ 𝑅[𝑥] 

is divisible by 𝑥 − 𝑎 if and only if 𝑎 is a root of 𝑓(𝑥). 

Proof: since 𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥) if and only if 𝑓(𝑎) = 0. 

Theorem(15-9): Let (𝑅, +,∙) be an integral domain and 𝑓(𝑥) ∈ 𝑅[𝑥] be a 

nonzero polynomial of degree 𝑛. Then 𝑓(𝑥) has at most 𝑛 distinct roots in 

𝑅. 

Proof: when deg 𝑓(𝑥) = 0, the result is trivial, since 𝑓(𝑥) cannot have 

any roots. If deg 𝑓(𝑥) = 1, say 𝑓(𝑥) = 𝑎𝑥 + 𝑏, 𝑎 ≠ 0, then 𝑓(𝑥) has at 

most one root; indeed, if 𝑎 is invertible, −𝑎−1 ∙ 𝑏 is only root of 𝑓(𝑥). 
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Now, suppose the theorem is true for all polynomials of degree 𝑛 − 1 ≥ 1, 

and let deg 𝑓(𝑥) = 𝑛. If 𝑓(𝑥) has a root 𝑟, then 

𝑓(𝑥) = (𝑥 − 𝑟) ∙ 𝑞(𝑥), 

where the polynomial 𝑞(𝑥) has degree 𝑛 − 1. Any root 𝑟1 of 𝑓(𝑥) distinct 

from 𝑟 must be a root of 𝑞(𝑥), for, by substitution 

𝑓(𝑟1) = (𝑟1 − 𝑟) ∙ 𝑞(𝑟1) = 0 

and, since (𝑅, +,∙) has no zero divisors, 𝑞(𝑟1) = 0. 𝑞(𝑥) has at most 𝑛 − 1 

distinct roots. As the only roots of 𝑓(𝑥) are 𝑟 and those of 𝑞(𝑥), 𝑓(𝑥) 

cannot have more than 𝑛 distinct roots in 𝑅. 

Corollary(15-10): Let 𝑓(𝑥) and 𝑔(𝑥) be nonzero polynomials of degree 

≤ 𝑛 over the integral domain (𝑅, +,∙). If there exist 𝑛 + 1 distinct 

elements 𝑎𝑘 ∈ 𝑅(𝑘 = 1,2, … , 𝑛 + 1) for which𝑓(𝑎𝑘) = 𝑔(𝑎𝑘), then 

𝑓(𝑥) = 𝑔(𝑥). 

Proof: the polynomial ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) is such that deg  ℎ(𝑥) ≤ 𝑛 

and has at least 𝑛 + 1 distinct roots in 𝑅. This is impossible unless ℎ(𝑥) =

𝑓(𝑥) − 𝑔(𝑥) = 0, or 𝑓(𝑥) = 𝑔(𝑥). 
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Example(15-11): Consider the polynomial 𝑥𝑝 − 𝑥 ∈ 𝑍𝑝[𝑥], where 𝑝 is a 

prime number. Since the nonzero elements of (𝑍𝑝, +𝑝,∙𝑝) form a cyclic 

group, under multiplication, of order 𝑝 − 1, we must have 𝑎𝑝−1 = 1 or 

𝑎𝑝 = 𝑎 for every𝑎 ≠ 0. But the last equation clearly holds when 𝑎 = 0, so 

that every element of 𝑍𝑝is a root of the polynomial 𝑥𝑝 − 𝑥. 

Theorem(15-12): Let (ℂ, +,∙) be the field of complex numbers. If 𝑓(𝑥) ∈

ℂ[𝑥] is a polynomial of positive degree, then 𝑓(𝑥) has at least one root in 

ℂ. 

Corollary(15-13): If 𝑓(𝑥) ∈ ℂ[𝑥] is a polynomial of degree 𝑛 > 0, then 

𝑓(𝑥) can be expressed in ℂ[𝑥] as a product of 𝑛 (not necessarily distinct) 

linear factors. 

Theorem(15-14): If (𝐹, +,∙) is a field, then the ring (𝐹[𝑥], +,∙) is a 

principal ideal domain. 

Proof: (𝐹[𝑥], +,∙) is an integral domain. To see that any ideal (𝐼, +,∙) of 

(𝐹[𝑥], +,∙) is principal. If 𝐼 = {0}, the result is trivially true, since 𝐼 = 〈0〉. 

Otherwise, there is some nonzero polynomial 𝑝(𝑥) of lowest degree in 𝐼. 

For each polynomial 𝑓(𝑥) ∈ 𝐼, we may use the Division Algorithm to 

write 𝑓(𝑥) = 𝑞(𝑥) ∙ 𝑝(𝑥) + 𝑟(𝑥), where either 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < 



Prof. Dr. Najm Al-Seraji,  Ring Theory, 2025 
 

 

80 

deg 𝑝(𝑥). Now, 𝑟(𝑥) = 𝑓(𝑥) − 𝑞(𝑥) ∙ 𝑝(𝑥) lies in 𝐼; if the degree of 𝑟(𝑥) 

were less than that of 𝑝(𝑥), a contradiction to the choice of 𝑝(𝑥).𝑟(𝑥) = 0 

and 𝑓(𝑥) = 𝑞(𝑥) ∙ 𝑝(𝑥) ∈ 〈𝑝(𝑥)〉; hence, 𝐼 ⊆ 〈𝑝(𝑥)〉. But the opposite 

inclusion clearly holds, so that 𝐼 = 〈𝑝(𝑥)〉. 

Corollary(15-15):  A nontrivial ideal of (𝐹[𝑥], +,∙) is maximal if and only 

if it is a prime ideal. 

Definition(15-16): A nonconstant polynomial  𝑓(𝑥) ∈ 𝐹[𝑥] is said to be 

irreducible in 𝐹[𝑥] if and only if 𝑓(𝑥) cannot be expressed as the product 

of two polynomials of positive degree. Otherwise, 𝑓(𝑥) is reducible in 

𝐹[𝑥]. 

Example(15-17): Any linear polynomial 𝑓(𝑥) = 𝑎𝑥 + 𝑏, 𝑎 ≠ 0, is 

irreducible in 𝐹[𝑥]. Indeed, since the degree of a product of two nonzero 

polynomials  is the sum of the degree of the factors, it follows that a 

representation  

𝑎𝑥 + 𝑏 = 𝑔(𝑥) ∙ ℎ(𝑥), 

with  0 < deg 𝑔(𝑥) < 1,0 < deg  ℎ(𝑥) < 1 is impossible. Thus, every 

reducible polynomial has degree at least 2. 
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Example(15-18): The polynomial 𝑥2 − 2 is irreducible in ℚ[𝑥], where 

(ℚ, +,∙) is the field of rational numbers. Otherwise, we have 

𝑥2 − 2 = (𝑎𝑥 + 𝑏) ∙ (𝑐𝑥 + 𝑑) 

= (𝑎𝑐)𝑥2 + (𝑎𝑑 + 𝑏𝑐)𝑥 + 𝑏𝑑, 

where the coefficients 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ. Accordingly, 

𝑎𝑐 = 1,   𝑎𝑑 + 𝑏𝑐 = 0,    𝑏𝑑 = −2, 

𝑐 =
1

𝑎
, 𝑑 =

−2

𝑏
 . Substituting in the relation 𝑎𝑑 + 𝑏𝑐 = 0, we obtain 

0 =
−2𝑎

𝑏
+

𝑏

𝑎
=

(−2𝑎2 + 𝑏2)

𝑎𝑏
 

Thus, −2𝑎2 + 𝑏2 = 0, or  (
𝑏

𝑎
)2 = 2, which is impossible because √2 is 

not a rational number.  

Theorem(15-19): If (𝐹, +,∙) is a field, the following statements are 

equivalent: 

(1) 𝑓(𝑥) is an irreducible polynomial in 𝐹[𝑥]. 

(2) The principal ideal (〈𝑓(𝑥)〉, +,∙) is a maximal (prime) ideal of 

(𝐹[𝑥], +,∙). 
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(3) The quotient ring (
𝐹[𝑋]

〈𝑓(𝑥)〉
, +,∙) is a field. 

Theorem(15-20): (Unique Factorization Theorem). Each polynomial 

𝑓(𝑥) ∈ 𝐹[𝑥] of positive degree is the product of a nonzero element of 𝐹 

and irreducible monic polynomial of 𝐹[𝑥]. 

Corollary(15-21): If 𝑓(𝑥) ∈ ℝ[𝑥] is of positive degree, then 𝑓(𝑥) can be 

factored into linear and irreducible quadratic factors. 

Theorem(15-22): (Kronecker). If 𝑓(𝑥) is an irreducible polynomial in 

𝐹[𝑥], then there is an extension field of (𝐹, +,∙) in which 𝑓(𝑥) has a root. 

Corollary(15-23): If the polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] is of positive degree, 

then there exists an extension field of (𝐹, +,∙) containing a root of 𝑓(𝑥). 

Example(15-24): Consider (𝑍2, +2,∙2), the field of integers modulo 2, and 

the polynomial 𝑓(𝑥) = 𝑥3 + 𝑥 + 1 ∈ 𝑍2[𝑥]. Since neither of the elements 

0 or 1 is a root of 𝑥3 + 𝑥 + 1, 𝑓(𝑥) is irreducible in 𝑍2[𝑥]. Thus, the 

existence of an extension of (𝑍2, +2,∙2), specifically the field 

(
𝑍2[𝑥]

〈𝑓(𝑥)〉
, +,∙) 
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in which the given polynomial has a root. Denoting this root by 𝜆, the 

discussion above tells us that  

𝑍2[𝑥]

〈𝑓(𝑥)〉
= {𝑎 + 𝑏𝜆 + 𝑐𝜆2: 𝑎, 𝑏, 𝑐 ∈ 𝑍2} 

= {0,1, 𝜆, 1 + 𝜆, 𝜆2, 1 + 𝜆2, 𝜆 + 𝜆2, 1 + 𝜆 + 𝜆2}, 

where, of course,  𝜆3 + 𝜆 + 1 = 0. 

𝜆3 = −( 𝜆 + 1) = 𝜆 + 1, 𝜆4 =  𝜆2 + 𝜆 

(1 + 𝜆 + 𝜆2) ∙ (𝑎 + 𝑏 𝜆 + 𝑐𝜆2) = 1 

(𝑎 + 𝑏 + 𝑐) + 𝑎𝜆 + (𝑎 + 𝑏)𝜆2 = 1 

𝑎 + 𝑏 + 𝑐 = 1,   𝑎 = 0,    𝑎 + 𝑏 = 0 

with solution 𝑎 = 𝑏 = 0, 𝑐 = 1; therefore, (1 + 𝜆 + 𝜆2)−1 = 𝜆2. 

Finally, note that 𝑥3 + 𝑥 + 1 factors completely into linear factors in 
𝑍2[𝑥]

〈𝑓(𝑥)〉
 

and has the three roots 𝜆, 𝜆2, and 𝜆 + 𝜆2: 

𝑥3 + 𝑥 + 1 = (𝑥 − 𝜆) ∙ (𝑥 − 𝜆2) ∙ (𝑥 − (𝜆 + 𝜆2)). 

Example(15-25): The quadratic polynomial 𝑥2 + 1 is irreducible in ℝ[𝑥]. 

For, If 𝑥2 + 1 were reducible, it would be of the form  
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𝑥2 + 1 = (𝑎𝑥 + 𝑏) ∙ (𝑐𝑥 + 𝑑) = 𝑎𝑐𝑥2 + (𝑎𝑑 + 𝑏𝑐)𝑥 + 𝑏𝑑, 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ. It follows at once that 𝑎𝑐 = 𝑏𝑑 = 1 and 𝑎𝑑 + 𝑏𝑐 = 0 

therefore 𝑏𝑐 = −(𝑎𝑑), and  

1 = (𝑎𝑐)(𝑏𝑑) = (𝑎𝑑)(𝑏𝑐) = −(𝑎𝑑)2 

or, (𝑎𝑑)2 = −1, which is impossible. 

The extension field (
ℝ[𝑥]

〈𝑥2+1〉
, +,∙) is described by  

ℝ[𝑥]

〈𝑥2 + 1〉
= {𝑎 + 𝑏𝜆: 𝑎, 𝑏 ∈ ℝ; 𝜆2 + 1 = 0} 

(𝑎 + 𝑏𝜆) + (𝑐 + 𝑑𝜆) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝜆 

(𝑎 + 𝑏𝜆) ∙ (𝑐 + 𝑑𝜆) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝜆 + 𝑏𝑑(𝜆2 + 1) 

= (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝜆 

Theorem(15-26): If 𝑓(𝑥) ∈ 𝐹[𝑥] is a polynomial of positive degree, then 

there exists an extension field (𝐹′, +,∙) of (𝐹, +,∙) in which 𝑓(𝑥) factors 

completely into linear polynomials. 

Corollary(15-27): Let 𝑓(𝑥) ∈ 𝐹[𝑥] with deg  𝑓(𝑥) = 𝑛 > 0. Then there 

exists an extension of (𝐹, +,∙) in which 𝑓(𝑥) has 𝑛 roots. 
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Example(15-28): Let us consider the polynomial 𝑓(𝑥) = 𝑥4 − 5𝑥2 + 6 =

(𝑥2 − 2) ∙ (𝑥2 − 3) over the field (ℚ, +,∙) of rational numbers.  

We first extend (ℚ, +,∙) to the field (𝐹1, +,∙), where  

𝐹1 =
ℚ[𝑥]

〈𝑥2 − 2〉
= {𝑎 + 𝑏𝜆: 𝑎, 𝑏 ∈ ℚ; 𝜆2 − 2 = 0} 

and obtain the factorization  

𝑓(𝑥) = (𝑥 − 𝜆) ∙ (𝑥 + 𝜆) ∙ (𝑥2 − 3) 

= (𝑥 − √2) ∙ (𝑥 + √2) ∙ (𝑥2 − 3) 

𝑓(𝑥) does not factor completely, since the polynomial (𝑥2 − 3) is 

irreducible in 𝐹1[𝑥]. For, suppose 𝑥2 − 3 has a root in 𝐹1, say 𝑐 + 𝑑√2, 

with 𝑐, 𝑑 ∈ ℚ. Substituting, we find that  

(𝑐2 + 2𝑑2 − 3) + 2𝑐𝑑√2 = 0 

𝑐2 + 2𝑑2 − 3 = 0,   𝑐𝑑 = 0 

This equation implies that either 𝑐 = 0 or 𝑑 = 0; but neither 𝑐 nor 𝑑 can 

be zero, since otherwise we would have 𝑑2 =
3

2
  or  𝑐2 = 3, which is 

impossible. Thus 𝑥2 − 3 remains irreducible in 𝐹1[𝑥]. 
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In order to factor 𝑓(𝑥) into linear factors, it is necessary to extend the 

coefficient field further. We therefore constant the extension (𝐹2, +,∙), 

where  

𝐹2 =
𝐹1[𝑥]

〈𝑥2 − 2〉
= {𝛼 + 𝛽𝜇: 𝛼, 𝛽 ∈ 𝐹1; 𝜇2 − 3 = 0} 

The elements of 𝐹2 may be expressed in the form  

(𝑎 + 𝑏√2) + (𝑐 + 𝑑√2)√3 = 𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√6 

𝑓(𝑥) = (𝑥 − 𝜆) ∙ (𝑥 + 𝜆) ∙ (𝑥 − 𝜇) ∙ (𝑥 + 𝜇) 

= (𝑥 − √2) ∙ (𝑥 + √2) ∙ (𝑥 − √3) ∙ (𝑥 + √3) 

Observe that the four roots all lie in 𝐹2. 


