
Practical Corpus Linguistics

Practical Corpus Linguistics
An Introduction to Corpus-Based

Language Analysis

Martin Weisser

This edition first published 2016
© 2016 John Wiley & Sons, Inc

Registered Office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Offices
350 Main Street, Malden, MA 02148-5020, USA
9600 Garsington Road, Oxford, OX4 2DQ, UK
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, for customer services, and for information about how to apply
for permission to reuse the copyright material in this book please see our website at
www.wiley.com/wiley-blackwell.

The right of Martin Weisser to be identified as the author of this work has been asserted in accordance
with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of
the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The publisher is not associated with any product or vendor
mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and authors have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not
engaged in rendering professional services and neither the publisher nor the author shall be liable for
damages arising herefrom. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Weisser, Martin, author.
Practical corpus linguistics : an introduction to corpus-based language analysis / Martin Weisser. – First

edition.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-83187-8 (hardback) – ISBN 978-1-118-83188-5 (paper) 1. Linguistic analysis

(Linguistics)–Databases. 2. Linguistic analysis (Linguistics)–Software. 3. Corpora
(Linguistics)–Methodology. 4. Corpora (Linguistics)–Technological innovations. 5. Computational
linguisitics–Methodology. 6. Computer network resources–Evaluation. 7. Citation of electronic
information resources. I. Title.

P128.D37W45 2016
410.1′88–dc23

2015023709

A catalogue record for this book is available from the British Library.

Cover image: © Martin Weisser

Set in 10.5/13pt Galliard by Aptara Inc., New Delhi, India

1 2016

http://www.wiley.com/wiley-blackwell

To Ye & Emma,
who’ve had to suffer

from an undue lack of attention
throughout the final months

of writing this book

Contents

List of Figures xiii

List of Tables xv

Acknowledgements xvii

1 Introduction 1
1.1 Linguistic Data Analysis 3

1.1.1 What’s data? 3
1.1.2 Forms of data 3
1.1.3 Collecting and analysing data 7

1.2 Outline of the Book 8
1.3 Conventions Used in this Book 10
1.4 A Note for Teachers 11
1.5 Online Resources 11

2 What’s Out There? 13
2.1 What’s a Corpus? 13
2.2 Corpus Formats 13
2.3 Synchronic vs. Diachronic Corpora 15

2.3.1 ‘Early’ synchronic corpora 15
2.3.2 Mixed corpora 18
2.3.3 Examples of diachronic corpora 20

2.4 General vs. Specific Corpora 21
2.4.1 Examples of specific corpora 22

2.5 Static Versus Dynamic Corpora 25
2.6 Other Sources for Corpora 26

viii CONTENT

Solutions to/Comments on the Exercises 26
Note 28
Sources and Further Reading 28

3 Understanding Corpus Design 29
3.1 Food for Thought – General Issues in Corpus Design 29

3.1.1 Sampling 30
3.1.2 Size 31
3.1.3 Balance and representativeness 32
3.1.4 Legal issues 32

3.2 What’s in a Text? – Understanding Document Structure 33
3.2.1 Headers, ‘footers’ and meta-data 34
3.2.2 The structure of the (text) body 36
3.2.3 What’s (in) an electronic text? – understanding file

formats and their properties 37
3.3 Understanding Encoding: Character Sets, File Size, etc. 38

3.3.1 ASCII and legacy encodings 38
3.3.2 Unicode 39
3.3.3 File sizes 40

Solutions to/Comments on the Exercises 41
Sources and Further Reading 42

4 Finding and Preparing Your Data 43
4.1 Finding Suitable Materials for Analysis 44

4.1.1 Retrieving data from text archives 44
4.1.2 Obtaining materials from Project Gutenberg 44
4.1.3 Obtaining materials from the Oxford Text Archive 45

4.2 Collecting Written Materials Yourself (‘Web as Corpus’) 46
4.2.1 A brief note on plain-text editors 46
4.2.2 Browser text export 48
4.2.3 Browser HTML export 49
4.2.4 Getting web data using ICEweb 50
4.2.5 Downloading other types of files 52

4.3 Collecting Spoken Data 53
4.4 Preparing Written Data for Analysis 56

4.4.1 ‘Cleaning up’ your data 56
4.4.2 Extracting text from proprietary document formats 58
4.4.3 Removing unnecessary header and ‘footer’ information 58
4.4.4 Documenting what you’ve collected 59
4.4.5 Preparing your data for distribution or archiving 60

Solutions to/Comments on the Exercises 62
Sources and Further Reading 66

5 Concordancing 67
5.1 What’s Concordancing? 67

CONTENT ix

5.2 Concordancing with AntConc 69
5.2.1 Sorting results 74
5.2.2 Saving, pruning and reusing your results 75

Solutions to/Comments on the Exercises 78
Sources and Further Reading 81

6 Regular Expressions 82
6.1 Character Classes 84
6.2 Negative Character Classes 86
6.3 Quantification 86
6.4 Anchoring, Grouping and Alternation 87

6.4.1 Anchoring 87
6.4.2 Grouping and alternation 88
6.4.3 Quoting and using special characters 90
6.4.4 Constraining the context further 91

6.5 Further Exercises 92
Solutions to/Comments on the Exercises 93
Sources and Further Reading 100

7 Understanding Part-of-Speech Tagging and Its Uses 101
7.1 A Brief Introduction to (Morpho-Syntactic) Tagsets 103
7.2 Tagging Your Own Data 109
Solutions to/Comments on the Exercises 113
Sources and Further Reading 120

8 Using Online Interfaces to Query Mega Corpora 121
8.1 Searching the BNC with BNCweb 122

8.1.1 What is BNCweb? 122
8.1.2 Basic standard queries 123
8.1.3 Navigating through and exploring search results 124
8.1.4 More advanced standard query options 126
8.1.5 Wildcards 126
8.1.6 Word and phrase alternation 128
8.1.7 Restricting searches through PoS tags 129
8.1.8 Headword and lemma queries 131

8.2 Exploring COCA through the BYU Web-Interface 132
8.2.1 The basic syntax 133
8.2.2 Comparing corpora in the BYU interface 135

Solutions to/Comments on the Exercises 137
Sources and Further Reading 145

9 Basic Frequency Analysis – or What Can (Single) Words Tell Us
About Texts? 146
9.1 Understanding Basic Units in Texts 146

9.1.1 What’s a word? 147
9.1.2 Types and tokens 149

x CONTENT

9.2 Word (Frequency) Lists in AntConc 151
9.2.1 Stop words – good or bad? 156
9.2.2 Defining and using stop words in AntConc 158

9.3 Word Lists in BNCweb 160
9.3.1 Standard options 160
9.3.2 Investigating subcorpora 162
9.3.3 Keyword lists 169

9.4 Keyword Lists in AntConc and BNCweb 169
9.4.1 Keyword lists in AntConc 169
9.4.2 Keyword lists in BNCweb 172

9.5 Comparing and Reporting Frequency Counts 175
9.6 Investigating Genre-Specific Distributions in COCA 178
Solutions to/Comments on the Exercises 179
Sources and Further Reading 192

10 Exploring Words in Context 193
10.1 Understanding Extended Units of Text 194
10.2 Text Segmentation 195
10.3 N-Grams, Word Clusters and Lexical Bundles 196
10.4 Exploring (Relatively) Fixed Sequences in BNCweb 198
10.5 Simple, Sequential Collocations and Colligations 198

10.5.1 ‘Simple’ collocations 198
10.5.2 Colligations 200
10.5.3 Contextually constrained and proximity searches 201

10.6 Exploring Colligations in COCA 202
10.7 N-grams and Clusters in AntConc 205
10.8 Investigating Collocations Based on Statistical Measures in
AntConc, BNCweb and COCA 207

10.8.1 Calculating collocations 207
10.8.2 Computing collocations in AntConc 209
10.8.3 Computing collocations in BNCweb 210
10.8.4 Computing collocations in COCA 211

Solutions to/Comments on the Exercises 212
Sources and Further Reading 226

11 Understanding Markup and Annotation 227
11.1 From SGML to XML – A Brief Timeline 229
11.2 XML for Linguistics 230

11.2.1 Why bother? 230
11.2.2 What does markup/annotation look like? 230
11.2.3 The ‘history’ and development of (linguistic) markup 232
11.2.4 XML and style sheets 234

11.3 ‘Simple XML’ for Linguistic Annotation 236
11.4 Colour Coding and Visualisation 240
11.5 More Complex Forms of Annotation 246

CONTENT xi

Solutions to/Comments on the Exercises 248
Sources and Further Reading 253

12 Conclusion and Further Perspectives 254

Appendix A: The CLAWS C5 Tagset 259

Appendix B: The Annotated Dialogue File 261

Appendix C: The CSS Style Sheet 269

Glossary 271

References 277

Index 283

List of Figures

3.1 Illustration of basic document structure 34
4.1 The ICEweb interface 50
5.1 Example of a KWIC concordance output 69
5.2 The AntConc startup screen 70
5.3 AntConc file opening options 71
5.4 AntConc file settings 71
5.5 AntConc ‘Corpus Files’ window (two files loaded) 72
5.6 AntConc ‘Search Term’ and search options 72
5.7 AntConc results for round in two novels by Jane Austen 73
5.8 AntConc ‘Search Window Size’ options 73
5.9 AntConc ‘Kwic Sort’ options 74
6.1 Sample paragraph for practising and understanding regex patterns 84
7.1 Sample output of the Simple PoS Tagger 110
8.1 The BNCweb startup screen 122
8.2 Results for simple search for assume 123
8.3 BNCweb query follow-on options 125
8.4 The basic COCA interface 133
8.5 Display of antonyms thoughtful and thoughtless as alternatives 134
8.6 Side-by-side comparison for the lemma of movie in the COCA and

BNC 136
9.1 Output of a basic frequency list in AntConc 152
9.2 Token (word) (re-)definition in AntConc 154
9.3 AntConc Word List preferences 159
9.4 BNCweb frequency list selection options 161
9.5 Options for defining subcorpora in BNCweb 162
9.6 Excel text import wizard (stage 1) 164

xiv LIST OF FIGURES

9.7 Excel text import wizard (stage 3) 165
9.8 Sort options in Excel 166
9.9 Options for defining subcorpora according to genre 167
9.10 BNCweb keyword and title scan 168
9.11 AntConc Keyword preferences 170
9.12 Keyword options in BNCweb 172
9.13 Keyword comparison of university essays and written component of

the BNC (top 31 entries) 173
10.1 Illustration of a collocation span 208
10.2 Options for statistical collocation measures in BNCweb 209
11.1 A brief SGML sample 232
11.2 CSS sample paragraph styling 235
11.3 TEI header for BNC file KST 247

List of Tables

2.1 Extract from Beowulf, encoded/represented in two different ways 14
2.2 Early written corpora 16
2.3 Composition of the Brown Corpus 17
2.4 Some examples of (earlier) spoken corpora 18
2.5 Early mixed corpora 19
2.6 Modern mega corpora 20
2.7 Examples of diachronic corpora 21
2.8 Examples of academic corpora 22
2.9 Examples of learner corpora 23
2.10 Selection of pragmatically annotated corpora 24
3.1 Common file formats and their properties 37
7.1 Ambiguous PoS tags in the Brown Corpus 102
7.2 The Penn Treebank tagset (based on Taylor et al. 2003: 8) 103
7.3 The CLAWS 7 (C7) tagset 105
8.1 Wildcards and their uses for investigating linguistic features 129
8.2 Simplified tags in BNCweb 132
8.3 Word + PoS tags breakdown for mind 142
9.1 Top 15 most frequent word types in section A of the LOB Corpus 157
9.2 Recalculated norming sample from Biber, Conrad & Reppen (1998:

263) 175
11.1 Annotation types listed in Garside et al. 1997 228
11.2 CSS properties for XML visualisation exercise 240
11.3 Colour semantics and CSS styles 243

Acknowledgements

I’d first like to start by thanking my former students in Chemnitz, Bayreuth and
Hong Kong who ‘suffered through’ the initial sets of teaching materials that even-
tually formed the basis for writing this textbook. The next big thanks needs to go
to my colleagues here at Guangdong University of Foreign Studies, who attended
a series of workshops where I tested out the materials from the preliminary drafts
of several chapters and who provided me with highly useful feedback. Particular
mention here deserves to go to Junyu (Mike) ZHANG, who not only commented
on the content of several chapters, but also pointed out certain issues of style that
have hopefully helped me to make the writing more accessible to an international
readership.

My next round of thank yous goes to Yanping DONG and Hai XU, for allowing
me to join the National Key Research Center for Linguistics and Applied Linguis-
tics at Guangdong University of Foreign Studies, which has provided me with
more of the desperately needed time to focus on writing this book, while also
allowing me to conduct other types of research that have influenced the contents
of the book in various ways. To Hai XU, I give additional thanks for sharing his
experience in, and knowledge of, corpora of Chinese, which has, unfortunately,
only partially found its way into this book, due to limits of space. To my other
colleagues, especially Yiqiong ZHANG, I also give thanks for providing a more
moral type of support through engaging in further discussions and making me
feel at home in the Center.

I also owe a great debt to Laurence Anthony for allowing me to pester him with
a series of questions about and suggestions for improving AntConc. More or less
the same, though possibly to a slightly lesser extent, goes for Sebastian Hoffmann
and Mark Davies for answering questions about particular features of, and again

xviii ACKNOWLEDGEMENTS

partly responding to requests for improving, BNCweb and the COCA interface,
respectively.

Next, I’d sincerely like to thank the anonymous reviewers of this book, who,
through their many invaluable constructive comments, have not only encouraged
me in writing the book, but also hopefully allowed me to improve the contents
substantially.

My final – but most important and heartfelt – note of thanks goes to Geoff
Leech. Although credit for introducing me to the study of corpus linguistics has
to go to someone else, he’s certainly been the single most important influence
on my career and thinking as a corpus linguist. I’ll forever be grateful for his
ongoing support throughout my years spent at Lancaster, working with him, as
external examiner of my PhD, and later up to his untimely demise in August 2014.
I sincerely hope that he would have appreciated the design and critical aims of this
textbook, and perhaps also recognised his implicit hand in shaping it…

1
Introduction

This textbook aims to teach you how to analyse and interpret language data in
written or orthographically transcribed form (i.e. represented as if it were written,
if the original data is spoken). It will do so in a way that should not only provide
you with the technical skills for such an analysis for your own research purposes,
but also raise your awareness of how corpus evidence can be used in order to
develop a better understanding of the forms and functions of language. It will
also teach you how to use corpus data in more applied contexts, such as e.g. in
identifying suitable materials/examples for language teaching, investigating socio-
linguistic phenomena, or even trying to verify existing linguistic theories, as well
as to develop your own hypotheses about the many different aspects of language
that can be investigated through corpora. The focus will primarily be on English-
language data, although we may occasionally, whenever appropriate, refer to issues
that could be relevant to the analysis of other languages. In doing so, we’ll try to
stay as theory-neutral as possible, so that no matter which ‘flavour(s)’ of linguistics
you may have been exposed to before, you should always be able to understand
the background to all the exercises or questions presented here.

The book is aimed at a variety of readers, ranging mainly from linguistics stu-
dents at senior undergraduate, Masters, or even PhD levels who are still unfamiliar
with corpus linguistics, to language teachers or textbook developers who want to
create or employ more real-life teaching materials. As many of the techniques we’ll
be dealing with here also allow us to investigate issues of style in both literary and
non-literary text, and much of the data we’ll initially use actually consists of fic-
tional works because these are easier to obtain and often don’t cause any copyright

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

2 INTRODUCTION

issues, the book should hopefully also be useful to students of literary stylistics. To
some extent, I also hope it may be beneficial to computer scientists working on
language processing tasks, who, at least in my experience, often lack some crucial
knowledge in understanding the complexities and intricacies of language, and fre-
quently tend to resort to mathematical methods when more linguistic (symbolic)
ones would be more appropriate, even if these may make the process of writing
‘elegant’ and efficient algorithms more difficult.

You may also be asking yourself why you should still be using a textbook at all in
this day and age, when there are so many video tutorials available, and most pro-
grams offer at least some sort of online help to get you started. Essentially, there
are two main reasons for this: a) such sources of information are only designed to
provide you with a basic overview, but don’t actually teach you, simply demon-
strating how things are done. In other words they may do a relatively good job
in showing you one or more ways of doing a few things, but often don’t really
allow you to use a particular program independently and for more complex tasks
than the author of the tutorial/help file may actually have envisaged. And b) online
tutorials, such as the ones on YouTube, may not only take a rather long time to
(down)load, but might not even be (easily) accessible in some parts of the world
at all, due to internet censorship.

If you’re completely new to data analysis on the computer and working with –
as opposed to simply opening and reading – different file types, some of the con-
cepts and methods we’ll discuss here may occasionally make you feel like you’re
doing computer science instead of working with language. This is, unfortunately,
something you’ll need to try and get used to, until you begin to understand the
intricacies of working with language data on the computer better, and, by doing
so, will also develop your understanding of the complexity inherent in language
(data) itself. This is by no means an easy task, so working with this book, and
thereby trying to develop a more complete understanding of language and how
we can best analyse and describe it, be it for linguistic or language teaching pur-
poses, will often require us to do some very careful reading and thinking about the
points under discussion, so as to be able to develop and verify our own hypotheses
about particular language features. However, doing so is well worth it, as you’ll
hopefully realise long before reaching the end of the book, as it opens up possibil-
ities for understanding language that go far beyond a simple manual, small-scale,
analysis of texts.

In order to achieve the aims of the book, we’ll begin by discussing which types
of data are already readily available, exploring ways of obtaining our own data,
and developing an understanding of the nature of electronic documents and what
may make them different from the more traditional types of printed documents
we’re all familiar with. This understanding will be developed further throughout
the book, as we take a look at a number of computer programs that will help
us to conduct our analyses at various levels, ranging from words to phrases, and
to even larger units of text. At the same time, of course, we cannot ignore the
fact that there may be issues in corpus linguistics related to lower levels, such

INTRODUCTION 3

as that of morphology, or even phonology. Having reached the end of the book,
you’ll hopefully be aware of many of the different issues involved in collecting and
analysing a variety of linguistic – as well as literary – data on the computer, which
potential problems and pitfalls you may encounter along the way, and ideally also
how to deal with them efficiently. Before we start discussing these issues, though,
let’s take a few minutes to define the notion of (linguistic) data analysis properly.

1.1 Linguistic Data Analysis

1.1.1 What’s data?

In general, we can probably see all different types of language manifestation as
language data that we may want/need to investigate, but unfortunately, it’s not
always possible to easily capture all such ‘available’ material for analysis. This is
why, apart from the ‘armchair’ data available through introspection (cf. Fillmore
1992: 35), we usually either have to collect our materials ourselves or use data that
someone else has previously collected and provided in a suitable form, or at least a
form that we can adapt to our needs with relative ease. In both of these approaches,
there are inherent difficulties and problems to overcome, and therefore it’s highly
important to be aware of these limitations in preparing one’s own research, be it
in order to write a simple assignment, a BA dissertation, MA/PhD thesis, research
paper, etc.

Before we move on to a more detailed discussion of the different forms of data,
it’s perhaps also necessary to clarify the term data itself a little more, in order to
avoid any misunderstandings. The word itself originally comes from the plural of
the Latin word datum, which literally means ‘(something) given’, but can usually
be better translated as ‘fact’. In our case, the data we’ll be discussing throughout
this book will therefore represent the ‘facts of language’ we can observe. And
although the term itself, technically speaking, is originally a plural form referring to
the individual facts or features of language (and can be used like this), more often
than not we tend to use it as a singular mass noun that represents an unspecified
amount or body of such facts.

1.1.2 Forms of data

Essentially, linguistic data comes in two general forms, written or spoken. How-
ever, there are also intermediate categories, such as texts that are written to be spo-
ken (e.g. lectures, plays, etc.), and which may therefore exhibit features that are in
between the two clear-cut variants. The two main media types often require rather
radically different ways of ‘recording’ and analysis, although at least some of the
techniques for analysing written language can also be used for analysing translit-
erated or (orthographically) transcribed speech, as we’ll see later when looking
at some dialogue data. Beyond this distinction based on medium, there are of

4 INTRODUCTION

course other classification systems that can be applied to data, such as according
to genre , register , text type , etc., although these distinctions are not always very
clearly formalised and distinguished from one another, so that different scholars
may sometimes be using distinct, but frequently also overlapping, terminology to
represent similar things. For a more in-depth discussion of this, see Lee (2002).

To illustrate some of the differences between the various forms of language data
we might encounter, let’s take a look at some examples, taken from the Corpus
of English Novels (CEN) and Corpus of Late Modern English Texts, version 3.0
(CLMET3.0; De Smet, 2005), respectively. To get more detailed information
on these corpora, you can go to https://perswww.kuleuven.be/∼u0044428/, but
for our purposes here, it’s sufficient for you to know that these are corpora that
are mainly of interest to researchers engaged in literary stylistic analyses or his-
torical developments within the English language. However, as previously stated,
throughout the book, we’ll often resort to literary data to illustrate specific points
related to both the mechanics of processing language and as examples of genuinely
linguistic features. In addition to being fictional, this data will often not be con-
temporary, simply because much contemporary data is often subject to copyright.
Once you understand more about corpora and how to collect and compile them
yourself, though, you’ll be able to gather your own contemporary data, should
you wish so, and explore actual, modern language in use.

Apart from being useful examples of register differences , the extracts provided
below also exhibit some characteristics that make them more difficult to process
using the computer. We’ll discuss these further below, but I’ve here highlighted
them with boxes.

Sample A – from The Glimpses Of The Moon by Edith Wharton, published 1922

IT rose for them--their honey-moon--over the waters of a lake so famed as the
scene of romantic raptures that they were rather proud of not having been afraid to
choose it as the setting of their own.
“It required a total lack of humour, or as great a gift for it as ours, to risk the experi-
ment,” Susy Lansing opined, as they hung over the inevitable marble balustrade and
watched their tutelary orb roll its magic carpet across the waters to their feet.
“ Yes--or the loan of Strefford’s villa,” her husband emended, glancing upward
through the branches at a long low patch of paleness to which the moonlight was
beginning to give the form of a white house-front.

Sample B – from: Eminent Victorians by Lytton Strachey, published 1918

Preface
THE history of the Victorian Age will never be written; we know too much about it.
For ignorance is the first requisite of the historian—ignorance , which simplifies and
clarifies, which selects and omits, with a placid perfection unattainable by the highest
art. Concerning the Age which has just passed, our fathers and our grandfathers have
poured forth and accumulated so vast a quantity of information that the industry of
a Ranke would be submerged by it, and the perspicacity of a Gibbon would quail

https://perswww.kuleuven.be/%E2%88%BCu0044428/

INTRODUCTION 5

before it. It is not by the direct method of a scrupulous narration that the explorer
of the past can hope to depict that singular epoch. If he is wise, he will adopt a
subtler strategy. He will attack his subject in unexpected places; he will fall upon the
flank, or the rear; he will shoot a sudden, revealing searchlight into obscure recesses,
hitherto undivined. He will row out over that great ocean of material, and lower
down into it, here and there, a little bucket, which will bring up to the light of day
some characteristic specimen, from those far depths, to be examined with a careful
curiosity.

Sample C – from The Big Drum by Arthur Wing Pinero, published 1915

Noyes.
[Announcing Philip.] Mr. Mackworth.
Roope.
[A simple-looking gentleman of fifty, scrupulously attired—jumping up and shaking
hands warmly with Philip as the servant withdraws.] My dear Phil!
Philip.
[A negligently—almost shabbily—dressed man in his late thirties, with a handsome
but worn face.] My dear Robbie!
Roope.
A triumph, to have dragged you out! [Looking at his watch.] Luncheon isn’t till a
quarter-to-two. I asked you for half-past-one because I want to have a quiet little
jaw with you beforehand.
Philip.
Delightful.
Roope.
Er—I ’d better tell you at once, old chap, whom you’ll meet here to-day .

Sample A is clearly a piece of narrative fiction, mixing narrative description and
simulated reported speech, references to characters and situations that are depicted
as life-like, as well as featuring a number of at least partly evaluative reporting
verbs, such as opined and emended. Sample B, on the other hand, contains no
reported speech and reporting verbs, although it’s clearly also narrative – albeit
non-fictional –, with a relatively complex sentence structure, including numerous
relative and adverbial clauses, and an overall high degree of formality. Sample C,
in contrast, exhibits clear characteristics of (simulated) spoken language, much
shorter and less complex syntax, even single-word ‘sentences’, with names, titles
and informal terms of address (old chap) used when the characters are address-
ing/introducing each other, exclamations, contractions, and at least one hesita-
tion marker (Er). And even though the language in the latter sample seems fairly
natural, we can still easily see that it comes from a scripted text, partly because of
the indication of speakers (which I’ve highlighted in bold-face), and partly due to
the stage instructions included in square brackets.

As we haven’t discussed any of the issues in processing such text samples yet, it
may not be immediately obvious to you that these different types of register may
potentially require different analysis approaches, depending on what our exact

6 INTRODUCTION

aims in analysing them are. For instance, for Sample A, do we want to conceptually
treat the reported speech as being of the same status as the descriptive parts, and
do we thus want to analyse them together or separately? Or are we possibly just
interested in how the author represents the direct speech of the characters in the
novel, and would therefore want to extract only that? And if so, how would we
best go about this?

Sample B is probably relatively straightforward to analyse in terms of perhaps
a frequency analysis of the words, but what if we’re also interested in particular
aspects of syntax or lexis that may be responsible for its textual complexity or
the perceived level of formality, respectively? And, last but not least, concerning
Sample C, similarly to Sample A, which parts of the text would we be interested in
here and how would we extract them? Are the stage instructions equally important
to us as the direct speech exchanges between the characters? Or, if, for example,
we’re interested in the average number of words uttered by each character, how do
we deal with hesitation markers? Do we treat them as words or ‘non-words’ simply
to be deleted? As I’ve already tried to hint at in the beginning of this paragraph,
the answers to these questions really depend on our research purpose(s), and can
thus not be conclusively stated here.

Something else you may have noticed when looking at the samples I’ve pro-
vided above is that they’re all from the early 20th century. As such, the language
we encounter in them may sometimes appear overly formal (or even archaic) to
some extent, compared to the perhaps more ‘colloquial’ language we’re used to
from the different registers these days. I’ve chosen extracts from these three par-
ticular texts and period for a number of reasons: a) their authors all died more
than 70 years ago so the texts are in the public domain; in other words, there
are no copyright issues, even when quoting longer passages; b) they are included
in corpus compilations; and c) they not only illustrate register/genre differences
but also how the conventions for these may change over time, as can be seen, for
example, in the spelling of to-day in the final extract.

As pointed out above, another interesting aspect of these samples is that they
exhibit particular formatting issues, which again may not be immediately appar-
ent to you yet, but are due to somewhat bizarre typographical conventions. If
you look closely at the samples, you can see that in Sample A there are dou-
ble dashes marking the parenthetical counterpart (i.e. reference resolution) “their
honey-moon” to the sentence-initial cataphoric pronoun “IT”. What is in fact
problematic to some extent for processing the text is that these dashes actually
look like double hyphens, i.e. they’re not surrounded by spaces on either side,
as would be the normal convention. Now, many computer programs designed to
count words will split the input text on spaces and punctuation. Unfortunately,
though, this would leave us with some very strange ‘words’ (that superficially look
like hyphenated compounds), them—their and honey-moon—over, in any resulting
word-frequency list. This is obviously something we do not want and which intro-
duces errors into any automatic analysis of the data. Something similar, albeit not
to signal a parenthetical but instead some kind of pseudo-punctuation, happens

INTRODUCTION 7

again for “Yes—or” a little further down in the text. We can already see, therefore,
from this relatively short sample of text that a failure to deal with this feature could
cause issues in a number of places throughout the text. The same problem occurs
in the other two samples, only that there the dash doesn’t actually consist of two
separate characters, but one single m-dash.

A different problem occurs in the use of initial capitals in Samples A and B. As
you can see, the words it and the appear in capital letters throughout, signalling
the beginning of the chapter typographically. Again, as ‘human consumers’ of the
text, this will not cause any processing problems, but for the computer, the, The,
and THE are in fact three different ‘words’, or at least word forms. Thus, even
single initial capitals at the beginning of sentences may become issues in identifying
and counting words on the computer. We’ll talk more about this type of issue in
Section 4.4.1, where we’ll explore ways of dealing with such features of the text
in order to retain relatively ‘clean’ data.

1.1.3 Collecting and analysing data

When collecting our own data, we obviously need to consider methodologies that
allow us to collect the right types and amount(s) of data to answer our particular
research questions. This, however, isn’t the only type of consideration necessary,
but we also need to bear in mind ethical issues involved in the collection – such as
asking people for permission to record them or to publish their recordings, etc. –
and which type of format that data should be stored in so as to be most useful to
us, and potentially also other researchers.

When using other people’s existing data, there are usually issues in accessing
data stored in their specific format(s) or converting the data to a format that is
more suitable to one’s own needs, as we’ve just seen above, such as removing
unwanted types of information or transforming overly specific information into
simpler forms of representation. In this textbook, we’ll also look at some of the
important aspects of collecting or adapting data to one’s needs, as well as how to
go about analysing and presenting them in various ways, once a suitable format
has been established.

In order to be able to work with electronic data, we also need to become familiar
with a variety of different programs, some written specifically for linguistic analysis,
some for more general purposes of working with texts. One of the key features
of this book is that the programs I’ll recommend to you are almost exclusively
obtainable free of charge, i.e. so-called freeware. This doesn’t mean that there
aren’t other excellent programs out there that may do some of the tasks we want
to perform even better, or in simpler or more powerful ways, but simply reflects
the fact that there are already many useful free programs available, and also my
own philosophy that we shouldn’t need to spend substantial amounts of money
just to enable us to do research. This is at least part of the reason why I make most
of my own programs available to the research community in this way, apart from
the fact that this makes my own research (results) more easily reproducible by

8 INTRODUCTION

others, and therefore caters for the aims of satisfying accountability and academic
honesty. For the sake of completeness, though, I’ll generally try to at least refer
to alternative commercial programs, but without discussing them in any detail.

Corpus linguistics, as a form of data analysis methodology, can of course be
carried out on a number of different operating systems, so I’ll also try to make
recommendations as to which programs may be useful for the most commonly
used ones, Windows, Mac OS X, and Linux. Because there are many different
‘flavours’ of Linux, though, with a variety of different windowing interfaces, I’ll
restrict my discussions to two of the most popular ones, KDE and Gnome. Unfor-
tunately, I won’t be able to provide detailed support on how to actually install the
programs themselves, as this may sometimes involve relatively detailed informa-
tion about your system that I cannot predict. Instead, however, I’ll actually try
to avoid/pre-empt such issues by recommending default programs that are prob-
ably already installed, provided that they do in fact fulfil all or at least most of our
needs.

1.2 Outline of the Book

This book is organised into four sections. The first section (comprising Chapters
1 and 2) begins with a very brief introduction to the history and general design
of corpora, simply to ‘set the scene’, rather than to provide an extensive coverage
of the multitude of corpora that have been created for different purposes and
possibly also made available for free or in the form of various types of interfaces.
More extensive coverage on the subject, including more theoretical implications,
is already provided in books like Kennedy (1998), Meyer (2002), or Lindquist
(2009), so these texts can always be consulted for reference if necessary, and we can
instead focus on more practical issues. For a more detailed interesting discussion
of some of the different ‘philosophical’ approaches to corpus linguistics, you can
consult McEnery and Hardie (2012).

The introductory section is followed by an overview of different methods to
compile and prepare corpora from available online resources, such as text archives
or the WWW. This section (spanning Chapters 3 and 4) should essentially provide
the basis for you to start building your own corpora, but also introduces you to
various issues related to handling language on the computer, including explana-
tions of different file types you may encounter or want to use, as well as certain
types of meta-information about texts.

Section 3 (Chapters 5 to 10) then deals with different approaches to corpus-
based linguistic data analysis, ranging from basic searching (concordancing) via
learning about more complex linguistic patterns, expressed in the form of regu-
lar expressions, to simple and extended word (frequency) list analyses. This part
already contains information on how to tag your data morpho-syntactically, using
freely available tagging resources, and how to make use of tagging in your anal-
yses. The final section then takes the notion of adding linguistic information to

INTRODUCTION 9

your data further, and illustrates how to enrich corpus data using basic forms
of XML in order to cyclically improve your analyses or publish/visualise analysis
results effectively.

As corpus linguistics is a methodology that allows us to develop insights into
how language works by ‘consulting’ real-life data, it should be fairly obvious that
we cannot learn how to do corpus research on a purely theoretical basis. Therefore,
as far as possible, all sections of this book will be accompanied by practical exer-
cises. Some of these will appear to be relatively straightforward, almost mechanical,
ones where you simply get to follow a sequence of steps in order to learn how to
use a specific function inside a program or web interface, while others are more
explicitly designed to enable you to develop your own strategies for solving prob-
lems and testing hypotheses in linguistics. Please bear in mind, though, that for
the former type of exercise, simply following the steps blindly without trying to
understand why you’re doing them will not allow you to learn properly. So, as
far as possible, at each point you should try to understand what we’re trying to
achieve and how the particular program we’re using only gives us a handle on pro-
ducing the relevant data, but does not actually answer our research questions for
us. In the same vein, it’s also important to understand that once we actually have
extracted some relevant data from a corpus, this is rarely ever the ‘final product’.
Such data generally either still needs to be interpreted, filtered, or evaluated as to
its usefulness, if necessary by (re-)adjusting the search strategy or initial hypothe-
ses and/or conclusions, or, if it’s to be used for more practical purposes, such as in
the creation of teaching materials or exercises, to be brought into an appropriate
form.

As we move on and you learn more and more techniques, the exercises will
also get more complex, sometimes assuming the size of small research projects, if
carried out in full detail. As a matter of fact, as these exercises require and consoli-
date a lot of the knowledge gained in prior sections, they might well be suitable
for small research projects to be set by teachers, and possibly even form the basis
of BA theses or MA dissertations.

Of course, you won’t be left alone in figuring out the solutions to these exer-
cises; both types will be solved at the end of each respective section, either in the
form of detailed and precise explanations, or, whenever the results might be open
to interpretation, by appropriate comments illustrating what you could/should be
able to observe. For the more extensive exercises referred to in the previous para-
graph, I’ll often start you off with suitable explanations regarding the procedures
to follow, and also hint at some potential issues that may arise, but will leave the
completion up to you, to help you develop your awareness independently. Fur-
thermore, as real corpus linguistics is not just about getting some ‘impressive’
numbers but should in fact allow you to gain real insights into different aspects
of language, you should always try to relate your results to what you know from
established theories and other methods used in linguistics, or even other related
disciplines, such as for example sociology, psychology, etc., as far as they may be
relevant to answering your research questions. This is also why the solutions to,

10 INTRODUCTION

and discussions of, the exercises may often represent those parts of the book that
cover some of the more theoretical aspects of corpus linguistics, aspects that you’ll
hopefully be able to master once you’ve acquired the more practical tools of the
trade. Thus, even if you may think you’ve already found a perfect answer to an
exercise, you should probably still spend some time reading carefully through each
solution.

As this textbook is more practical in nature than other textbooks on corpus
linguistics, at the end of almost all chapters, I’ve also added a section entitled
‘Sources and Further Reading’. These sections essentially provide lists of refer-
ences I’ve consulted and/or have found most useful and representative in illustrat-
ing the particular topic(s) discussed in the chapter. You can consult these refe-
rences if you want to know more about theoretical or practical issues that I am
unable to cover here, due to reasons of space. These sections may not necessarily
contain highly up-to-date references, for the simple reason that, unfortunately,
later writings may not always represent improvements over the more fundamen-
tal works produced in some of the areas covered. Once you understand more
about corpus linguistics, though, you may want to consult the individual chapters
in two of the recent handbooks, O’Keeffe & McCarthy (2010) and Lüdeling &
Kytö (2008), so that you can evaluate the progress made over recent years yourself.

1.3 Conventions Used in this Book

In linguistics, there are many conventions that help us to distinguish between
different levels of analysis and/or description, so as to better illustrate which dif-
ferent types of language phenomena we’re dealing with at any given point in time.
Throughout this book, I’m going to make use of many, if not most, of these con-
ventions, so it’s important to introduce them at this point. In addition to using
these conventions as is done in linguistics, I may also use some of them to indi-
cate special types of textual content relevant to the presentation of resources in
this book, etc.

Double quotes (“…”) indicate direct speech or short passages quoted from
books.

Single quotes (‘…’) signal that an expression is being used in an unusual or
unconventional way, that we’re referring to the meaning of a word or construction
on the semantic level, or to refer to menu items or sometimes button text in
programs used. The latter may also be represented by a stylised button text, e.g.

.
Curly brackets ({…}) are used to represent information pertaining to the level

of morphology.
Angle brackets (<…>) indicate that we’re dealing with issues related to orthog-

raphy or spelling. Alternatively, they’re also used in certain types of linguistic anno-
tation.

INTRODUCTION 11

Forward slashes/square brackets generally indicate that we’re discussing issues
on the levels of phonology or phonetics. Within quoted material, they may also
signal amendments to the original material made in order to fit it into the general
sentence structure.

Italics are used to represent words or expressions, sometimes whole sentences, that
illustrate language materials under discussion. In some cases, they may also be
used to indicate emphasis/highlighting, especially if co-occurring with boldface.

Small caps are used to indicate lemmas, i.e. forms that allow us to conveniently
refer to all instances of a verb, noun, etc.
Monospaced font indicates instructions/text to be typed into the computer,

such as a search string or regular expression.

1.4 A Note for Teachers

The relatively low number of chapters may make this book appear deceptively
short, and you might be wondering whether it would be suitable for a course that
runs for a whole semester of up to 18 weeks; there’s no need to worry, though,
that you may necessarily have to supplement it with further materials, although
this is of course possible.,

The sections and chapters of the book have been arranged to be thematically
coherent, but, if you’re planning to use it as a textbook in class, you’ll frequently
find that one chapter corresponds to more than one classroom unit. I’d there-
fore suggest that, while preparing specific topics, even – or especially – if you
may already be an expert in the field, you at least try out the exercises carefully
yourself, and then attempt to gauge how long it may take your students to carry
them out. If your audience is already highly technically literate and has a strong
background in linguistics, then obviously the exercises can be done much more
quickly. If, on the other hand, your students are somewhat ‘technophobic’ or do
not yet have a strong background in linguistics, you may either wish to spread the
content over multiple units, or set at least some of the exercises as homework. In
order to save time, you can also ask your course participants to perform certain
preparatory tasks, such as downloading and installing different pieces of software,
or registering for online resources, prior to coming to class.

1.5 Online Resources

This book also has an accompanying web page, where you’ll be able to find
some online exercises, links to my own software, updated information about pro-
grams or features discussed in the book, etc. The web address for this page is
http://martinweisser.org/pract_cl/online_materials.html, and you’ll probably want
to bookmark this straight away, so that you’ll be able to access it for future refer-
ence.

http://martinweisser.org/pract_cl/online_materials.html

12 INTRODUCTION

All my own software is provided under GPL 3 licence, so you can down-
load and distribute it freely. The programs were originally designed to run on
Windows, but can easily be used through Wine (https://www.winehq.org/) on
Mac OS X or Linux. Additional information on how to do this can be found
at http://martinweisser.org/ling_soft.html.

https://www.winehq.org/
http://martinweisser.org/ling_soft.html

2
What’s Out There?

A General Introduction to Corpora

2.1 What’s a Corpus?

A corpus (pl. corpora) is a collection of spoken or written texts to be used for
linguistic analysis and based on a specific set of design criteria influenced by its
purpose and scope. There are various, and sometimes conflicting, definitions in
the relevant literature (c.f. e.g. Kennedy, 1998: 3 or Meyer, 2002: xi) as to what
exactly constitutes a corpus, but for our purposes, we’ll adopt the relatively simple
and straightforward one given above. This basically means that any collection of
texts that has been systematically assembled in order to investigate one or more
linguistic phenomena can be termed a corpus, even if it may only contain a handful
of classroom transcripts, interviews, or plays.

Although, theoretically, corpora can simply consist of texts that are in non-
electronic form, and indeed some of the earliest corpora were just collections of
index cards or slips of paper (McCarthy & O’Keeffe 2010: 4), these days, almost
all corpora in use are computerised. When we talk about corpora from now on,
we’ll thus always be referring to computerised ones, unless otherwise stated.

2.2 Corpus Formats

Most corpora – unless they’re only accessible through an online interface – are
stored in plain-text format (to be explained in more detail in Section 3.2.3) and
can therefore easily be viewed using any basic text editor, but if a corpus example

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

14 WHAT’S OUT THERE?

contains phonetic transcriptions, then of course a specialised typeface (font) may
be required in order to view it. Complications may also arise if the character set
is not directly supported by the computer the corpus is viewed on. This may for
example happen when the corpus is in a language that uses a different alphabet
from the standard Western European ones that are supported on all computers
by default. Even displaying European languages, such as Greek, may represent
a (minor) problem, but the real difficulties start when one wants to work with
East Asian character sets (such as for Chinese, Japanese, Korean & Vietnamese),
Indic languages (such as Hindi or Urdu), or right-to-left languages like Ara-
bic and Hebrew. For a simple simulation of this, see the online resources at:
http://martinweisser.org/pract_cl/encoding.html. In order to overcome these
encoding problems, these days more and more corpora are encoded in one of the
Unicode encodings, most commonly UTF-8. To illustrate this, let’s take a look at
an extract from the Helsinki Corpus (see Section 2.3.3) of the first lines of the Old
English Beowulf epic, presented in the original (slightly modified) representation
in the corpus and a modern recoding in UTF-8.

Table 2.1 Extract from Beowulf, encoded/represented in two different ways

Original (slightly modified) Re-coded Version

[} [\BEOWULF\] }] BEOWULF
Hw+at. We Gardena in geardagum, +teodcyninga,
+trym gefrunon, hu +da +a+telingas ellen
fremedon.

Hwæt. We Gardena in geardagum, þeodcyninga,
þrym gefrunon, hu ða æþelingas ellen fremedon.

Oft Scyld Scefing [{scea+tena{] +treatum,
monegum m+ag+tum, meodosetla ofteah, egsode
eorlas.

Oft Scyld Scefing sceaþena þreatum, monegum
mægþum, meodosetla ofteah, egsode eorlas.

Sy+d+dan +arest [{wear+d{] feasceaft funden, he
+t+as frofre gebad, weox under wolcnum,
weor+dmyndum +tah, o+d+t+at him +aghwylc
+tara ymbsittendra ofer hronrade hyran scolde,
gomban gyldan.

Syððan ærest wearð feasceaft funden, he þæs frofre
gebad, weox under wolcnum, weorðmyndum þah,
oðþæt him æghwylc þara ymbsittendra ofer
hronrade hyran scolde, gomban gyldan.

+t+at w+as god cyning. þæt wæs god cyning.
+d+am eafera w+as +after cenned, geong in

geardum, +tone god sende folce to frofre;
fyren+dearfe ongeat +te hie +ar drugon
[{aldorlease{] lange hwile.

ðæm eafera wæs æfter cenned, geong in geardum,
þone god sende folce to frofre; fyrenðearfe ongeat
þe hie ær drugon aldorlease lange hwile.

Him +t+as liffrea, wuldres wealdend, woroldare
forgeaf; Beowulf w+as breme bl+ad wide
[{sprang{] , Scyldes eafera Scedelandum in.

Him þæs liffrea, wuldres wealdend, woroldare
forgeaf; Beowulf wæs breme blæd wide sprang ,
Scyldes eafera Scedelandum in.

Swa sceal [{geong{] [{guma{] gode gewyrcean,
fromum feohgiftum on f+ader [{bearme{] , +t+at
hine on ylde eft gewunigen wilgesi+tas, +tonne
wig cume, leode gel+asten; lofd+adum sceal in
m+ag+ta gehw+are man ge+teon.

Swa sceal geong guma gode gewyrcean, fromum
feohgiftum on fæder bearme , þæt hine on ylde eft
gewunigen wilgesiþas, þonne wig cume, leode
gelæsten; lofdædum sceal in mægþa gehwære man
geþeon.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}pract_clhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}encoding.html
http://martinweisser.org/pract_cl/encoding.html

WHAT’S OUT THERE? 15

As we can see from the above examples, the original version from the Helsinki
Corpus is much more difficult to read because we always need to mentally replace
each transliterated character by the appropriate Old English one. Furthermore,
emendations, i.e. corrections to the original text, are indicated in the corpus by
surrounding the text with a set of opening and closing square and curly brackets
([{…}]), which again distracts while reading, so that I’ve rendered the modified
text in bold and italic formatting to make it easier to read.

Another way to store a corpus is to save it into a database. This makes it more
difficult to view and process without having the appropriate database manage-
ment system (DBMS) installed or if a web-based online interface isn’t working
as expected, due to browser issues or download speed restrictions. On the other
hand, though, this makes it possible for the basic text to be linked to various types
of data-enriching annotations, as well as to perform more complex search opera-
tions, or to store intermediate or final results of such searches for different users
and for quicker access or export later. We’ll experience the advantages of this when
we set up/work with accounts for access to some web-based corpus interfaces, such
as BNCweb or COCA.

2.3 Synchronic vs. Diachronic Corpora

Corpora can be designed and used for synchronic (i.e. ‘contemporary’) and
diachronic (i.e. ‘historical’/comparative) studies. Different issues may apply to
the design of these two types of corpora. For instance, historical corpora may
contain old-fashioned or unfamiliar words and spellings or a large number of
spelling variants (e.g. yeare, hee, generalitie, it selfe, etc.), as well as possible
even characters (letters) that no longer exist in a modern alphabet, such as the
Old English thorn (þ), which we’ve already encountered in the above Beowulf
extract.

Historical corpora are also by nature restricted to written materials because there
just are no recordings of native speakers of Old or Middle English in existence.
Furthermore, the restriction does not only apply to the types of material available
but also to the amount of data we can draw on because, in former times, there
simply wasn’t such a wealth of documents available, and from as many different
sources as we have them today.

2.3.1 ‘Early’ synchronic corpora

Another major distinction between different types of corpora is whether they com-
prise spoken or written data. This is an extremely important distinction because
written language generally tends to be far easier to process than spoken language,
as it does not contain fillers, hesitations, false starts or any ungrammatical con-
structs. When creating a spoken corpus, one also needs to think about whether
an orthographic representation of the text will be sufficient, whether the corpus

16 WHAT’S OUT THERE?

should be represented in phonetic transcription, or whether it should support
annotation on various different levels (see Chapter 11).

Initially, computerised language corpora tended to contain only written
language, which was easier to obtain, and presumably also deemed to be more
important than spoken language, a notion that unfortunately still seems to be
all-too-prevalent in our often ‘literature-focussed’ society and education.

2.3.1.1 Written corpora Let’s start our investigation into the nature of corpora
with a look at some of the earliest written ones, accompanied by a short exercise
to sensitise you towards certain issues. At the time these first corpora were created,
one million words still seemed like a huge amount of data, partly because compu-
ters in those days had a hard time handling even this amount, and partly because
no-one had ever had such easy access to so much language data in electronic form
before.

Table 2.2 provides a brief overview of some of these early corpora. The web
addresses in the first column of this table generally link to the online versions of
the respective manuals.

Table 2.2 Early written corpora

Corpus Description
Size
(words, ca.)

Brown
http://clu.uni.no/icame/manuals/BROWN/

INDEX.HTM; (available from https://archive.org/
details/BrownCorpus)

first-ever computerised corpus,
published in 1964: written
American English

1 million

LOB (Lancaster-Oslo-Bergen)
http://clu.uni.no/icame/manuals/LOB/

INDEX.HTM

published in 1978; British
counterpart to Brown

1 million

Frown
http://clu.uni.no/icame/manuals/FROWN/

INDEX.HTM

published in 1999; 90s
counterpart to Brown

1 million

FLOB
http://clu.uni.no/icame/manuals/FLOB/

INDEX.HTM

published in 1998; 90s
counterpart to LOB

1 million

Kolhapur
http://clu.uni.no/icame/manuals/

KOLHAPUR/INDEX.HTM

published in 1978; written Indian
English

1 million

ACE (Australian Corpus of English)
http://clu.uni.no/icame/manuals/ACE/

INDEX.HTM

compiled from 1986; also known
as the ‘Macquarie Corpus’

1 million

Wellington Corpus of Written New Zealand English
http://clu.uni.no/icame/manuals/

WELLMAN/INDEX.HTM

published in 1993 1 million

http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
https://archive.org/details/BrownCorpus
https://archive.org/details/BrownCorpus
http://clu.uni.no/icame/manuals/LOB/INDEX.HTM
http://clu.uni.no/icame/manuals/LOB/INDEX.HTM
http://clu.uni.no/icame/manuals/FROWN/INDEX.HTM
http://clu.uni.no/icame/manuals/FROWN/INDEX.HTM
http://clu.uni.no/icame/manuals/FLOB/INDEX.HTM
http://clu.uni.no/icame/manuals/FLOB/INDEX.HTM
http://clu.uni.no/icame/manuals/KOLHAPUR/INDEX.HTM
http://clu.uni.no/icame/manuals/KOLHAPUR/INDEX.HTM
http://clu.uni.no/icame/manuals/ACE/INDEX.HTM
http://clu.uni.no/icame/manuals/ACE/INDEX.HTM
http://clu.uni.no/icame/manuals/WELLMAN/INDEX.HTM
http://clu.uni.no/icame/manuals/WELLMAN/INDEX.HTM

WHAT’S OUT THERE? 17

A complete set of all manuals of corpora distributed by the ICAME (Interna-
tional Computer Archive of Modern and Medieval English) can also be downloaded
from http://clu.uni.no/icame/icamemanuals.html.

Exercise 1

Table 2.3 illustrates the composition of the Brown Corpus. Take a look at
this and try to see whether you can gain some insights into the nature of
the corpus in terms of its categories and number of texts it comprises.

What kind of language would you expect inside the different categories,
and can you identify anything particularly interesting regarding them?

If you’re already planning a research project, do you think data from
these will fit your particular needs and help you to answer your research
questions?

Once you’ve done this, also open some of the links to other manuals
given in Table 2.2 and compare the composition of these corpora to the
Brown Corpus.

Table 2.3 Composition of the Brown Corpus

Label Text Category/Genre No. of Texts

A Press: Reportage 44
B Press: Editorial 27
C Press: Reviews 17
D Religion 17
E Skills & Hobbies 36
F Popular Lore 48
G Belles Lettres, Biography, Essays 75
H Miscellaneous: Government Documents,

Foundation Reports, Industry Reports,
College Catalogue, Industry House Organ

30

J Learned 80
K General Fiction 29
L Mystery & Detective Fiction 24
M Science Fiction 6
N Adventure & Western Fiction 29
P Romance & Love Story 29
R Humour 9

Compare the categories in the Brown Corpus to those of the Australian
Corpus of English directly. Can you pinpoint the slight cultural difference?

You may have noticed that some letters are missing from the categorisation
scheme, notably I, O, and Q. This is probably because the uppercase letter I can

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}clu.uni.nohbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}icamehbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}icamemanuals.html
http://clu.uni.no/icame/icamemanuals.html

18 WHAT’S OUT THERE?

easily be confused with the number 1 or lowercase l, and uppercase O with the
number 0. I have no logical explanation why Q is not used, unless the assumption
is that Q is similar to O, and hence the same options for confusion may arise.

2.3.1.2 Spoken corpora Next, let’s take a look at a selection of important spo-
ken corpora to develop a better understanding of where the differences between
written and spoken corpora are.

Table 2.4 Some examples of (earlier) spoken corpora

Corpus Description
Size
(words, ca.)

SEU (Survey of English Usage) non-computerised 1 million
LLC (London-Lund Corpus)
http://clu.uni.no/icame/manuals/

LONDLUND/INDEX.HTM (available from
http://ota.ahds.ac.uk/desc/0168)

published in 1990 (?); spoken 500,000

SEC (Spoken English Corpus)
http://clu.uni.no/icame/manuals/SEC/

INDEX.HTM

published in 1988; spoken 52,000

MapTask Corpus
http://groups.inf.ed.ac.uk/maptask/

corpus of cooperative spoken
interaction

HKCSE (Hong Kong Corpus of Spoken
English)

http://rcpce.engl.polyu.edu.hk/HKCSE/

compilation of academic & business
English, conversations, and public
discourse

907,657

Exercise 2

Compare the categories of the SEC to one of the written corpora in Table
2.2 and try to see why/whether those different categories may be important
for/representative of written and spoken language, respectively.

Look through the online page for the LLC and try to understand what
types of additional information may need to be represented (encoded) in
spoken corpora.

2.3.2 Mixed corpora

Mixed corpora try to establish some kind of balance between spoken and written
language in order to be more representative of language in general. Earlier mixed
corpora were still comparatively small in size, but this has changed with the advent
of improved data collection methods and the ensuing creation of mega corpora
that now run into hundreds of millions of words.

http://clu.uni.no/icame/manuals/LONDLUND/INDEX.HTM
http://clu.uni.no/icame/manuals/LONDLUND/INDEX.HTM
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}ota.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}deschbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}0168
http://ota.ahds.ac.uk/desc/0168
http://clu.uni.no/icame/manuals/SEC/INDEX.HTM
http://clu.uni.no/icame/manuals/SEC/INDEX.HTM
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}groups.inf.ed.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}maptaskhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://groups.inf.ed.ac.uk/maptask/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}rcpce.engl.polyu.edu.hkhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}HKCSEhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://rcpce.engl.polyu.edu.hk/HKCSE/

WHAT’S OUT THERE? 19

2.3.2.1 Early mixed corpora

Table 2.5 Early mixed corpora

Corpus Description
Size
(words, ca.)

International Corpus of English (ICE)
http://www.ucl.ac.uk/english-

usage/ice/index.htm

growing collection of corpora of English around
the world; comprises written & spoken
materials

1 million
per corpus

Exercise 3

Open the ICE website and navigate to the ‘Corpus Design’ page. In light
of the information you’ve already come across for individual written and
spoken corpora, try to evaluate how similar/different the composition of
the ICE corpora is to/from these ‘traditional’ corpora.

2.3.2.2 Modern mega corpora and national corpora With the use of corpora
becoming more popular, and techniques for data analysis improving, researchers
soon realised that corpora of one million words were not nearly large enough for
observing all interesting linguistic phenomena, especially not those that involve
idiomatic structures or collocations (see Chapter 10). Especially for investigating
rarer features of the language, the basic notion thus seems to be ‘the bigger, the
better’, and thus researchers, often supported by publishing houses who wanted
to create better dictionaries or textbooks, began to compile corpora of 100 million
words or more.

Such corpora, due to their rather large size, are of course more difficult to
process on our own computers, and may not even be easy or affordable enough
to obtain for individual research on a smaller scale. However, the latter issue is
often not such a big problem after all because most openly accessible mega corpora
these days provide online interfaces that users can sign up for free of charge. These
interfaces will be covered more extensively in later chapters.

As we already have a basic understanding concerning the composition of the
earlier, much smaller, corpora, we can now try and develop a basic understanding
of how large-scale mega corpora may differ in that respect, and what the advan-
tages in this may be, apart from simply having more text from different genres.
This will also help to prepare you for working with them later. In order to do so,
let’s take the BNC as an example and find out where some of the more signifi-
cant differences may lie, and why using it may represent an advantage over simply
working with the smaller earlier corpora that may be much easier to process on
our own computer.

http://www.ucl.ac.uk/english-{}usage/ice/index.htm
http://www.ucl.ac.uk/english-{}usage/ice/index.htm

20 WHAT’S OUT THERE?

Table 2.6 Modern mega corpora

Corpus Description Size (ca.)

BNC (British National Corpus)
http://www.natcorp.ox.ac.uk/

corpus/ (also accessible through
various online interfaces)

published in 1995; British reference
corpus; 90% written – 10% spoken

100 million

ANC (American National Corpus)
http://americannationalcorpus.org/

The Corpus of Contemporary
American English (COCA)

http://corpus.byu.edu/coca/

American counterpart to the BNC;
still incomplete

American corpus containing a
balanced collection of spoken
materials, fiction, popular
magazines, newspapers, and
academic texts, containing 20% of
each major category

22 million so far;
approximately 15
million freely
available

more than 450
million words of
text, available
through a freely
accessible online
interface

Corpus of Global Web-Based
English (GloWbE)

http://corpus.byu.edu/glowbe/

a collection of web pages in (native
and non-native) English from 20
countries

1.9 billion

Exercise 4

Open the BNC website and read through the descriptions.
As before, try to understand in which way it may be similar to/different

from other corpora, and where the advantages in this may lie.

As should be obvious from Table 2.6, there’s still quite an imbalance between
written and spoken materials, partly due to the fact that spoken materials are much
more difficult to obtain and handle than written ones, as well as more costly to
process.

The creation of the BNC also set an example for other countries to pursue
the development of their own national corpora, some of which are directly mod-
elled on the BNC. Such corpora exist for example for Polish (PELCRA), Czech
(CNC), Chinese (Modern Chinese Language Corpus: MCLC), and Korean
(Sejong/Korean National Corpus: KNC), to list but a few. For a more extensive
overview of these, see Xiao (2008).

2.3.3 Examples of diachronic corpora

Since we have already covered some of the more important aspects of diachronic/
historical corpora in conjunction with representing texts, and are mainly
concerned with applied rather than historical aspects of corpora here, we will not

http://www.natcorp.ox.ac.uk/corpus/
http://www.natcorp.ox.ac.uk/corpus/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}americannationalcorpus.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://americannationalcorpus.org/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}corpus.byu.eduhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}cocahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://corpus.byu.edu/coca/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}corpus.byu.eduhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}glowbehbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://corpus.byu.edu/glowbe/

WHAT’S OUT THERE? 21

discuss this type of corpora further at this point. Thus, Table 2.7 is mainly intended
to be a source of reference for the sake of completeness.

Table 2.7 Examples of diachronic corpora

Corpus Description Size (words, ca.)

Helsinki Corpus
http://clu.uni.no/icame/manuals/HC/

INDEX.HTM (also available
through the Oxford Text Archive at:
http://ota.ahds.ac.uk/headers/
1477.xml)

covers historical materials from ca.
750–1700 + dialect transcripts
of British rural dialects from the
1970’s

1.6 million

The Lampeter Corpus of Early Modern
English Tracts

http://clu.uni.no/icame/manuals/
LAMPETER/LAMPHOME.HTM
(also freely available through the
Oxford Text Archive after application
for licence at http://ota.ahds.ac.uk/
headers/2400.xml)

tracts and pamphlets published in
the century between 1640 &
1740

1.1 million

ARCHER (A Representative Corpus of
Historical English Registers)

http://www.alc.manchester.ac.uk/
subjects/lel/research/projects/archer/

British & American texts of
different registers from 1650
not freely accessible

1.7 million

Corpus of Historical American English
(COHA)

http://corpus.byu.edu/coha/

texts from 1810-2009 free online
access

400 million

A much more exhaustive and detailed list for all sorts of different purposes is
provided by David Lee on his highly useful – but sometimes overwhelming –
corpora website at http://tiny.cc/corpora.

2.4 General vs. Specific Corpora

Apart from the distinctions noted above, we can also draw another one, namely to
distinguish between corpora that are compiled for general purpose research and
such that are highly domain specific. The former are deemed representative of the
whole language and generally to be used for a wide variety of different research
objectives. The latter, in contrast, are often only of limited use to the general
public, but may also sometimes be useful because they can highlight particular
differences between standard language and specific registers, etc. An example of a
domain-specific literary corpus would be the collected works of an author, which
can be used to investigate the style of this particular author, or even to verify

http://clu.uni.no/icame/manuals/HC/INDEX.HTM
http://clu.uni.no/icame/manuals/HC/INDEX.HTM
http://ota.ahds.ac.uk/headers/1477.xml
http://ota.ahds.ac.uk/headers/1477.xml
http://clu.uni.no/icame/manuals/LAMPETER/LAMPHOME.HTM
http://clu.uni.no/icame/manuals/LAMPETER/LAMPHOME.HTM
http://ota.ahds.ac.uk/headers/2400.xml
http://ota.ahds.ac.uk/headers/2400.xml
http://www.alc.manchester.ac.uk/subjects/lel/research/projects/archer/
http://www.alc.manchester.ac.uk/subjects/lel/research/projects/archer/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}corpus.byu.eduhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}cohahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://corpus.byu.edu/coha/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}tiny.cchbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}corpora
http://tiny.cc/corpora

22 WHAT’S OUT THERE?

disputes about the authorship of a piece of literature where this may be con-
tentious. Related to this are the types of specific corpora of witness and police
officers’ statements in forensic linguistics discussed in Cotterill (2008: 581–2),
which may help in identifying whether witness statements have been manipulated
before being admitted to court.

2.4.1 Examples of specific corpora

To some extent, we’ve already seen examples of specific corpora when we looked
at some of the spoken corpora currently available. In recent years, there’s also
been a growing interest in many other types of specific corpora. Among these,
we’ll only discuss two specific types here, academic and learner corpora.

2.4.1.1 Academic corpora Academic corpora deal exclusively with language
produced in academic contexts, i.e. English for Academic Purposes (EAP), a spe-
cial type of English for Specific Purposes (ESP). They may consist of transcripts of
academic lectures and seminars, various types of writing produced in a university
context, but also sometimes include other academic activities, such as meetings or
advisory/supervision sessions. They thus tend to reflect the speech of both experts
and non-experts in the field of academia. Table 2.8 lists some of the better-known
and more or less openly available academic corpora.

The basic idea behind creating and exploiting academic corpora is to be able
to extract samples of expert and non-expert language use in academic settings in
order to be able to investigate the nature of academic speech and writing, and
make suggestions for teaching or best practice in academia.

Table 2.8 Examples of academic corpora

Corpus Description
Size
(words, ca.)

BASE (British Academic Spoken English)
http://www.coventry.ac.uk/research-bank/

research-archive/art-design/british-academic-
spoken-english-corpus-base/ (also available,
with restrictions, through the Oxford Text
Archive at:

http://ota.ahds.ac.uk/headers/2525.xml)

transcripts of 160 academic lectures
and 39 seminars

1,644,942

BAWE (British Academic Written English)
http://www.coventry.ac.uk/research-bank/

research-archive/art-design/british-academic-
written-english-corpus-bawe/ (also available,
with restrictions, through the Oxford Text
Archive at:

http://ota.ahds.ac.uk/headers/2539.xml)

assignments from 3 UK universities 6,506,995

http://www.coventry.ac.uk/research-bank/research-archive/art-design/british-academic-spoken-english-corpus-base/
http://www.coventry.ac.uk/research-bank/research-archive/art-design/british-academic-spoken-english-corpus-base/
http://www.coventry.ac.uk/research-bank/research-archive/art-design/british-academic-spoken-english-corpus-base/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}ota.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}headershbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}2525.xml
http://ota.ahds.ac.uk/headers/2525.xml
http://www.coventry.ac.uk/research-bank/research-archive/art-design/british-academic-written-english-corpus-bawe/
http://www.coventry.ac.uk/research-bank/research-archive/art-design/british-academic-written-english-corpus-bawe/
http://www.coventry.ac.uk/research-bank/research-archive/art-design/british-academic-written-english-corpus-bawe/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}ota.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}headershbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}2539.xml
http://ota.ahds.ac.uk/headers/2539.xml

WHAT’S OUT THERE? 23

Table 2.8 Examples of academic corpora (Continued)

Corpus Description
Size
(words, ca.)

MICASE (Michigan Corpus of Academic Spoken
English)

http://quod.lib.umich.edu/m/micase/1

(access exclusively through dedicated
search interface at

http://quod.lib.umich.edu/cgi/c/corpus/
corpus?c=micase;page=simple

or to browse at
http://quod.lib.umich.edu/cgi/c/corpus/

corpus?c=micase;page=mbrowse)

transcripts of various types of
lectures & interactive exchanges in
academic settings at the University
of Michigan

1.8 million

MICUSP (Michigan Corpus of Upper-Level
Student Papers)

access exclusively through dedicated search
interface at

http://micase.elicorpora.info/

various types of writing by senior
undergraduate (4th year) &
graduate students

1.6 million

2.4.1.2 Learner corpora In contrast to the academic corpora introduced in Sec-
tion 2.4.1.1, learner corpora, as their name implies, do not contain materials pro-
duced by experts in a field, but instead by students at different levels and stages of
language acquisition, often restricted to non-native speakers, i.e. L2 learners, of a
language. Occasionally, though, we can also find corpora of L1 learners, i.e. native
speakers of a language. These are often created and used for comparison purposes
to investigate differences between L1 and L2 learners, but may also be employed
to explore different stages of development in the native language. Table 2.9 lists
a number of recent learner corpora.

Table 2.9 Examples of learner corpora

Corpus Description
Size
(words, ca.)

ICLE (International Corpus of Learner
English)

http://www.uclouvain.be/en-cecl-
icle.html

essays from higher intermediate to
advanced learners from 16
non-native L1 backgrounds

3.7 million

LINDSEI spoken counterpart to ICLE 1 million +

(Continued)

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}quod.lib.umich.eduhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}mhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}micasehbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://quod.lib.umich.edu/m/micase/
http://quod.lib.umich.edu/cgi/c/corpus/corpus?c$=$micase;page$=$simple
http://quod.lib.umich.edu/cgi/c/corpus/corpus?c$=$micase;page$=$simple
http://quod.lib.umich.edu/cgi/c/corpus/corpus?c$=$micase;page$=$mbrowse
http://quod.lib.umich.edu/cgi/c/corpus/corpus?c$=$micase;page$=$mbrowse
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}micase.elicorpora.infohbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://micase.elicorpora.info/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.uclouvain.behbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}en-{}cecl-{}icle.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.uclouvain.behbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}en-{}cecl-{}icle.html
http://www.uclouvain.be/en-cecl-icle.html
http://www.uclouvain.be/en-cecl-icle.html

24 WHAT’S OUT THERE?

Table 2.9 Examples of learner corpora (Continued)

Corpus Description
Size
(words, ca.)

LOCNESS
http://www.uclouvain.be/en-cecl-

locness.html (obtainable from
http://www.learnercorpusassociation
.org/resources/corpora/locness-corpus/)

essays produced by British school
pupils and university students,
and American university
students

324,304

LOCNEC spoken counterpart to LINDSEI 162,000
USE (Uppsala Student English Corpus)
http://www.engelska.uu.se/Forskning/

engelsk_sprakvetenskap/Forskningso
mraden/Electronic_Resource_Projects/
USE-Corpus/ (obtainable from
http://www.ota.ahds.ac.uk/desc/2457)

1,489 essays by 440 Swedish
university students of English of
three different levels

1,221,265

ICNALE (International Corpus Network
of Asian Learners of English) info &
downloads from

http://language.sakura.ne.jp/icnale/
index.html

spoken and written data from
Asian learners of English from
10 countries, plus comparable
native speaker data

Over 1 million
words of written
essays; 1,900
1-minute sound
files

2.4.1.3 Pragmatically annotated corpora Pragmatically annotated corpora, i.e.
corpora that are annotated for speech acts or other pragmatically relevant
information, are still relatively rare. Many of them are also task-oriented, i.e. deal
with relatively limited topics and domains, so that they’re often not very repre-
sentative of general spoken interaction. However, despite this limitation, they can
already provide us with valuable insights into some of the general mechanisms
involved in natural spoken language exchanges. Table 2.10 lists a small selection
of the pragmatically annotated dialogue corpora available.

Table 2.10 Selection of pragmatically annotated corpora

Corpus Description
Size
(words, ca.)

Switchboard Dialog Act Corpus
http://www.stanford.edu/∼jurafsky/

swb1_dialogact_annot.tar.gz

approximately 2,400 spontaneous
telephone conversations by native
speakers of American English,
revolving around 52 topics

3 million

SPAAC (Speech Act Annotated Corpus
of Dialogues)

1,200+ transactional dialogues;
majority calls to BT operators,
smaller part Trainline timetable
information and bookings

166,114

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.uclouvain.behbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}en-{}cecl-{}locness.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.uclouvain.behbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}en-{}cecl-{}locness.html
http://www.uclouvain.be/en-cecl-locness.html
http://www.uclouvain.be/en-cecl-locness.html
http://www.learnercorpusassociation.org/resources/corpora/locness-corpus/
http://www.learnercorpusassociation.org/resources/corpora/locness-corpus/
http://www.engelska.uu.se/Forskning/engelsk_sprakvetenskap/Forskningsomraden/Electronic_Resource_Projects/USE-Corpus/
http://www.engelska.uu.se/Forskning/engelsk_sprakvetenskap/Forskningsomraden/Electronic_Resource_Projects/USE-Corpus/
http://www.engelska.uu.se/Forskning/engelsk_sprakvetenskap/Forskningsomraden/Electronic_Resource_Projects/USE-Corpus/
http://www.engelska.uu.se/Forskning/engelsk_sprakvetenskap/Forskningsomraden/Electronic_Resource_Projects/USE-Corpus/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ota.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}deschbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}2457
http://www.ota.ahds.ac.uk/desc/2457
http://language.sakura.ne.jp/icnale/index.html
http://language.sakura.ne.jp/icnale/index.html
http://www.stanford.edu/protect $elax sim $jurafsky/swb1_dialogact_annot.tar.gz
http://www.stanford.edu/protect $elax sim $jurafsky/swb1_dialogact_annot.tar.gz

WHAT’S OUT THERE? 25

Table 2.10 Selection of pragmatically annotated corpora (Continued)

Corpus Description
Size
(words, ca.)

SPAADIA Corpus
http://martinweisser.org/spaadia_release.zip

Trainline data from the SPAAC
Corpus, comprising 35 files

26,653
words

OASIS
http://groups.inf.ed.ac.uk/oasis/

available on request from
oasis-bt@inf.ed.ac.uk

calls to BT operators in two versions,
one annotated at Edinburgh
University and the other part of the
SPAAC Corpus (see above)

280,000

The one major exception in Table 2.10 is the Switchboard Dialog Act Corpus,
as it actually consists of spontaneous telephone conversations, rather than trans-
actional (see Leech et al., 2000) dialogues.

2.5 Static Versus Dynamic Corpora

One further distinction we can make between different types of corpora is between
those that are fixed in size and finalised in that they’re never intend to change (i.e.
static) and more dynamic types of corpora, which are explicitly designed to change
over time and to keep on reflecting the ever-changing nature of language. We can
refer to the former type as snapshot corpora, whereas the common term for the lat-
ter is monitor corpora. By this definition, in fact, almost all the corpora discussed
above are snapshot corpora. Even the diachronic ones are, because they’ve not
been designed to be added to later, even if, for example, at some point in time a
further Old English epic may somehow be unearthed and could thus theoretically
be included in a new edition of the Helsinki Corpus. To date, there are only two
real monitor corpora in existence, the COCA and the Bank of English. The latter
has not been covered earlier, as it’s not directly accessibility to outsiders, although
it forms part of the Collins WordBanks Online (WordBanks, 2009), which unfor-
tunately is accessible only by subscription. Davies (2010), however, argues that
the Bank of English, which was originally designed as a resource for creating the
Collins COBUILD dictionaries, cannot be seen as a true monitor corpus, due to
imbalance in its categories.

A genuine monitor corpus, as pointed out above, makes it possible to continu-
ally compare a language in its different stages of development, including the most
recent changes, in and through one single corpus. An alternative solution to track-
ing change diachronically is to use static corpora, such as the LOB and the FLOB,
which were designed to reflect the same categories of language, but using samples
whose production dates were 30 years apart.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}spaadia_release.zip
http://martinweisser.org/spaadia_release.zip
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}groups.inf.ed.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}oasishbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://groups.inf.ed.ac.uk/oasis/
mailto:oasis-bt@inf.ed.ac.uk

26 WHAT’S OUT THERE?

2.6 Other Sources for Corpora

Apart from some corpora that are made freely available on the web, there are
also a few institutions that distribute corpora at a certain cost. The cost usually
depends on whether or not someone wants to use the corpora commercially. Obvi-
ously, licences for commercial use tend to be a lot more expensive than for private
or educational use, but unfortunately some corpora may still seem prohibitively
expensive for the individual. Some major sources for corpora are:

� International Computer Archive of Modern and Medieval English (ICAME;
http://clu.uni.no/icame/)

� Linguistic Data Consortium (LDC; http://www.ldc.upenn.edu/)
� European Language Resources Association (ELRA)/ELDA – Evaluations and

Language Resources Distribution Agency (http://www.elda.org/)
� Open Language Archives Community (OLAC; http://www.language-

archives.org/)
� Oxford Text Archives (OTA, http://ota.oucs.ox.ac.uk/)

Solutions to/Comments on the Exercises

Exercise 1
First of all, you’ll probably note that there may be some unfamiliar or almost
‘archaic-sounding’ labels among the categories. For instance, without looking up
the terms or taking a look at the detailed list of texts, would you have known
immediately what, for example, such category labels as ‘Popular Lore’ or ‘Belle
Lettres’ refer to? Religion, with 17 texts, also seems to play a fairly dominant role.
Do you think this reflects modern-day practices/interests, and illustrates contem-
porary language in a suitable manner?

When comparing the information in the manuals, you’ll hopefully spot that the
composition of the different corpora is roughly modelled on that of the Brown
Corpus, with only small variations in categories and numbers of sample texts.

The slight cultural difference here is that what is originally labelled “Adventure
and Western Fiction” in Brown has been adapted to “bush fiction”.

Exercise 2
If you, for instance, compare the categories of the SEC to those of the Brown Cor-
pus, you should be able to see that there are certain parallels in that, for example,
both corpora try to cover press materials, such as reportage and commentaries,
religion, literature, and learned materials, to some extent, although of course the
‘angle’ is different because of the differences in the medium. For instance, the
treatment of the topic of ‘Religion’ (D) in the Brown Corpus is generally of a
more scholarly or esoteric nature, whereas the category ‘Religious Broadcast’ (E)

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}clu.uni.nohbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}icamehbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://clu.uni.no/icame/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.ldc.upenn.eduhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://www.ldc.upenn.edu/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.elda.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://www.elda.org/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.language-{}archives.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.language-{}archives.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://www.language-archives.org/
http://www.language-archives.org/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}ota.oucs.ox.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://ota.oucs.ox.ac.uk/

WHAT’S OUT THERE? 27

in the SEC purely consists of religious services, rather than scholarly discussions
of religious issues, and category K (General Fiction) in the Brown Corpus con-
sists of fiction texts treated as texts to be read, whereas ‘Fiction’ (G) in the SEC
is perhaps unusual in the sense that it covers written materials that are simply pre-
sented as read aloud, rather like modern-day audio books. There are, however,
also some categories that are exclusively reserved to one type of medium, such
as, for example, the category ‘Dialogue’ (J) or the two ‘Lecture’ categories (C &
D) in the SEC, where there’s no direct written counterpart in the Brown Corpus,
although they both roughly correspond to the ‘Learned’ category of the Brown.
We can also see that the lectures in the SEC are further subdivided into a more
popular/populist type (C), as well as a more specialist/scientific one, whereas the
‘Learned’ category in the Brown Corpus seems to be aimed almost exclusively at
a more specialist audience. ‘Poetry’ (H) in the SEC presents an interesting case
because this really covers the way poetry should be experienced, that is, as a lite-
rary art form that only really works if one can hear it, although, of course, we
don’t have to go to a poetry reading to be able to enjoy poetry, but instead can
also ‘read it aloud’ in our heads. Overall, and based on more modern ideas of what
a spoken corpus, such as the spoken part of the BNC, should contain in order to
make it representative, the composition of the SEC seems to be distinctly lack-
ing. However, if we consider that the circumstances for obtaining and processing
spoken materials around the time when this corpus was created were much more
difficult than they are these days, and also that one of the main aims was to obtain
suitable materials that would allow research into the kind of grapheme–phoneme
correspondences relevant for improving speech synthesis, then we can perhaps
evaluate its composition and suitability for general research into spoken language
better.

To faithfully represent spoken language in most of its facets, it’s minimally
important to include prosodic information, such as pauses, and pitch movements,
along with information about who’s speaking at which time, whether there’s over-
lap, etc. Although, as in the case of the LLC, spoken corpora are generally rep-
resented in orthographic form, all aspects of verbal behaviour, including ‘non-
words’, such as fillers or even laughter, etc., need to be represented as accurately
as possible, as they may be relevant to the communication. Representing the data
in this way also makes it possible to investigate vocabulary, (morpho-)syntax, as
well as pragmatic or semantic features of spoken language in combination with
more phonological or interactional ones.

Exercise 3
First of all, it should be immediately clear that the ICE corpora, despite follow-
ing the ‘1 million-word model’, are very different in their composition from the
corpora we’ve discussed before in that they contain both written and spoken lan-
guage, with an unusual (positive) emphasis on the latter, as 300 out of the 500
texts are spoken. The other noticeable feature is that there’s stronger balance in

28 WHAT’S OUT THERE?

the materials in that the spoken parts distinguish between public vs. private or
scripted vs. unscripted speech, and that the written parts are differentiated into
different levels/abilities and types of writing.

Exercise 4
Essentially, the fact that the BNC is a mega corpus can easily be seen in the sheer
number of words it contains. Although there are still 9 times as many words in
the written materials, the fact that it already contains 10 million words of spoken
language makes it far more representative of the spoken language actually pro-
duced in Britain at the end of last millennium, covering a wide variety of public
and private contexts. Furthermore, the design principles try to distinguish clearly
between which types of language are produced by a majority of speakers of the
language, and which ones are predominantly received and are therefore highly
influential, despite the fact that few speakers of the language would ever produce
them, such as, for example, novels or other pieces of more elaborate writing. One
additional highly important attribute of the corpus is the fact that it contains a very
large amount of meta-information, i.e. information about who produced which
type of document(s) and in which contexts.

Note

1 At the time of writing, unfortunately the link to the manual was broken.

Sources and Further Reading

Davies, Mark. (2010). The Corpus of Contemporary American English as the First Reliable
Monitor Corpus of English. Literary and Linguistic Computing, 25(4).

Kennedy, Graeme. (1998). An Introduction to Corpus Linguistics. London: Longman.
Leech, Geoffrey, Myers, Greg, & Thomas, Jenny. (Eds.). (1995). Spoken English on Com-

puter. London: Longman.
Meyer, Charles. (2002). English Corpus Linguistics: An Introduction. Cambridge: CUP.
WordBanks. (2009). Accessible at http://wordbanks.harpercollins.co.uk/Docs/WBO/

WordBanksOnline_English.html [last accessed 10-Nov-2013].
Xiao, Richard. (2008). Well-known and Influential Corpora. In Lüdeling, A. & Kytö, M.

(Eds.). Corpus Linguistics: An International Handbook. Berlin: DeGruyter.

http://wordbanks.harpercollins.co.uk/Docs/WBO/WordBanksOnline_English.html
http://wordbanks.harpercollins.co.uk/Docs/WBO/WordBanksOnline_English.html

3
Understanding Corpus Design

3.1 Food for Thought – General Issues in Corpus Design

In this chapter, we’ll raise some issues that are often heavily debated by experts in
corpus linguistics, but have as yet unfortunately not been solved to any degree of
satisfaction. Most of these tend to be related to the construction of large general
corpora, though, something a short textbook like this cannot really teach you,
so that we’ll focus mainly on creating your own, specialised, and generally much
smaller corpora. The main reason why we nevertheless need to discuss these points
here is that you ought to be aware of the possible shortcomings of corpora in order
for you to be able to anticipate any potential problems for your analysis or class-
room use. Apart from this, though, we also want to develop an understanding of
what (electronic) texts really are and how they can best be stored on the computer
to facilitate analysis and exchange of data.

As we’ve seen before, the very first electronic corpus, the Brown Corpus of
written American English, contained 500 (written) text samples of 2,000+ words,
and its size and composition set a standard for the compilation of new corpora for
many years. For a long time after the publication of the corpus in 1964, many
people thought that 1 million words of text represented a general-enough sam-
ple to provide sufficient information about the makeup of the English language.
However, over the years, researchers have realised that even this type of size and
stratification may not be sufficient for performing certain tasks – such as research
in lexicography or collocations (see Chapter 10) – efficiently, and hence started
devising ways of creating a variety of different types of corpora, representative of

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

30 UNDERSTANDING CORPUS DESIGN

both spoken and written language, and of varying sizes, ranging from very small
specialised corpora to some that comprise many millions of words.

3.1.1 Sampling

One very important issue in putting together (compiling) a corpus is to determine
what exactly should go into it. This may depend on a variety of factors, such as
availability, the potential for obtaining permission for copyrighted data, how many
people are actually working on creating the corpus, etc. For building corpora of
older forms of language – such as Old or Middle English –, natural limitations
exist in that there are limited numbers of texts available, as well as the fact that
these obviously can only exist in written form. For modern corpora, however, and
especially with the advent of recording technology, the choice of materials has
become much more difficult. Here, we need to consider how we want to obtain
our data in the first place. Do we still want only written language, such as for the
first generation corpora, or do we want to include spoken language in phonetically
or orthographically transcribed form, too? Or do we want a fully-fledged spoken
corpus that will never be published in any general written form?

In terms of what should be included in a corpus, Atkins et al. (1992: 5) make a
highly useful distinction between the notions of production vs. reception, in other
words what language users say or write, as opposed to what they hear or read, and
also argue that “if the corpus is to be a true reflection of native speaker usage, then
every effort must be made to include as much production material as possible”.

The BNC, as an example of a modern mega corpus, attempts to strike at least
some kind of balance between spoken and written materials, although the per-
centage of spoken materials (10%) is still rather low, something which possibly
exemplifies an unfortunate continuing dominance of written language in linguis-
tics. On the other hand, maybe keeping the amount of spoken data in the BNC
relatively low was actually not too bad an idea, since transcribing spoken language
is an expensive and time-consuming business, and one where corpus compilers
often take too many ‘shortcuts’. In the case of the BNC, this can unfortunately
be seen rather clearly in the quality of some of the transcriptions, where, for exam-
ple, many apostrophes have ended up in the wrong places or gone missing, so that
some plural markers are turned into a genitive {s}, or the contraction we’re turned
into were at least 6 times within a single dialogue (<bncDoc id=D96>).

Within the written section of the BNC, there’s a 75:25 balance between ‘infor-
mative’ and ‘imaginative’ prose, where the latter also includes a certain amount
of ‘written-to-be-spoken’ materials, i.e. speeches, plays, etc. The spoken part con-
sists of a ‘context-governed’ section, sampled from public recordings, etc., and a
‘demographic’ one, comprising recordings made by private individuals who car-
ried tape recorders with them for a period of two days, respectively.

The sampling distribution of the COCA (Davies, 2009) is different from that
of the BNC in that it includes language samples from every year, starting in 1990,
and, as it’s a monitor corpus, these keep on getting added to continually. The

UNDERSTANDING CORPUS DESIGN 31

number of words added per year is 20 million, “evenly divided between spoken,
fiction, popular magazines, newspapers, and academic journals” (Davies, 2009:
160). In other words, the COCA contains 20% spoken and 80% written language,
which, theoretically, already represents an improvement over the 10% spoken in
the BNC. However, a cautionary note is in order here, as the spoken materials
in the COCA actually consist of “[t]ranscripts of unscripted conversation from
more than 150 different TV and radio programs” (Davies, 2009: 161), which
may be more artificial in nature than many of the demographic materials in the
BNC, due to the public setting in which these exchanges occur. Thus, although
they’ll contain most of the ‘words’ uttered by the speakers involved, being tran-
scripts that were not created with explicit linguistic purposes in mind, they may
not be completely representative of spoken language because they possibly con-
tain corrections, or omissions of typical spoken language features, such as fillers.
For instance, the spoken section at the time of writing this book (comprising
data from the years 1990–2012) only contained 1,352 instances of the (potential)
fillers uh, uhm, and erm, where at least some of the instances marked as uh were
also followed by hm, which usually indicates consent, rather than being a filler,
and is often spelt aha instead. Now, considering that the data for these 22 years
should contain 88 million words, it’s hard to imagine that in fact so few fillers,
which are a very normal part of everyday language, should be present. Apart from
this, there’s unfortunately still a 20:80 imbalance in the corpus data, which clearly
‘over-values’ the written part.

3.1.2 Size

The size a corpus ought to, or can in fact, have depends on a few different fac-
tors. First of all, as we’ve already said, there may be limitations in terms of the
amount of material that is available, in which case it may be necessary to be con-
tent with whatever data one can obtain. Apart from ‘natural limitations’ – such
as for corpora of older variants of language – some limitations may be imposed
by funding. This often raises the issue of quantity vs. quality, for which there
seems to be an unfortunate tendency towards the former at the cost of the latter,
especially for the larger corpora of 100 million words, such as the BNC or the
ANC. On the other hand, though, if a corpus is too small, it may not be very
useful for general purpose research because the amount of data needed to con-
duct research into, for example, collocations (the habitual co-occurrence of words;
see Section 10.5) apparently increases exponentially (c.f. Ooi, 1998: 55–56) with
the length of the n-gram to be collocated (see Chapter 10 for more details on
these concepts). The more domain-specific the research interest is, the smaller the
corpus can be because often it is only necessary to extract specialised vocabulary
or constructions from it in such cases. Sinclair (2005) presents some interesting
rough approximations on how large corpora need to be to investigate different
phenomena, such as multi-word combinations.

32 UNDERSTANDING CORPUS DESIGN

3.1.3 Balance and representativeness

Two further issues in the compilation of corpora are those of balance and rep-
resentativeness. In principle, the former only applies to corpora for general use,
though, as it’s often assumed that these ought to provide an equal amount of
materials from many different genres or areas of relevance that allow us to inves-
tigate a representative and realistic sample of the language and draw more or less
universally applicable conclusions. Obviously, this is an aim that’s very hard – if
not impossible – to achieve. In order to do so, in the past corpus compilers have
frequently resorted to using samples of approximately 2,000 words from different
texts and genres to achieve balance, but both that number and ‘cutting out’ part
of a text appear fairly arbitrary, and may in fact make such samples somewhat un-
representative of the texts they’re supposed to represent as a whole. For instance,
while the beginning (Introduction) of a research article may be very similar to its
end (Conclusion) in that both discuss the background and aims of the article, the
‘middle parts’ that describe the actual research are normally very different, and
therefore arbitrarily picking either text from the beginning/end or the middle will
potentially provide a very skewed picture of the language of research articles.

Sinclair (2005) even argues explicitly against the idea that it’s worth attempting
to be too precise in selecting such equal-sized samples:

There is no virtue from a linguistic point of view in selecting samples all of the same
size. True, this was the convention in some of the early corpora, and it has been
perpetuated in later corpora with a view to simplifying aspects of contrastive research.
Apart from this very specialised consideration, it is difficult to justify the continuation
of the practice. The integrity and representativeness of complete artefacts is far more
important than the difficulty of reconciling texts of different dimensions.

Representativeness, albeit also difficult to measure, may be more easily achiev-
able, especially for domain-specific corpora or limited fields of investigation,
because often there are relatively clearly definable criteria for what represents a
certain genre of text or domain. As we’ve seen earlier, though, the composition
of the first 1-million word corpora roughly consisted of samples of the 16 genres
listed in Table 2.3, and it’s quite debatable whether those could be seen to be rep-
resentative even of written language only, let alone give us any indication of what
their spoken ‘counterparts’ may be like. Exercise 1 will hopefully have enhanced
your awareness of this issue.

3.1.4 Legal issues

Deciding what exactly you’d like or need to include to make it useful isn’t the
only thing you need to bear in mind when constructing your own corpus. There
are also a number of legal points you ought to consider when making decisions
about which data to incorporate. The most important one for written or multi-
media data (e.g. transcripts of televised materials or radio broadcasts, etc.) is that

UNDERSTANDING CORPUS DESIGN 33

of copyright, which may well differ from country to country, so that it’s difficult to
provide definite rules. In the US and EU, the general rule for written published
works is that the copyright expires 70 years after the death of an author, unless it
has been transferred to someone else (e.g. the author’s heirs). In the US, works
published before 1923 also no longer enjoy copyright protection. In other coun-
tries around the world, the situation may either be handled in a more relaxed or,
in contrast, even harsher way, so it’s always advisable to enquire about the exact
copyright situation of the country in question, especially if you later want to make
your corpus available to other researchers around the world. Some countries also
recognise the concept of fair use, which allows relatively insubstantial parts of
copyrighted materials to be used for purposes such as research, education, review,
etc. (Wikipedia: Fair Use), although, in practice, this will probably not allow you
to include sufficient amounts of text or other materials in your corpus.

Although it’s become common practice in recent years to use materials from
the internet (see Section 4.2), according to Sinclair (2005), this is in theory also
a problematic issue, as at least “[…] under UK law, publication on the internet
confers the rights on the author whether or not there is an explicit copyright
statement”. In general, however, people do publish on the internet in order to
make their materials easily available for others, so we can probably assume that
most authors would possibly not object to having their writings used in a corpus,
apart from the fact that we could also argue that web pages tend only to be used in
derived form for language analysis purposes; in other words, when using web pages
as (part of) a corpus, we’re not really interested in the original HTML code that
may also contain other multimedia content, but in fact only the language that’s
been made publicly available. Nevertheless, when using other people’s materials in
this way, we should, as far as possible, try to obtain permission from the authors,
or, at the very least, be prepared to remove certain parts from our corpus upon
their request if they happen to come across their data in the corpus and object to
our using it.

When collecting spoken materials that have not been pre-recorded by someone
else, it’s also important to note that, in many countries around the world, it’s in
fact illegal to record someone surreptitiously, i.e. without first obtaining their con-
sent. It’s therefore advisable to, whenever possible, let everyone you’re planning
to record sign a consent form in order to avoid any legal complications later, as
well as to give them a chance to refuse in the first place.

Having covered the basic theoretical and legal aspects of creating corpora, we’ll
now turn to the structural nature of texts and other associated properties that may
exist in the form of meta-data (e.g. additional information about the text, etc.).

3.2 What’s in a Text? – Understanding Document Structure

When we read ordinary printed documents, such as books, we mainly concentrate
on their text content, and often – though by no means always – tend to ignore

34 UNDERSTANDING CORPUS DESIGN

that they may in fact contain a number of additional pieces of information apart
from the main text. These occur in other parts of the document that precede or
follow the main section, and are generally referred to as front and back matter, at
least for longer documents.

front

matter

text

body

back

matter

Figure 3.1 Illustration of basic document structure

The content of these sections represents meta-data, i.e. additional data about
the text, but does not form part of the original text. An example of the meta-data
that you encounter in everyday life would be the imprint page inside the front
matter of a book, where you find the title of the book, the author, the publisher,
edition, year of publication, its ISBN, the typeface and size it has been set in, as
well as many other types of information that are mainly independent of the content
per se. Another type of meta-information is represented by a table of contents (in
the front matter) or an index (in the back matter) of a scholarly book, where
the meta-information serves as a kind of navigational aid in accessing individual
parts of the book, and where the information is clearly linked to the content – or
organisation thereof – itself.

Although all this is interesting information which is conventionally represented
inside the document, as well as affecting its pagination/layout, it generally does
not form part of the meaning potential of the text itself, which is what we’re
usually most interested in when we analyse texts from a linguistic point of view.
Thus researching or making use of meta-information for instructional purposes
normally doesn’t make much sense because it represents language data (in the
widest sense) from highly limited/restricted domains. What it may, however, allow
us to do is to make a conscious choice on how to restrict the language samples we
may wish to analyse to, for example, a specific period in the historical development
of the language, or the style of a particular author, etc. We’ll see examples of how
this may be achieved later on when we’ll for example create subcorpora from the
BNC in BNCweb (see Section 9.3.2).

3.2.1 Headers, ‘footers’ and meta-data

In ‘linguistic’ data, such meta-information is often stored either externally in a dif-
ferent file or database, or inside the document itself. In the latter case, it’s usually

UNDERSTANDING CORPUS DESIGN 35

contained in something called a header (cf. Leech et al., 2000: 13). The text itself
can then be found in the body of the document. Some document formats clearly
separate the header and the body, whereas others don’t. For example, in HTML,
the language web pages are written in, all the meta-information is contained in the
appropriately named <head> tag, while some of the literary texts we’ll download
and work with later contain a header at the beginning of the document that’s not
clearly marked off from the rest of the text. Thus, in order to skip/remove it, you’ll
need to search for the first chapter heading or some similar indication of where
the actual text body starts. We’ll practise doing this in Section 4.4.3 of the book.

In some files, there may also be some additional information that appears after
the main body of the text (which we could correspondingly refer to as a ‘footer’),
so that it’s best to check the beginning and the end of a text for information that’s
not part of the main text of the book.

Let’s get a first impression of this separation of texts into meta-data and content
as an exercise by looking at the source of a web page.

Exercise 5

First open http://martinweisser.org/pract_cl/online_materials.html, the
page containing the online course materials, in your favourite web
browser.

Then, if you’re using Firefox or Google Chrome, or Konqueror on
Linux, press ‘Ctrl + u’ to display the HTML source of the document.
In Safari for Windows, you need to press ‘Ctrl + Alt + u’, while on
the Mac, you can press ‘alt/option + + u’. In other browsers, such
as Internet Explorer, you may need to find an item on the ‘View’ menu
that allows you to see the page source, as there may not be a shortcut
defined.

Another option for accessing the HTML source code in all browsers is
generally to trigger the context menu by right-clicking (Windows/Linux)
or tapping with two fingers in a blank area of the page (Mac), and then
selecting ‘Show Page Source’, ‘View Document Source’, or any other rele-
vant option.

For the moment, simply try to identify the ‘head’ and ‘body’ sections of
the page and see whether you can possibly also understand which type of
meta-information the different parts of the header may relate to.

Don’t be alarmed if you see a lot of coding inside angle brackets (<…>) that
you don’t understand yet. We’ll learn more about this a little later.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}pract_clhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}online_materials.html
http://martinweisser.org/pract_cl/online_materials.html

36 UNDERSTANDING CORPUS DESIGN

3.2.2 The structure of the (text) body

Just like we frequently ignore front and back matter to some extent, we may also
‘overlook’ – i.e. not consciously pay attention to – the fact that texts have a spe-
cific organisational structure and are generally – or at least may be – made up of
chapters, sections, sub-sections, and paragraphs. Among the paragraphs, we also
encounter one special type, that of the heading, which acts as a kind of guide to
the particular chapter or (sub-)section the individual paragraphs occur in.

Headings fulfil multiple functions in a text. The first of these is that they act as
a means to reflect the hierarchical structure and logic of the text. In other words,
they illustrate how the author has chosen to (best) organise the material under
discussion. In the simplest case, such as in a novel, this may just involve breaking
the text into chapters and labelling them Chapter1, Chapter 2, Chapter 3, etc.,
with a slightly ‘more advanced’ situation being that the individual chapters may
also be given a title. The function of the title is in some way to act as a summary,
or some other form of indication, of what the individual chapter or section
contains. For any kind of scholarly publication, having titles for chapters, sections,
sub-sections, etc., is in fact the norm, and here the title not only acts as the
‘summary’ but its content is often also repeated somewhere in the immediately
following paragraph – usually even the very beginning, if we have a so-called
‘topic-sentence’ starting the paragraph.

This of course introduces certain redundancies in terms of an analysis of the
language used because some of the vocabulary may be repeated without really
contributing any additional meaning, and we might therefore sometimes want to
get rid of headings for some types of vocabulary analysis. On the other hand, this
very redundancy may help us to classify – or even identify the exact genre of –
a text better. This is because, due to their occurrence both in headings and the
text, some of the key words that we find in the headings may occur with a higher
overall frequency in the text, and thus help us to ‘summarise’ the content. We’ll
explore ways of investigating this phenomenon in Chapter 9.

Therefore, it really depends on the exact purpose of our analysis, and on our
own awareness of these features, whether or not we might want to keep or remove
headings. Incidentally, the level of redundancy would increase even further if we
analysed the whole text, including the front matter, because there the headings
might show up once more inside the table of contents (TOC) of the document,
where their meaning is ‘purely’ to serve as a navigational aid by listing them side
by side with their respective page numbers. On yet a different level, e.g. when
analysing student or professional writings, the presence or absence of a suitable
number of headings – however that could be defined – may well present an evalu-
ation criterion as to the proficiency of writers and their ability to deal with a topic
efficiently enough to present it in a logically structured manner, so it may well be
worth investigating.

Now that you already have a pretty good idea of what types of features you
might encounter in a text and how this relates to aspects of its organisation, as

UNDERSTANDING CORPUS DESIGN 37

well as issues that may affect its analysis, let’s move on to finding and processing
some data in electronic form as a first step in laying the foundation for creating
your own corpus and analysing it.

3.2.3 What’s (in) an electronic text? – understanding file formats
and their properties

Although we all encounter a number of different file formats containing text on a
daily basis while using the computer, many people generally tend not to be aware
of the fact that the text contained in these files may not always be easy to process.
The reason for this is that it’s often stored in a particular proprietary format that’s
only ‘understood’ by programs designed for dealing with this particular type of file.
It’s thus often only if we happen not to have such particular programs installed on
our computer that we actually realise that there’s anything special to these types of
files. Why we might need such special programs for displaying the text is because
we often want to be able to render it with special types of formatting, such as
italics, boldface, etc., use a particular layout, or that we want to be able to generate
a table of contents automatically in a word-processing application, where this is
based on the headings inside the document. Any document that purely contains
text (plus potentially some form of markup, see Chapter 11), is generally referred
to as a plain-text document and should be readable (and writable) with any basic
text editor (see Section 4.2.1 for a more in-depth discussion of these).

Some of the most common file formats containing text which may be of
interest to us here are listed in Table 3.1, together with common extensions
and properties. For most of these types, examples are also provided of what
these formats would look like when viewed as plain text outside of the pro-
grams that are normally used to generate or read them in the online materials
at http://martinweisser.org/pract_cl/file_formats.html.

Table 3.1 Common file formats and their properties

Format Extension Properties

plain text .txt or no extension no formatting, just text, possibly with line breaks
web formats .htm(l) (HTML), .xml

(XML)
plain text with additional information contained

in tags; rendering not based on page layout,
but on instructions contained in the tags,
possibly in connection with a specific style sheet

‘graphical’/page
description
formats

.pdf (Portable Document
Format), .ps(.gz)
(Postscript)

the position of all elements on a page is described
in a specific format that can (only) be rendered
by an appropriate reader

text export is possible, but may contain additional
line breaks, based on the page layout

proprietary formats .doc, .docx (MS Word), .wpd
(WordPerfect), etc.

usually stored in a specific binary format; export
through optional filters

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}pract_clhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}file_formats.html
http://martinweisser.org/pract_cl/file_formats.html

38 UNDERSTANDING CORPUS DESIGN

To develop a better understanding of how suitable different types of documents
in their original formats may or may not be for corpus analysis, let’s do another
exercise.

Exercise 6

Use the links in the online materials on the page ‘Understanding File For-
mats & Their Properties’ to go through each of the examples of different
types of ‘text’ documents above and see how easy/difficult it is to identify
where the actual text is.

If you do have the relevant programs installed on your computer, you
can also try to create more complex versions, containing more text and
formatting, of the different document types yourself and then investigate
them.

Exercise 6 has hopefully already alerted you to the fact that it isn’t easily possible
to just use any document that we can read in some way on the computer equally
well as a source for our corpus-linguistic analysis, simply because it contains text.
Instead, what we’ve seen is that it’s often also necessary to understand the nature
of how that text has been produced to some extent, or which particular features
the program that was used to produce the text may offer. In addition to this, if
we want to be able to exchange documents efficiently, we also need to develop
a basic understanding of how exactly text may be represented on the computer,
which is what we’ll do next.

3.3 Understanding Encoding: Character Sets, File Size, etc.

In our discussion of file types, and in Section 2.3 when we discussed issues of
encoding for diachronic/historical corpora briefly, we’ve already seen that not all
forms of textual representation are equally useful for corpus analysis. For instance,
we saw that if we want to treat a Word or PDF document as a corpus file, we
first have to extract its textual contents to a plain-text file in order to be left with
any amount of usable text. The reason for this was that the formatting and layout
options contained in documents of these types are usually not stored as plain text,
but instead are often binary coded, and therefore we have no (easy) way of dealing
with these.

3.3.1 ASCII and legacy encodings

The problem we have with encodings is one of a similar nature, only that in this
case it doesn’t have anything to do with proprietary formats, but rather the way

UNDERSTANDING CORPUS DESIGN 39

that individual characters are physically represented inside the computer, which
is as a special type of number. For a long time, most of the basic Latin(-derived)
characters used to be represented on the computer as sequences of bits up to one
single byte (= 8 bits) only. This made it possible to represent and store up to either
128 (7 bits; 27) or 256 (8 bits; 28) characters, where each character was assigned a
specific number in the original ASCII (American Standard Code for Information
Interchange; 7-bit) or Latin1 (8-bit) character sets or their derived forms. Within
these character sets, the ‘ordinary’ letters of the Latin alphabet are encoded by
a single number each, but with a distinction between upper and lowercase ones,
where the uppercase ones range from position 65 to 90 and the lowercase ones
from position 97 to 122. Punctuation marks, numbers, and mathematical opera-
tors occupy the intermediate ones between 33 and 63.

However, there used to be major differences between the representations of the
upper ranges of characters and the individual requirements for them for the dif-
ferent, simpler, Western character sets, and it proved impossible to even attempt
to store the huge numbers of characters necessary for writing in non-Western lan-
guages, such as Chinese. This is also why, even if we’re producing a document that
only contains characters of the English alphabet, plus a few special characters, such
as special types of (typographic) quotation marks, etc., and save this in one of the
so-called legacy encodings (e.g. ANSI/Latin1 for European languages, GB5 for tra-
ditional Chinese, GB2312 for simplified Chinese, EUC-KR for Korean, to name
but a few), someone reading this on a computer that uses a different character set
by default may see some, or sometimes even all, characters misrepresented.

Exercise 7

To understand the issues caused by using different character sets, and
viewing them with the wrong encoding, better, let’s take a look at the
page on encodings in the online materials at http://martinweisser.org/
pract_cl/encoding.html.

3.3.2 Unicode

In order to solve the discrepancy between character sets, first additional double-
byte character sets were introduced, but eventually the notion of one single char-
acter set for all processing needs was put forth and implemented. This ‘umbrella’
character set is referred to as Unicode, which, despite the unifying attempts, still
exists in a number of different flavours that use fixed or variable byte length to
encode thousands of characters. The particular flavour we’ll want to use for this
course is a variable byte encoding called UTF-8, which stores characters in up to
six bytes, but generally has the advantage that the basic Latin characters appear
at exactly the same positions as in the simple encoding discussed above, so that

http://martinweisser.org/pract_cl/encoding.html
http://martinweisser.org/pract_cl/encoding.html

40 UNDERSTANDING CORPUS DESIGN

opening an English text in UTF-8 would essentially be the same as opening it
in ASCII or Latin1. This character set is also well supported by many different
programs, including browsers, so that it makes information exchange including
characters from many different languages, as well as special characters, such as
phonetic symbols, etc., much easier, thus also facilitating the creation of multi-
language corpora.

3.3.3 File sizes

Plain-text files in general tend to be much smaller than other files because repre-
senting characters, even if some of them may take up six bytes in UTF-8 in some
cases, does not require much space. As pointed out in Section 3.3.1, for most
characters appearing in an English text, one single byte will be enough. Shorter
plain-text files are therefore generally very small, sometimes even less than a kilo-
byte (kB; 1kB = 1024 bytes). Based on a small selection of four literary files we’ll
download and analyse later, I tested the approximate ratio of words per kilobyte,
which appears to be around 180, so that per 1,000 words we may want to col-
lect for our own corpora, we’d probably require about 5.5 kB of text. In order to
collect this much – or rather, little – text, we’d probably need the equivalent of
about 2.4 to 3 pages of scanned text, as the number of words in texts roughly varies
between 250 per page for double-spaced texts of average font size (i.e. 12 pt) in
printed books such as novels, and maximally about 600, which I found in a mono-
spaced article from a scientific journal where the print size was around 10 pt.

This text size doesn’t increase dramatically, even if we add other types of enrich-
ing information – generally referred to as annotations (see Chapter 11) – to our
files, provided that these annotations are also stored in plain-text form, and aren’t
excessive. To verify this in a very crude manner, I ran another test by comparing
the raw and annotated files for my home page (in HTML), one dialogue annotated
on a number of linguistic levels by one of my own programs, and one dialogue
from the BNC, which contains a rather large amount of meta-information in its
header and extensive word-level annotation. It turned out that the web page was
only 1.2 times as large as the original raw text contained in it (6 kB: 7 kB), the
first annotated dialogue containing minimal meta-information and my own anno-
tations was only approximately 3 times as large (2 kB: 6 kB), but the BNC file was
more than 11 times the size of the original source text (30 kB: 340 kB). However,
even though the latter two values may already seem relatively high, this is still fairly
small compared to the file sizes of some of the proprietary document formats we
encountered in Section 3.2.3. We’ll explore plain-text-based file formats, such as
HTML and XML, that may contain such markup further in later sections, as well
as discussing their use(fulness) for linguistic annotation/analysis.

Now that you have a basic idea regarding the formats and encodings a text
might come in, and the issues involved in being able to work with them, we can
move on to finding out how we can obtain our own texts for analysis purposes. As
we go about investigating various sources, we’ll also learn more about making the

UNDERSTANDING CORPUS DESIGN 41

texts contained in the different types of documents more ‘amenable’ to analysis.
Perhaps one more thing is worth mentioning before we move on, though, which is
that sometimes, if you use special programs or corpus data that other people have
collected, you may occasionally encounter files (or file types) with uncommon
extensions that are not recognised by any other programs. Due to this fact, if
you simply try to open these files by (double-)clicking on them, you’ll usually get
some form of message saying that your operating system doesn’t recognise this
particular file type, and asking you to identify a program to open the file with.
In most cases, this should not be a problem, though, because, as pointed out
earlier, most corpus data is stored in some form of plain text, so you can always
try opening these files in your editor first. In case this fails, you then either have
the choice of trying to find the program used to create the files or, alternatively,
simply not to use these files.

Solutions to/Comments on the Exercises

Exercise 5
Looking at an HTML page for the first time may be somewhat bewildering, due
to the strange bits of code that are generally contained within angle brackets (such
as e.g. <p>), which seem to have nothing whatsoever to do with what the text is all
about. Furthermore, most HTML page sources do contain a fair bit of information
before the actual start of the text, which is signalled through the <body> tag, so
most of what precedes it should be considered ‘non-text’. Don’t worry, though, if
this all still looks like a foreign language to you – you’ll soon learn to understand
this better, at least as far as you need to in order to be able to make use of the text
contained inside an HTML document.

You may well notice that the header (<head> in HTML) generally doesn’t
really contain any part of the text itself, but simply stores meta-information, i.e.
information about the text or relevant to how the browser is supposed to han-
dle the page, for example, in which way to display it. Header elements may for
instance be the page title (contained in the <title>…</title> tag, where the for-
ward slash indicates the end of the tag in the closing part), which then appears in
the title bar of your browser, or possibly meta-information (<meta>…</meta>),
such as the text (content) type or encoding/character set (charset), as well as
style (sheet) information/references (<style>…</style> or <link rel="stylesheet"
href="./corpus.css" type="text/css" />, in our case) responsible for some of the
page formatting.

Exercise 6
When looking through the examples, you’ll hopefully realise that there are some
document formats that allow you to see the text contained in them quite easily,

42 UNDERSTANDING CORPUS DESIGN

while others contain too much additional coding describing the layout or for-
matting of the content to be able to easily detect/identify the textual content. As
almost no programs for corpus analysis can deal with documents in ‘graphical’
formats, such as PDF, or proprietary formats, such as MS Word, the only logical
choice for working with corpora is to use either plain text or other types of docu-
ments that contain minimal or easily recognisable annotations, such as HTML or
XML documents.

Exercise 7
This brief exercise should have demonstrated to you how tricky it may be to work
with the wrong encoding, especially when our data may contain characters from
a number of different languages. However, what you’ve just seen on the exercise
page is not only an issue in corpus linguistics, but actually represents a much more
prevalent problem on the internet. This is because many people still only produce
web pages, mainly through easy-to-use, but badly configured programs, in their
own local encodings, which is absolutely fine as long as they only use these pages
to ‘communicate’ with other web users in their own country, who are likely to
have their computers set to the same code page. When those pages, however, are
then opened on a computer in another country, and which is set to a different
code page, the result may look very similar to, or even worse than, the result we
get when we set the exercise to any encoding that is different from UTF-8.

Sources and Further Reading

Atkins, Sue, Clear, Jeremy, & Ostler, Nicholas. (1992). Corpus Design Criteria. Literary
and Linguistic Computing, 7(1).

Biber, Douglas. (1993). Representativeness in Corpus Design. Literary and Linguistic
Computing, 8(4).

Biber, Douglas, Conrad, Susan, & Reppen, Randi. (1998). Corpus Linguistics: Investigat-
ing Language Structure and Use. Cambridge: CUP.

Kennedy, Graeme. (1998). An Introduction to Corpus Linguistics. London: Longman.
Leech, Geoffrey, Weisser, Martin, Wilson, Andrew, & Grice, Martine. (1998). Survey and

Guidelines for the Representation and Annotation of Dialogue. In Gibbon, Mertins,
& Moore. (Eds.). (2000). Handbook of Multimodal and Spoken Language Systems.
Dordrecht: Kluwer Academic Publishers.

Legal Information Institute. (n.d.). U.S.C.: Title 17 – COPYRIGHTS. http://www.law
.cornell.edu/uscode/text/17. [last accessed: 21-Nov-2013]

Ooi, Vincent. (1998). Computer Corpus Lexicography. Edinburgh: EUP.
Sinclair, John. (2005). Corpus and Text – Basic Principles. In Wynne, M. (Ed.). Devel-

oping Linguistic Corpora: A Guide to Good Practice. Oxford: Oxbow Books, pp. 1–
16. Available online from http://www.ahds.ac.uk/creating/guides/linguistic-corpora/
chapter1.htm.

http://www.law.cornell.edu/uscode/text/17
http://www.law.cornell.edu/uscode/text/17
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}creatinghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}guideshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}linguistic-{}corporahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}chapter1.htm
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}creatinghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}guideshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}linguistic-{}corporahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}chapter1.htm
http://www.ahds.ac.uk/creating/guides/linguistic-corpora/chapter1.htm
http://www.ahds.ac.uk/creating/guides/linguistic-corpora/chapter1.htm

4
Finding and Preparing Your Data

Having the right kind of data to work with is essential in doing any kind of lin-
guistic analysis. However, even the best and most appropriate data may not always
fulfil all your needs, or may contain bits of information or formatting that make
it difficult to work with. Apart from this, the programs we can use for such an
endeavour are not always able to handle all the data you may think suitable, due
to some of the above issues. This is why, in this chapter, we’ll first explore where to
find some basic materials for language research, and then go on to discuss which
types of formats may be suitable for language analysis, as well as how we can try,
to the best of our abilities, to bring our data into such a format.

The data we’ll be working with here may or may not be similar to the kind of
data you’ll be interested in working with yourself, but mainly serves for illustra-
tive purposes, so that you can learn the right preparatory and analysis techniques.
Once you start compiling your own data later, you’ll obviously need to make your
own decisions regarding which data exactly suits your research purposes, and also
how much to collect in order to get a representative sample that may reflect all
or a specific sub-part/genre/text type of the language you’re trying to describe.
This obviously requires careful consideration and also to develop at least some
initial hypotheses about what you’ll encounter in which type(s) of data, which
techniques to apply, etc. Therefore, this preparatory process should not be taken
lightly, especially because corpus compilation and preparation, if done well, is a
very time-consuming effort. And thus, the more time you waste on collecting
data that’s unsuitable for your purposes, the more time you lose for actually inter-
preting this data in a linguistically meaningful way, which is, after all, still the most
important part of the analysis.

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

44 FINDING AND PREPARING YOUR DATA

4.1 Finding Suitable Materials for Analysis

4.1.1 Retrieving data from text archives

Text archives are internet-based repositories of literary and non-literary texts that
have usually been scanned from the original sources and can be retrieved in a
variety of different formats or encodings. Many – if not even most – of the texts
available through such archives are free of copyright or available under academic
licences, but, as pointed out in Section 3.1.4, before you publish anything based
on such a text, it’s usually advisable to inform yourself about any potential issues,
such as how to acknowledge the source of your materials or whether there are any
restrictions concerning re-distribution, etc.

Perhaps the two most important text archives for linguists or literary scholars
are the Project Gutenberg website (http://www.gutenberg.org/), and the Oxford
Text Archive (OTA; http://ota.ahds.ac.uk/), so we’ll here concentrate on finding
suitable texts or corpora and downloading them from there. Within those archives,
you can find a wealth of language materials from different languages and periods,
suitable for a variety of language analysis purposes, ranging from diachronic stu-
dies of different texts through the ages to synchronic analyses of individual lan-
guage periods, although, to some extent, contemporary data may not be available
due to copyright issues. Perhaps the main difference between the two repositories
is that Project Gutenberg hosts primarily literary texts, while the OTA contains
both literary texts and linguistic corpora, where the latter may also comprise con-
temporary language data.

4.1.2 Obtaining materials from Project Gutenberg

Project Gutenberg is a large repository of texts in many different languages. These
texts were/are essentially created by volunteers who scan or type in the materials,
thus converting them into an easily readable electronic format, without any special
formatting or layout. What this format may look like, and which advantages and
issues this form of presentation may have in store for us in terms of learning about
language, and its representation in electronic form, is something we’ll be exploring
throughout this section. For some initial practice, let’s start by downloading a text
from the Project Gutenberg website and taking a look at it. We’ll later do some
further exercises using these files as well.

Exercise 8

Open the Project Gutenberg site at http://www.gutenberg.org/ in your web
browser.

Click the ‘Browse catalog’ link towards the top of the page. The online
book catalogue should now open.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.gutenberg.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://www.gutenberg.org/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}ota.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://ota.ahds.ac.uk/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.gutenberg.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://www.gutenberg.org/
http://www.gutenberg.org/
http://ota.ahds.ac.uk/

FINDING AND PREPARING YOUR DATA 45

Take a look at the different options available for finding books, then
restrict the language to English, and finally click on the letter A under
‘Authors’.

Scroll down the list until you find Jane Austen or press ‘Ctrl + f ’ on
Windows/Linux, ‘ + f ’ on the Mac, on your keyboard in order to use the
browser’s find functionality to search for the name. Once you’ve found the
entry for her, click on the link for Emma, making sure that you select the
one with the book symbol next to it, rather than the loudspeaker symbol.
You’ll now be redirected to a new page with a listing for that book.

Take some time to look at the information provided on this page, espe-
cially with regard to copyright on the ‘Bibrec’ (bibliographical record) tab,
and then look at the table at the bottom of the ‘Download’ tab listing all
the different formats available. You’ll notice that there may be a variety of
formats available for different purposes, but the most useful for ours will
usually be ‘Plain Text UTF-8 ’.

Press the right mouse button on the corresponding link. From the con-
text menu that will open, select ‘Save Link As …’ and save the file to
your computer or memory stick, possibly changing the name to something
more telling than the original file name suggested. Tip: If the name you’ve
chosen would ordinarily contain spaces, I’d suggest you replace these by
underscores (_) because computers are generally better at handling file
names that do not have spaces in them.

Repeat the above process with Sense and Sensibility.
Finally, also download the PDF version of the same file. We’ll use this

later on to see how we can extract text from a PDF file.
Open either one of the text files and scroll through it to see whether you

may be able to recognise anything special about the formatting, layout, etc.
If not, don’t worry, we’ll discuss these matters in more detail soon.

4.1.3 Obtaining materials from the Oxford Text Archive

Now that we’ve already downloaded some basic literary texts, let’s explore another
archive, the Oxford Text Archive, to see what’s available in general there, and to
download a whole corpus for later use.

Exercise 9

Open the Oxford Text Archive page at http://ota.ahds.ac.uk/ and click on
the link to the ‘Catalogue’.

Browse through the tabs in the catalogue a little, and then explore the
options for sorting it, for instance listing all free, unrestricted resources first,
or by author or language.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}ota.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://ota.ahds.ac.uk/

46 FINDING AND PREPARING YOUR DATA

Switch the display option to display 100 entries, just to make it easier to
see more corpora at a glance.

Use your browser’s find functionality to look for the Uppsala Student
English corpus (USE) under the ‘Corpora’ tab, then click on the id (2457)
on the left.

Look at the information presented on the page, especially about availa-
bility, and then download the .zip archive of the corpus from the link pro-
vided there.

Once you’ve downloaded the zip file, unpack it and start exploring the
contents.

If you’re less interested in literary language, but may be more interested in
exploring ‘real’ linguistic corpora, this type of data may already be more useful for
you, especially if your main interest is in learner language.

4.2 Collecting Written Materials Yourself (‘Web as Corpus’)

Although you can collect other types of written data in various ways, including
scanning or retyping, these days it’s becoming more and more fashionable to
retrieve written materials in the form of web pages (or other formats) from the
WWW, so this is what we want to explore next. Obviously there are some prob-
lems with this approach due to the format of the data that will be retrieved, which
often includes other types of information apart from the main text, but we’ll deal
with these issues only partially now, and explore the remaining options a little later.

4.2.1 A brief note on plain-text editors

In order to work with corpus data outside of the specialised corpus analysis pro-
grams we’ll be discussing later, for instance to prepare it for processing or dis-
tribution, it’s usually best to use a simple plain-text editor, rather than a word
processor like MS Word or OpenOffice Writer, etc. Plain-text editors usually save
their files as pure plain text, often using the extension .txt by default, and the
more useful ones also allow you to specify a default encoding (which should gen-
erally be UTF-8 these days to ensure exchangeability of data), run sophisticated
search-and-replace operations based on regular expressions (see Chapter 6), do
syntax highlighting for special annotation formats (see Chapter 11), display line
numbers, allow the user to run word counts, or even set up macros, i.e. little pro-
grams that automate certain tasks, etc. Don’t worry if some of these features are
still unfamiliar to you. You’ll learn to appreciate them more and more once you
encounter them in later sections of the book or simply gain more experience in
working with such editors.

FINDING AND PREPARING YOUR DATA 47

As most operating systems recognise the extension .txt and will automatically
open an appropriate built-in editor when a plain-text file with this extension is
clicked, I’d strongly recommend you to use this for your own corpus data, at least
for data that doesn’t contain any special annotations, even if some operating sys-
tems, such as Linux or Mac OS X, may not require it, and default installations
of Windows will unfortunately also hide known extensions from the user. The
latter, however, can easily be fixed by going to ‘Tools→Folder Options…’, select-
ing the ‘View’ tab and unchecking the option to ‘Hide extensions for known file
types’.

Because many of the built-in editors, such as Windows Notepad or TextEdit
on the Mac, are either not powerful enough (the former), or first need to be
configured in special ways to handle plain text by default (the latter), I will make
some recommendations for editors I consider suitable for corpus processing for
Windows, Mac OS X, and Linux below, and also try to explain some of their
advantages for basic corpus processing.

On Windows, one of the most easy-to-use, fast, and small editors is Notepad++
(http://notepad-plus-plus.org/), which also comes with a number of useful plugins
that allow it to be extended if necessary. The basic setup already allows the user to
set the default encoding to UTF-8, run simple and complex search-and-replace
operations including line breaks, display different annotation formats using syntax
highlighting, record macros, etc. Another highly useful program which has rather
similar functionality, but a different look-and-feel, as well as taking up more space
on your disk and being slower to start up, is KomodoEdit (http://komodoide.com/
komodo-edit/), which in fact is available for all three operating systems. The built-
in Windows Notepad lacks many of the features that would be desirable for corpus
processing and may also store text in the default encoding for your language set-
ting, which may make the data incompatible for exchange, so I’d definitely not
recommend using it.

On Macs, a highly useful and powerful editor that can handle many dif-
ferent plain-text formats is TextWrangler (http://www.barebones.com/products/
textwrangler/). As far as I can tell, its default encoding is already set to UTF-8, so
that it requires no further configuration in that respect. While most of the editors
on Windows and Linux have similar menu items, TextWrangler’s menus may take
more getting used to. Therefore, for example, despite the fact that there’s a sepa-
rate ‘replace’ menu item, replacing text (at least for the first time) requires you to
use the ‘find’ dialog first, etc. Mac OS X’s default editor, TextEdit, first needs to
be set up as your text editor as described at http://support.apple.com/kb/ta20406,
but overall isn’t as powerful as TextWrangler, so I’d suggest you only use it if you
really cannot manage to install the latter for some reason.

On Linux, if you’re running KDE, you can safely rely on the built-in default
editor, Kwrite, as it fulfils all needs of the budding corpus linguist, while unfortu-
nately the Gnome default editor, gedit, neither supports regex replacements nor
setting encoding. To replace this on Gnome, I’d therefore suggest you install the
Bluefish HTML editor, which provides all these options.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}notepad-{}plus-{}plus.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://notepad-{}plus-{}plus.org/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}komodoide.comhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}komodo-{}edithbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}komodoide.comhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}komodo-{}edithbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://komodoide.com/komodo-edit/
http://komodoide.com/komodo-edit/
http://www.barebones.com/products/textwrangler/
http://www.barebones.com/products/textwrangler/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}support.apple.comhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}kbhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}ta20406
http://support.apple.com/kb/ta20406
http://notepad-plus-plus.org/

48 FINDING AND PREPARING YOUR DATA

The following is a brief summary of desiderata for suitable plain-text editors.
They should:

� allow the (default) encoding to be set to UTF-8; ideally also to convert between
encodings

� support regular expressions in search-and-replace operations
� be HTML/XML-aware, i.e. allow matching elements and colour coding; ideally

allow syntax checking
� support setting line endings to Windows or Linux/Mac OS X format

The more you’ll work with text editors, the better you’ll hopefully come to
understand these features, and will ultimately also be able to make your own deci-
sions as to which editor you prefer, at least if there are multiple options available.

4.2.2 Browser text export

Perhaps the easiest option to obtain texts from web pages is to use your browser’s
text export function, if one is available. Often browsers will not only allow you
to save a web page in its HTML-form(s), but also as a plain-text variant. The
quality of this type of export may vary from browser to browser, though. Some
browsers will remove the HTML and only leave plain-text content, while others
may retain some bits of HTML, such as, for example, email addresses contained
in mailto links (i.e. those that allow you to fire up an email client when you click
on them), etc. As far as the layout is concerned, some browsers will remove almost
all layout or structure information, apart from maybe some line breaks, whereas
others may indent headings, etc., or insert some empty lines in order to try and
preserve at least some of the original layout. It is therefore best to test whatever
capabilities your browser has in this respect and download a sample page, which
you can then compare with the original. As Chrome and Safari have no support
for downloading only the text, the instructions below are split into two sections:

Exercise 10

Open the page on file formats we looked at earlier in Exercise 6.
—————————————————————————————————————

Firefox and IE:
Click on the ‘File’ menu.
In Firefox, choose ‘Save Page As…’, in IE, ‘Save As…’.
Under ‘Save as type:’ (or whichever entry is equivalent in the dialogue

box on your operating system), select ‘Text Files (∗.txt ; ∗.text)’ in Firefox,
‘Text Files (∗.txt)’ in IE for the type. You may optionally also be able to
specify an encoding, and if this is available, you should definitely select
‘UTF-8 ’ here.

FINDING AND PREPARING YOUR DATA 49

Specify a file name or accept the one provided by the browser.
—————————————————————————————————————

Chrome and Safari:
Select all the text on the page and copy and paste it into an editor to save

it from there. To do so, press ‘Ctrl + a’ on Windows/Linux, and ‘ + a’ on
the Mac, followed by ‘Ctrl + c’/‘ + c’, respectively.

This should copy your text to the clipboard.
Open your favourite text editor and paste in the contents by pressing

‘Ctrl + v’ on Windows/Linux, ‘ + v’ on the Mac.
—————————————————————————————————————

Open the file in your favourite text editor (unless it’s already open) and
compare it to the original web page.

One thing you may have noticed when reading through the instructions
above is that, as far as using keyboard shortcut keys is concerned, whenever
Windows/Linux use the ‘Ctrl’ (Control) key, the same feature is usually triggered
by replacing ‘Ctrl’ by ‘ ’ (command) on the Mac, although the Mac actually does
have a key labelled ‘control’. This keyboard mapping for shortcuts seems to be a
general principle, so if you need to move between platforms for some reason, you
can bear this in mind.

4.2.3 Browser HTML export

Although using the text export function will provide you with most of the rel-
evant data you might want to extract from a web page, as we’ve seen through
Exercise 10, it’ll also potentially remove certain types of information, such as the
indications for headings (as opposed to proper running text), or even add line
breaks that weren’t part of the original text. In some cases, we may actually be
interested in particular types of ‘layouting’ or formatting information, which is
why we might want to download the whole web page, including all of its HTML
markup. Luckily, this time, all browsers provide this functionality directly. In order
to do this, you just need to follow the instructions below:

Exercise 11

Click on the ‘File’ menu as before or the icon in Chrome.
In Firefox, choose ‘Save Page As…’, in IE and Safari ‘Save As…’, and

in Chrome ‘Save page as…’ again. For other browsers, find the equivalent
function, which will be named in a similar way.

Under ‘Save as type:’, select ‘Web Page, HTML only’ or ‘Webpage,
HTML only” for the type. In Safari (v. 5) for Windows, select the ‘HTML

50 FINDING AND PREPARING YOUR DATA

Files’ option, on Mac OS X, select ‘Page Source’ under the ‘Format’
option. Also make sure that you can see the extension by unchecking ‘Hide
extension’.

Specify a file name or accept the one provided by the browser.
Click on the ‘Save’ button or press the ‘Enter’ key.
Open the file in your text editor and examine its format. Pay particular

attention to whether you might be able to recognise basic textual divisions,
headings, formatting instructions, links, etc.

We’ll take a closer look at HTML and its conventions a little later. For now, it
should just be enough if you become aware of roughly what the original source
format and formatting options for web pages look like.

4.2.4 Getting web data using ICEweb

ICEweb is a small application that I’ve written in order to retrieve a number of web
pages for a given domain, and to process them automatically in order to be able
to use the raw text for analysis purposes or to create different types of frequency
lists, something we’ll discuss later in this textbook. The original idea behind its
name is that it was to be used to retrieve corpora of web pages that could form
a web-based counterpart to the corpora contained in the International Corpus of
English (ICE) we discussed in Chapter 2. You can see a screenshot below.

Figure 4.1 The ICEweb interface

FINDING AND PREPARING YOUR DATA 51

To download a copy of the program, go to http://martinweisser.org/
ling_soft.html#iceweb, get the zip archive, and unpack it to a folder where you
have write access, preferably to your user area, a memory stick, or any folder that’s
not a system folder.

The program itself is relatively intuitive to use once you’ve launched the exe-
cutable, which may be named ‘ICEweb_win32.exe’, or simply ‘ICEweb.exe’,
depending on which version you’re using. Once it’s running, you normally start
by defining – i.e. typing the name of – a new region (generally a continent) in the
textbox in the top left-hand corner and creating a directory for this by clicking the
button below it. If you’re not collecting data from a specific region of the world,
you can always set up a different main category instead, though. Next, you add
one or more countries/sub-categories to this region/category and create either a
fixed genre/directory structure, or a simple one, by clicking the ‘create structure’
button for each country/sub-category.

You can then use a web browser to identify and collect the web addresses
of pages that you want to download. These need to be specified in a file called
‘urls.txt’ in the appropriate directory, which you can create by clicking on the
‘add/edit URLs’ button and selecting the directory. This action will automatically
open the built-in editor where you can paste in the web addresses, one per line.

Once you’ve added enough URLs, use the ‘start retrieving’ button and you’ll
be able to select a directory/domain for which you want to collect the pages.
The download and processing progress will be reported in the text window on
the right, and a number of sub-folders will be created once the pages have been
downloaded and processed successfully. You can later explore these folders/files
using Windows Explorer, Finder on the Mac, or your favourite file manager on
Linux. If you want to see frequency statistics for a given directory, you can also
use the ‘show stats’ button and a new text window will open, presenting you with
detailed descriptive statistics. Let’s practise some of this with a few web addresses
I’ll provide below:

Exercise 12

If you haven’t already done so, download ICEweb and set it up as described
above.

Start the program and create a new category ‘linguistics’.
Create a sub-category called ‘corpus_linguistics’ in the ‘linguistics’ cate-

gory folder.
Start the URL editor, and type in the following web addresses: “http://

www.euppublishing.com/userimages/ContentEditor/1257173917699/
html_download_test.html’, ‘http://static.wikipedia.org/new/wikipedia/
en/articles/c/o/r/Corpus_linguistics.html’, ‘http://www.ict4lt.org/en/
en_mod2-4.htm’.

http://martinweisser.org/ling_soft.html#iceweb
http://martinweisser.org/ling_soft.html#iceweb
``http://www.euppublishing.com/userimages/ContentEditor/1257173917699/html_download_test.html'
``http://www.euppublishing.com/userimages/ContentEditor/1257173917699/html_download_test.html'
``http://www.euppublishing.com/userimages/ContentEditor/1257173917699/html_download_test.html'
`http://static.wikipedia.org/new/wikipedia/en/articles/c/o/r/Corpus_linguistics.html'
`http://static.wikipedia.org/new/wikipedia/en/articles/c/o/r/Corpus_linguistics.html'
`http://www.ict4lt.org/en/en_mod2-{}4.htm'
`http://www.ict4lt.org/en/en_mod2-{}4.htm'

52 FINDING AND PREPARING YOUR DATA

Save the file and close the editor.
Retrieve the pages. If there are any error messages in the window at the

bottom, you can usually safely ignore them , but if any appear in the
window on the right, this generally means that you’ve either got a misspelt
URL or that the relevant web page is simply not downloadable for reasons
related to the server configuration.

Open Explorer or whichever file manager is appropriate for your sys-
tem to view the output of the program. You should normally see 3 files
(‘urls.txt’, ‘dirIndex.html’, and ‘index.csv’), plus 4 folders (‘html’, ‘raw’,
‘tok’, and ‘frq’) if any files have successfully been downloaded. The first of
the files is the one you created for storing the web addresses, the second
one an HTML page that lists the HTML files that have been downloaded
and numbered sequentially in the form of hyperlinks to the original pages,
while the last file contains an index of the pages that can be viewed as a
spreadsheet. If ICEweb was unable to download one or more files, it’ll also
create a file called ‘download.log’. The individual folders contain the orig-
inal HTML files, a raw text version, a word token file, and a frequency list
for each downloaded file, respectively.

You can look through the folders to see whether/how many files they
contain, but it’s generally best to look at each file, apart from maybe
‘dirIndex.html’ and ‘index.csv’, through the built-in editor by clicking on
the ‘open result file’ button and selecting an appropriate file. Try this with
at least one of the downloaded HTML files and its corresponding text
version.

Please note that the extensions for the files containing the word tokens (.tok) and
frequency lists (.frq) are not extensions that are generally recognised by any pro-
grams, such as editors, but you’ll be able to view them with any text editor if you
use the usual file-opening mechanisms. However, if you’re working in ICEweb,
anyway, it’s usually easiest to use the built-in editor. We’ll discuss the significance
of word tokens and frequency lists similar to the ones generated by ICEweb in
Chapter 9, and once you’ve worked through this chapter, you’ll be able to inter-
pret these lists as well, although they, just like the statistics you can view from
inside the program, will probably not really tell you much at the moment.

4.2.5 Downloading other types of files

Of course, a corpus downloaded from the web can also consist of other types of
text-containing documents, such as those discussed earlier that are in a non-plain-
text format, e.g. PDFs, MS Word documents, etc. For those, you’d essentially
have to download them manually, but at least we can still discuss an efficient way

FINDING AND PREPARING YOUR DATA 53

of finding the data you might want using a little Google or Baidu (if you’re in
China) trick.

Exercise 13

Open your browser and navigate to the Google/Baidu page, or use a built-
in Google/Baidu search bar if available. Type in ‘corpus linguistics file-
type:doc’, and hit ‘Enter’.

Look through the list of results and download one or two that seem
interesting to you. Hint: don’t forget about the context menu…

Repeat the same thing, only changing ‘filetype:doc’ to ‘filetype:pdf’.
We’ll soon investigate ways of extracting the text parts from these docu-
ments.

4.3 Collecting Spoken Data

As already hinted at through our earlier discussions, collecting spoken data is
far more complex than compiling a corpus of written materials (see, for exam-
ple, also Exercise 2). This is why I can only provide you with some fairly general
guidelines here on how to achieve this, apart from pointing out which issues you
may encounter when embarking on such an endeavour, and this section won’t be
accompanied by any exercises, either.

The first thing you obviously need to consider is what type of spoken data
you may want to analyse. In general, it won’t make sense, apart from actually
being illegal (see Section 3.1.4 above for legal points), to simply go out into the
street and make random recordings of people. As before, you’ll therefore need to
consider your data requirements carefully in the light of your particular research
questions. Thus, for instance, you may want to record and analyse the speech of
native or non-native speakers of a language only, or perhaps make recordings of
them in interaction. The first form would then hopefully allow you to investigate
one particular population, in whichever recording context you’ve chosen, while
the second should make it possible to compare the two groups (see e.g. Weisser
2001) to see whether their language behaviour differs in any obvious way(s). In
the latter case, you may then ultimately be able to come up with fairly objective
recommendations for teaching non-native speakers to improve their proficiency.
Of course, recordings don’t actually need to consist of spoken interaction at all,
but may also comprise monologues, such as public speeches, lectures, etc.

Once you’ve established exactly what type of spoken data you want to collect,
perhaps the first important point to observe is that the recordings need to be
of sufficiently high quality to make them useful for linguistics research in the first
place. Therefore, the recording conditions must be suitable in order to ensure that

54 FINDING AND PREPARING YOUR DATA

there isn’t too much background noise, that all speakers can actually be picked up
by the recording equipment, that the input signal is strong enough, etc. This is
especially important if you’re not only planning to analyse what your informants
say, but also how exactly they say it. In other words, if your aim is to conduct
any phonetic/prosodic analyses, then you’ll also need to use relatively high-quality
recording equipment that will at the very least allow you make recordings that
comprise the necessary frequency range that is significant in producing different
nuances of human speech, i.e. between 80 Hz and 11 kHz (Ladefoged 2003: 19).
This may require the use of a high-quality recording device and microphone, but
if you’re really not interested in this type of close analysis, a simple (and relatively
cheap) MP3 recorder may work for you, provided that the above-named recording
conditions hold. These days, it actually makes very little sense to use any analogue
recording devices because you’d then only end up digitising the data, anyway, to be
able to store it on the computer and ideally also distribute it as part of your corpus,
and this extra step may not only involve additional time, but also a potential loss
of quality.

In comparison to written data, the digital audio files produced through such
recordings tend to be relatively large. For instance, one minute of uncompressed
speech that allows us to analyse samples of up to 11 kHz, with 16bit-quantisation
and recorded in mono (i.e. one single channel) in .wav format, will take up about
2.6 Mb of hard-disk space. This can be reduced to maximally a tenth (around 270
kB) if we use the common .mp3 compression format that MP3 players/recorders
employ, still retaining suitable quality for phonetic analysis.

Once you’ve stored your sound files on the computer, you can start the highly
time-consuming process of transcribing them. To do so, it’s advisable to use
an audio editor like Wavesurfer (http://sourceforge.net/projects/wavesurfer/) or
Praat (http://www.fon.hum.uva.nl/praat/) because these programs will not only
allow you to carry out phonetic analyses later, but, in the first instance, make it
possible to select individual stretches of speech and play them back repeatedly,
which makes transcription a lot easier than when you’re listening to a continu-
ous stream of sound. My personal preference here is the former, as it’s easier to
use, but the latter provides you with more phonetic analysis options for advanced
phonetics work. Please note that, although you can actually create transcriptions
inside the programs and then export them, it’s perhaps easier to simply transcribe
the data in a text editor, at least if you’re only aiming for an orthographic repre-
sentation (see Chapter 11), so that you’ll then need to place your programs side by
side and switch from one to the other. If you do in fact want to create a corpus for
research into phonetics/phonology, then learning how to transcribe inside these
programs and achieving time-alignment for your sound data and transcriptions is
something you’ll need to learn independently, as space considerations don’t allow
me to illustrate this here.

We’ll discuss some of the specific formats for better representing and annotat-
ing orthographically transcribed spoken data later on in Chapter 11, and ways of

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}sourceforge.nethbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}projectshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}wavesurferhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://sourceforge.net/projects/wavesurfer/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.fon.hum.uva.nlhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}praathbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://www.fon.hum.uva.nl/praat/

FINDING AND PREPARING YOUR DATA 55

identifying such features in Chapter 9, but for now, I just want to mention some
specific points you need to bear in mind when trying to render speech more or
less accurately in orthographic form. The first of these is that you should always
represent what’s been said as faithfully as possible; in other words, for example,
if someone uses a contracted form, such as won’t, then you should always repre-
sent it as a contraction, and only transcribe will not if this has actually been said.
As similar point applies to other typically spoken features that are often wrongly
assumed to be non-standard, such as the pronunciations of /wÅn´/ or /gÅn´/,
which should be transcribed a wanna or gonna, even if this may be frowned upon
by prescriptive teachers or grammarians, because they’re really absolutely normal
features of genuine spoken language, and ‘correcting’ them to what is supposed to
be ‘standard usage/representation’ would simply constitute an act of falsifying your
data. Further issues may arise in representing other features of spoken language,
such as minimal responses like aha/uhu/uh-huh or mhm/mm-hm (for yes or yes-like
backchannels), huh-uh/uh-uh (for no), etc. As the alternative representations listed
in the previous sentence show, there may be multiple ways of representing the
same thing, and you should not only find a consistent way of representing these
features, but also document their meaning, so that other potential users of your
corpus will be able to understand exactly what they represent. The same thing goes
for common abbreviations of conjunctions, such as because, which may variably be
represented as cos (BrE) or cuz (AmE). In some special cases, it may also be neces-
sary to represent other vocalisations, such as hesitation markers (e.g. em/erm/um),
or specific realisations phonetically, possibly in order to convey emphasis appro-
priately, e.g. /ði˘/ (without following vowel) instead of /ð´/. Other features that
may be highly relevant to some types of analyses are pauses, which are frequently
indicated in round brackets, e.g. (.3) meaning .3 seconds, or incomplete words,
which can be abbreviated by using an ellipsis, e.g. Mon… for Monday or Monica,
etc.

In spoken interaction, usually speaker turns, i.e. periods where one speaker talks
before the next one takes over, are also indicated, generally prefaced by the speaker
name or an identifier in anonymised data. When speakers exhibit overlap, which is
quite frequent in multi-party talk or dialogues, this is often indicated via opening
and closing square brackets to indicate start and end, respectively. In some cases,
where one speaker simply tries to indicate to the other that they’re still ‘following’,
we may also get backchannels that should in fact not be marked as separate turns,
but nevertheless indicated, which can be achieved by inserting them inside some
form of bracketing, similar to the format for pauses above. As pointed out earlier,
we’ll later discuss more sophisticated ways of rendering such information, and
there far too many different possible conventions to list them all here, so I can
only refer you to a few sources, such as Edwards and Lampert (1993), Leech
et al. (2000), and Jenks (2011), for further reading here.

Before we conclude this section, a further brief note about data handling and
meta-information is in order. As pointed out earlier, not only is it important when

56 FINDING AND PREPARING YOUR DATA

recording informants to obtain their full consent for using the recordings for
research, as well as possible distribution, but it is equally necessary to protect their
privacy through a suitable anonymisation of the data, for instance using codes to
represent personal data, such as names, addresses, telephone numbers, etc., in the
orthographic transcript, but also masking these in the audio data if it is to be dis-
tributed alongside the transcripts, which it generally makes sense to do if possible.
On the other hand, it’s usually important to make some personal information,
such as the informant’s age, sex, provenance, level of education, etc., available to
users of the corpus, in order to allow them to conduct research of a more socio-
linguistic nature. And, of course, as the compiler of the corpus, you still need to
be able to identify and possibly contact your informants later, should follow-up
questions arise, so you need to keep a separate file that allows you to look up this
information, based on the user codes in your data.

4.4 Preparing Written Data for Analysis

In this section, we’ll discuss how to prepare our data for analysis. We’ll first
explore ways of efficiently cleaning up or normalising parts of our data by means
of basic search-and-replace operations, using a small number of illustrative exam-
ples. Later on, we’ll move on to learning about ways of extracting text data from
files that contain formatted text, where of course the same, or at least similar,
clean-up operations might be necessary after the main data extraction has been
performed.

4.4.1 ‘Cleaning up’ your data

As we’ve already seen, some of the electronic data we can obtain off the web (or
elsewhere) can contain unwanted formatting or meta-information, so we always
need to scrutinise whatever materials we download carefully. In some cases, it
may just be a question of removing a header or some other types of information,
or converting some special symbols into a format that’s more suitable for our
analyses. Sometimes you may also have to correct artificial line breaks, for example,
when you’ve extracted text from graphical formats – such as .ps or .pdf –, or those
inserted by some browsers, as we’ve seen in Section 4.2.2. We need to do this
because these line breaks, as indeed anything that doesn’t really form part of our
text, may in fact interfere with the processing of the text later and even create a
number of problems that could affect the meaningfulness of at least part of your
data for linguistic analyses.

What exactly you may need to remove from your data depends on the specific
formatting or encoding conventions used for the document. Doing this can some-
times involve a substantial amount of manual work, but might also be as easy as
opening the document in your editor and using the search-and-replace functiona-
lity in order to replace certain codes from the data.

FINDING AND PREPARING YOUR DATA 57

Exercise 14

Download and open the web page ‘Cleaning Written Data’ (cleanup.html)
from the online materials in your browser and also in your text editor.

Call up the search-and-replace function, either from the ‘Edit’ menu or
by pressing ‘Ctrl + h’, which is the shortcut available in most general text
editor s these days, even in the non-Windows world. If you’re using Text-
Wrangler on the Mac, you need to trigger the replace operation through
the ‘Find’ functionality (+ f) and then fill in the replacement term.

In the ‘search box’, type & (including the semi-colon) and in the
‘replace box’ the word and.

Click on the button.
Next, change the search term to – and the replacement to -, and

replace all instances again.
You should now have replaced all ampersands and n-dashes in the HTML

document. Save it and refresh your browser to see the effect.

Searching and replacing text along the lines of what we just practised above
is a very useful semi-automatic means of preparing your data efficiently, but you
nevertheless constantly need to be aware of potential errors that might be intro-
duced by replacing the wrong things or replacing them in the wrong order. For
example, you might be tempted to remove all single quotation marks in a text
altogether because they ‘interfere with’ the creation of word frequency lists (see
Chapter 9), etc., but of course if this is done carelessly and improperly, you may
end up taking out all apostrophes, too, in which case you might, for example, end
up with a single neuter possessive pronoun form its instead of the contraction it’s
which actually represents two separate word forms! In order to prevent problems
like this, it may sometimes be necessary to use the more time-consuming option
of replacing all occurrences individually by clicking on and only replac-
ing the item found by clicking on if you’re really sure that you want to
replace it.

No matter how much of an unnecessary effort it may seem to you to clean up
our data in this way, you should always remember that if you don’t do this, then
the data you’re going to use for your analysis later could in fact contain many
errors that will most likely skew your results, potentially making them (highly)
unreliable.

An additional step you should also take in preparing your data in this way is
to keep track of the way in which you adjust the data to your needs. This should
ideally be done in the form of a text file that lists all the separate editing steps, and
can later provide the basis for part of a manual of information to be distributed
with your corpus if you ever plan to release or distribute it. Such information will
then help other users of your data to understand better what to expect from your

58 FINDING AND PREPARING YOUR DATA

corpus, or allow yourself to refresh your memory if you should use the corpus data
once more after an extended period of time of not working with it.

4.4.2 Extracting text from proprietary document formats

Essentially, the mechanism for extracting text from proprietary formats, such as
MS Word or PDF, is always more or less the same, although the exact output
and changes you’ll need to make to the data later will vary depending on the
specific features of the program we’re extracting from. The most important thing
to remember/look for in such a program is a menu item that either provides us
with a ‘Save as…’ or ‘Export’ option from the ‘File’ menu to save the text as plain
text, as we’ve seen for web pages earlier, or some item on a different menu that will
probably contain the word ‘extract’, such as in older versions of Adobe Acrobat
or GSview.

Exercise 15

Open the Word and PDF documents you downloaded earlier one at a time
and try to extract the text contained in them using one of the mecha-
nisms described above. If you don’t have a copy of Word, you can try
OpenOffice Writer, which will usually do a very good job of dealing with
Word documents, unless they’re really complex.

Open the resulting text files and see whether you can identify any other
clean-up operations you may need to carry out.

4.4.3 Removing unnecessary header and ‘footer’ information

Many types of files that you can download, such as the text files we retrieved
from the Project Gutenberg website in Exercise 8, do contain some form of meta-
information in the form of headers (at the beginning) and/or ‘footers’ (at the end),
concerning copyright, etc. In HTML(-like) files, as we’ve seen earlier, such sec-
tions containing meta-information are clearly delimited by HTML tags, but in
other documents, they may be more ‘free-form’, without any clear indication as
to their beginning or end. This is for instance the case with the two literary doc-
uments by Jane Austen we downloaded, which contain both header, as well as
‘footer’, information. As mentioned earlier, this type of meta-information defi-
nitely doesn’t represent any textual content that we want to keep and analyse, so
let’s practise identifying and removing this.

The keyboard shortcuts given below for Windows/Linux and the Mac should
work in most editors these days; otherwise, if you’re using a non-standard editor,
you’ll need to try and find their equivalents. To make it a little easier to understand

FINDING AND PREPARING YOUR DATA 59

what the shortcuts do, just try to remember that the basic keyboard combinations
without pressing the ‘Shift’ key – the one that switches between small and capital
letters – will only help you to navigate through the document more efficiently,
while combining them with ‘Shift’ will also select the text spans covered by the
shortcuts.

Exercise 16

Open your copy of Emma in the editor and see whether you can identify
the beginning of the text body. Also take a note of the contents of the
header.

Once you’ve done so, place the cursor at the very beginning of it, i.e.
just in front of the first letter (character).

Press ‘Shift + Ctrl + Home’ on Windows/Linux, ‘Shift + fn + + ←’
on the Mac. In most editors, this will select everything from the current
cursor position to the beginning of the document.

Press the ‘Delete’ key on your keyboard. The header should now have
disappeared.

Next, press ‘Ctrl + End’ on Windows/Linux, ‘fn + + →’ on the Mac.
Your cursor should jump to the very end of the document.

Scrolling up through the document, find the end of the text body and
place the cursor there, keeping note of the ‘footer’ contents.

Press ‘Shift + Ctrl + End’ on Windows/Linux, ‘Shift + fn + + →’,
which should highlight everything to the end of the document, then press
‘Delete’ again.

Save your document. It should now be in a state where you’ve at least
removed all redundant meta-information.

Look through the cleaned copy and see whether you notice any addi-
tional formatting-related problems, and think about whether these could
possibly be solved via search-and-replace operations. If you identify any,
then try them out, each time carefully checking the results before saving
the document. If something goes wrong, you can always undo the last step
(using ‘Ctrl + z’/‘ + z’), as long as you haven’t saved the document, so
there’s no need to panic .

Repeat the process for Sense and Sensibility.

4.4.4 Documenting what you’ve collected

As already pointed out above, it’s generally at least advisable to document all
the steps you’ve seen necessary in editing your data to make it fit your research

60 FINDING AND PREPARING YOUR DATA

questions and purposes. However, ideally, describing the editing process shouldn’t
be the only thing you do in this respect; you may also want to retain a certain
amount of meta-information about the compilation of your corpus, especially if
your plan is to share the data with other people.

Therefore, in addition to the file describing the editing process, you’ll probably
want to keep at least one extra file that lists the contents of the corpus file-by-file
if your data contains materials from different genres, text types or domains, or, as
with our web page data, that lists information about where the file was retrieved
from, when, what the original file name was if you’ve changed it), etc. ICEweb
already caters for some of that information by keeping a little text database that
you can open with Excel or OpenOffice Calc.

As I cannot possibly list, let alone even imagine all the particular pieces of infor-
mation that may be required for your own research projects/questions, I’d suggest
that when you embark on creating your own substantial corpora, you go back to
the manuals for similar corpora we investigated earlier on, and try to evaluate
whether the documentation for these corpora satisfies all your needs, and, if nec-
essary, adapt this accordingly.

4.4.5 Preparing your data for distribution or archiving

Sometimes, in order to be able to exchange your data with other people, or simply
to archive it in some way for backup purposes, etc., it’s useful to compress this data
into an archive. This not only saves storage space, because texts can be compressed
quite easily, but also makes it easier to email files, as one relatively small archive
file can easily be sent as an attachment instead of sending each file individually
and in its original size. There are numerous compression formats, but the most
common one is .zip, for which most operating systems not only provide direct
support, but also generally have options to create and manage this type of archive
from within whichever graphical file manager they offer. The general mechanisms
employed in such a file manager are in fact very similar for Windows, Linux, and
Mac OS X. On the latter two systems, you can also use the command line to
perhaps achieve the archiving task even more efficiently, but in order to be able to
do that you obviously need to be familiar with such procedures, which are a) more
complicated to learn, and b) too extensive to be discussed within the confines of
this book.

Essentially, it’s generally either possible to select a number of files or even
a whole folder and then instruct your file manager to compress these into an
archive, or to create the archive first, then open it again, and keep on adding
files to it, often per drag-and-drop. Of course, the latter mechanism, which is
only available on Windows in a simple form, can also be used to add, change,
or update files at a later point in time. Let’s practise both ways by adding the
two texts by Jane Austen you downloaded and cleaned up in Exercise 8 to an
archive.

FINDING AND PREPARING YOUR DATA 61

Exercise 17

Open Windows Explorer, Finder on Mac OS X, or whichever file manager
you’re using on Linux, and navigate to wherever you’ve stored the two
files. Tip: The easiest way to open Explorer in Windows is to hold down
the windows flag and press ‘E’ on the keyboard once, while Finder will
automatically be running on the Mac and you just need to switch to it.
On Linux, start your favourite file manager, for instance Dolphin on KDE,
which is the one I tested the following actions with.

Highlight the two files you want to add to the archive. If the files appear
immediately below one another, the easiest way to do this is to click on the
first one, then hold down the ‘Shift’ key, then click on the second one. If
your computer is configured to open files via a single click, as is probably
the case on Linux, hold down the ‘Ctrl’ key to select the first one.

If the files are not in consecutive order, Ctrl + click on either one of them,
then hold down the ‘Ctrl’ key (on the Mac), and click on the other. Tip:
These two mechanisms should work on more than two files, too.

Next, use the right mouse button to trigger the context menu or use two
fingers to tap if you’re using a touchpad on the Mac.

In Windows, move the mouse down to the item ‘Send to’, which will
open another sub-menu, where the first entry should read ‘Compressed
(zipped) folder’. Clicking on this (using the left mouse button) will cre-
ate the archive, add copies of the selected files to it, and also allow you
to (re)name the archive itself. In Linux (KDE), find the menu item ‘Com-
press’, then select ‘As ZIP archive’ from the sub-menu. On the Mac, choose
‘Compress n items’, where n here refers to however many items you’ve
selected to add to the archive. Finder will automatically create a zip archive
for you, which, by default, is simply called ‘Archive.zip’, and which you can
then rename to something more appropriate by first selecting the archive
and then clicking on the file name once again (avoiding a double-click,
which will extract from the archive instead). On Linux, the archive name
will probably be based on the name of the first file you selected, but you can
easily change that by using the context menu again and choosing ‘Rename’
from there.

Test this by clicking on the archive itself, once it’s been named. All oper-
ating systems will just treat it like any other folder that you can copy files
(or other folders) to or delete them. Tip: The easiest way to copy additional
files into the archive is to simply open another copy of your file manager
and then drag-and-drop from there.

Let’s also try the other way, if you’re running Windows, creating a new
archive from scratch. This basically works in a rather similar way, only that,
instead of pre-selecting files, you use the right mouse button somewhere

62 FINDING AND PREPARING YOUR DATA

inside a blank space in the folder where you want to create the archive.
This will again trigger a context menu, where this time you need to move
the mouse cursor down to the ‘New’ option, which will again present you
with the option for creating the archive, only that it should appear as the
second-to-last option here.

Once you’ve created the new archive, give it any (half-way sensible) name
you like and copy the two files in there, either via drag-and-drop or copy-
and-paste.

Now that we’ve discussed most of the preliminary issues in corpus design, and
seen how we can actually collect and prepare our own data for analysis, we can
soon move on to learning how to analyse linguistic data in various forms. How-
ever, before we do so, perhaps a final note on record-keeping is again in order. As I
stated before, because many of the steps you may need to take in order to produce
your corpus may frequently involve making changes to the original data, it’s advis-
able to document the steps you’ve taken in your preparation as much as possible, to
allow both yourself and any other potential users of your corpus to understand the
exact nature of the data. Such documentation should obviously also be included in
any distribution, provided that there are in fact substantial changes to the original
data. In addition, you should also add any meta-information, and finally, perhaps
describe both of the above, at least to some extent, as part of a complete manual
of information. This corpus manual will usually be in PDF format, and from here
you can always refer to any additional files for reference if necessary.

Solutions to/Comments on the Exercises

Exercise 8
This exercise should not present much difficulty to you. Perhaps the only real dif-
ficulty if you’re not really well-versed in using a computer may be to learn to make
use of a few important program features. The first is that you can employ the right
mouse button (two-finger tap on touchpads on the Mac) to activate the context
menu inside the browser in order to be able to save the material, as otherwise
clicking on the link will simply get the text displayed inside a browser window,
rather than saved to your computer. Even if this happens, though, it’s not a prob-
lem, as you can then use the main browser menu and the ‘File→Save Page As…’
menu in Firefox, ‘File→Save As…’ in Internet Explorer and Safari. In Chrome,
you unfortunately have to use the icon to access the ‘Save page as…’ option,
as no menu bar at all exists in this browser. An added complication in Firefox and
Safari is that you may need to switch on your menu bar first before being able
to do so, but I’d recommend you do this for consistency, anyway. Activating the

FINDING AND PREPARING YOUR DATA 63

menu bar in both browsers can be achieved by using the context menu in the grey
area below the title bar of the browser and choosing the appropriate option.

Exercise 9
Again, this exercise should be relatively straightforward to accomplish, although
you may need to learn to handle .zip archives if you’re not familiar with them
yet. If you’re using Windows, Explorer has built-in functionality for extracting
the data from such an archive, and on Linux and the Mac, (double-)clicking on
the file inside the file manager will usually extract the data automatically.

Another thing that you may have been wondering about while exploring the
OTA is what some of the abbreviations in the column for ‘Availability’ stand for.
All those that start with ‘CC’ refer to Creative Commons licences, the nature of
which you can explore in more detail at http://creativecommons.org/licenses/.

When you explore the contents of the archive, you’ll hopefully also realise that
additional information along the lines of what I recommended earlier is in fact
included in the form of a plain-text file called ‘ReadMe.txt’ that describes the
contents of the corpus distribution, a manual (in Word format), and an Excel file
that contains a database of important details related to the corpus files, speakers,
etc.

Exercise 10
It’s difficult to describe what exactly you’re going to see once you’ve opened the
text version in your editor because the output from different browsers varies so
greatly, so I’ll just provide a few examples here to raise your awareness of different
issues.

Firefox (ver. 25 and above), for instance, will try to preserve at least some of the
layout and formatting for the page, so the main heading, which is centred on the
page in the HTML and has some spacing around it, will be surrounded by two
empty lines and indented somewhat. In general, paragraphs or other objects, such
tables, will have spacing around them simulated through empty lines. A longer
paragraph will be broken into a number of lines, each ending in a line break,
where the maximum line length seems to be about 80 characters. The table struc-
ture is mimicked through tabs, which will simply look like spaces, unless you can
get your editor to display them as tabs. Hyperlinks are preserved and rendered in
angle brackets (<…>), italicised text surrounded by forward slashes (/…/), and
underlined text surrounded by underscores (_…_). The label and number for
the exercise at the bottom of the page, which are generated automatically in my
HTML, are deleted, and the horizontal rule below this paragraph is represented
as a series of hyphens.

IE (ver. 11) will strip out almost all of the formatting, even removing the spaces
between the cells in the table, and thus joining some words that should not be
joined, just like in our example of the ‘fake compounds’ in Section 1.1.2. Strangely,

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}creativecommons.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}licenseshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://creativecommons.org/licenses/

64 FINDING AND PREPARING YOUR DATA

though, it simply ‘lists’ all the row headers (Format, Extension, and Properties) as
separate paragraphs before the remaining cells of the table, which are then pre-
sented as individual paragraphs from left to right and then top to bottom, but
without any additional spacing between them. It therefore treats the header row
conceptually very differently from the rest of the table. It also removes all the
hyperlinks and the horizontal rule, as well as the generated content, completely.
Unlike Firefox, IE also takes the page title from the <head> section of the HTML
page and lists it, with a slight indent of one space, before the first heading. As I
generally use (more or less) the same text in the <title> tag of my pages, this
effectively duplicates the text of the heading inside the saved text version. Just like
Firefox, it also breaks longer paragraphs into shorter lines, thus adding extra line
breaks that do not form part of the original text.

The copy-and-paste versions retrieved from Chrome (ver. 31 and above) and
Safari (ver. 5 on Windows, ver. 8 on the Mac) seem to be almost identical in
that they generally strip all the formatting and hyperlinks from the document and
simply leave the text with a minimal degree of formatting. In the case of our
test page, all regular paragraphs, including the heading, were rendered with two
line breaks following them, apart from the last one in the document. The table
here is presented in a different way from the paragraphs, with no extra line breaks
following it, but with each cell inside a row separated from the next by a tab and
the rows themselves separated by a single line break. On the plus side, neither
browser produced extra line breaks.

If you have a number of different browsers installed, you can also use them to
download the same page in text format and compare the versions they produce.

Exercise 11
By now, you’ll hopefully be able to download/save files to your computer quite
easily, so the only difficulty in this exercise could be in identifying what some
of the HTML codes mean in terms of creating a certain layout or formatting.
What you’ll hopefully have observed already is that headings in HTML start with
<h, followed by a number. In our document, we only have one heading, and the
number here is 1, which means that it’s heading level 1, that is, a main heading,
similar to a chapter heading in a book. You’ll probably also have noticed a number
of tags that start with <p, followed by additional class information, but once only
as <p>. What all instances of these have in common is that they contain some text,
and that this text had </p> at the end, to close the tag. The <p>…</p> tag is
perhaps the most common tag in HTML because it encloses paragraphs, which
account for most of the textual divisions inside web pages.

Furthermore, you’ve hopefully observed that the table is contained inside a
<table>…</table> tag, with table rows (<tr>…</tr>) inside them, which, in
turn, contain cells marked as <td>…</td> for table data or, in the header row,
as <th>…</th>. Some other things you could have noticed are that materials
that are highlighted, i.e. emphasised, appear in … tags, and that

FINDING AND PREPARING YOUR DATA 65

hyperlinks to external pages (or my email address) are enclosed in <a>…
tags that contain a so-called href attribute which specifies their location/target.

Exercise 12
This exercise should be pretty straightforward, provided that you have permission
to install the program on the computer and follow the instructions as described.
The only problem could be that the files you choose to get are not download-
able via a program. Some web servers can detect such things and treat automated
downloads as an intrusion. In this case, unfortunately, you don’t have any other
choice but to download and process the files manually.

The main purpose of the exercise was actually to demonstrate to you that there
are ways of downloading web pages automatically, as well as store and process them
in a principled manner, so as to be able to conduct different types of analyses on
them later.

Exercise 13
The main point of this exercise was to teach you how you can narrow down a
web search to be able to find only particular types of files, rather than potentially
having to click through many results pages just to find a few of these documents
among a multitude of other – mainly HTML – documents. A by-product of this
exercise is, of course, that you should now also have a number of Word and PDF
documents that you can extract some text from later.

Exercise 14
This exercise should have made you aware of how (deceptively) easy it may be to
convert some copied data into a more appropriate form. The search-and-replace
functionality built into many editors or word-processors these days is a very power-
ful tool to make changes comprehensively and quickly, but, as you’ve hopefully
gathered from my comments, there may well be some risks involved if you’re not
sure about the exact nature of the data and therefore unable to anticipate any
potential issues. Thus, the semi-automated way to search and replace, where you
first verify whether you want to replace what’s been found, may often be a safer
option. If you’re too pressed for time, or simply impatient to use this method,
then you should at the very least test the results of your clean-up operations on a
sufficiently large amount of data.

Exercise 15
Again, the basic operations for extracting the text should be relatively straightfor-
ward, especially for Word documents, provided that you either have Word itself
or a reasonably good word-processor that can handle Word documents, such as
OpenOffice Writer, installed. Of course, more complex constructs, such as tables

66 FINDING AND PREPARING YOUR DATA

or lists, will never quite look the same in plain-text format, but the essential thing
is that we can somehow get a handle on the text content. PDFs, on the other hand,
may present more of a problem as, due to their graphical nature, it’s unavoidable
that we’ll end up with unwanted line breaks within paragraphs which probably
need to be replaced by spaces manually as and when appropriate to avoid com-
plications when trying to create frequency lists or otherwise processing the text
documents later.

Exercise 16
In doing this exercise, you should not only have learnt how to remove unwanted
parts of a document, but also gained more experience in working with editors.
Ideally, you’ll also have memorised the keyboard shortcuts by now because if you
have to process a lot of data, the more efficient you are in moving around a docu-
ment, the more time you’ll save that you can later use for actually analysing and
interpreting the data, which is also a very time-consuming process, although it
may sometimes seem as if the data preparation is the most extensive part of a
project.

Exercise 17
As before, this exercise should be relatively straightforward if you follow the
instructions carefully and are working on a Windows system. As pointed out in
Section 4.4.5, compressing files in this way is not only useful for archiving pur-
poses, but especially if you want to make your data available to other people online
or via email because an archive constitutes a convenient and relatively small-sized
package (depending on how much data you have in it) that can easily be copied
or downloaded and later extracted again, so it’s definitely worthwhile practising
how to do this.

Sources and Further Reading

Edwards, Jane & Lampert, Martin. (Eds.). (1993). Talking Data: Transcription and Co-
ding in Discourse Research. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Jenks, Christopher. (2011). Transcribing Talk and Interaction. Amsterdam: John Ben-
jamins.

Leech, Geoffrey, Weisser, Martin, Wilson, Andrew, & Grice, Martine. (2000). Survey and
Guidelines for the Representation and Annotation of Dialogue. In Gibbon, Mertins,
& Moore. (Eds.). (2000). Handbook of Multimodal and Spoken Language Systems.
Dordrecht: Kluwer Academic Publishers.

5
Concordancing

5.1 What’s Concordancing?

Concordancing is an analysis technique that allows linguists to investigate the
occurrences and behaviour of different word forms in real-life contexts, that is,
in situations where they have actually been used by native or non-native speakers.
This is quite different from more ‘traditional approaches’ in linguistics that sim-
ply rely on the intuition of native speakers in order to determine ‘correct’ usage,
and especially provides a mechanism for non-native speaker researchers to justify
their research claims, or learners to improve their awareness of many different fea-
tures of language by investigating different word forms in their ‘natural’ contexts,
either with or without the guidance of a teacher. Learners can thus achieve a more
realistic learning experience that is at least a little closer to language acquisition,
rather than simply learning specific structures and rules. On a more ‘commer-
cial’ level, concordancing is heavily employed in lexicography in order to select
the most frequent, suitable, and representative examples for a particular lexicon
entry, as well as to help disambiguate between its different senses. Based on con-
cordances and frequency lists, modern dictionaries often now contain information
regarding the frequencies of words in different domains, their typical collocations,
register appropriateness, etc. In textbook preparation, concordancing can also
help to identify the most important and salient features of vocabulary items and
idiomatic structures, as you’ll hopefully soon realise through the exercises in this
chapter.

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

68 CONCORDANCING

Essentially, a concordance is a listing of individual word forms in a given spe-
cific context, where the exact nature of the context depends on the requirements
of the analysis and which particular program one may be using. The word con-
text here refers to something different from what we discussed above, that is,
not the situational usage in a particular place and time, but instead the imme-
diately surrounding text, something we can also refer to as co-text in case of
ambiguity.

Exercise 18

As a preliminary awareness-raising exercise, go to the online resource pages
and open the page for ‘Concordancing’, which contains a short sample
paragraph, constructed for illustrative purposes.

Try out the built-in concordancing facility by searching for the words
‘this’, ‘very’, and ‘in’ in the paragraph, and observe what happens. Do the
results always correspond to what you would expect to happen?

Exercise 18 will hopefully already have alerted you to the fact that, in analysing
language, especially by computer, we may sometimes get rather unexpected
results. This is one of the ‘beauties’ (albeit also one of the pitfalls) of doing corpus
linguistic analysis because it allows us to identify language features that we may
never have expected to find, thus providing inspiration for further and deeper
research into the regularities and irregularities of language (structure), which ge-
nerally go hand-in-hand. This is a phenomenon we’ll frequently encounter in our
analyses from now on, and it requires us to always have an open mind and the
willingness to let the data ‘drive’ our interpretation, rather than trying to force
the data to fit the theory, which is something I’ve frequently observed, for exam-
ple, when colleagues who were doing literary analysis were not working closely
enough to the actual text, but always somehow tried very hard to make the text
fit the theory they were using.

The context (or co-text), for a concordance, as in traditional, printed con-
cordances, may be a whole sentence, a paragraph, or simply a given number of
characters to the left and/or right of the search term. The latter form is the one
most frequently encountered in the results produced by modern concordance pro-
grams (concordancers), and is known as the keyword-in-context (KWIC) format
(see Figure 5.1).

In this format, the search term – which may be either a single word, different
forms of a word or even a series of words in a row – is usually displayed in the
centre of the display window and may additionally be highlighted in a different
colour or format. The results of these searches can usually also be saved to disk,
together with additional information, such as the line number or file name where
the occurrence was found.

CONCORDANCING 69

Figure 5.1 Example of a KWIC concordance output

Although all concordancers usually provide a minimum of core functionality,
such as the ability to produce KWIC concordances, they also often offer many
additional options, so that it’s difficult to generalise about which types of func-
tionality to expect from any particular program.

Most concordancers are also stream-based, which means that they ‘suppress’
line breaks by replacing them with spaces, so that the text is essentially read as
a continuous stream of words. Thus, words that actually occur on different lines
in the text may still be presented as part of the context. In contrast, a line-based
concordancer, such as the one built into my Simple Corpus Tool (downloadable
from martinweisser.org), will only extract and display the immediate context found
on the same line, plus a number of surrounding lines specified.

5.2 Concordancing with AntConc

AntConc is a free and highly versatile concordancer that provides support for many
advanced concordancing features, including support for non-Latin character sets,
as well as additional functionality that we’ll discuss in the relevant later sections.
The program itself, which is available in versions for Windows, Mac, and Linux,
can be downloaded from http://www.laurenceanthony.net/antconc_index.html.
On Windows, it doesn’t even require installation, so you can simply save it to
a folder on your computer or memory stick (I suggest you call it ‘AntConc’) or
anywhere on your computer that you have write-access to, and then start it by
(double-)clicking the executable. On the Mac, you’ll first need to extract the .app
file and drag it into the Applications folder to install it. On Linux, you might be
able to run the executable file directly once you’ve extracted and set the permis-
sions to make it executable, but if you’re running a 64bit Linux, you probably
first need to install 32bit support libraries. This may vary from version to version,

martinweisser.org
martinweisser.org
http://www.laurenceanthony.net/antconc_index.html

70 CONCORDANCING

and is therefore too complex to discuss here. In case you encounter this problem,
you should either consult an expert or search through forums for your particular
version of Linux to identify ways of enabling 32bit support.

Exercise 19

As our first exercise, download and start AntConc now, and familiarise your-
self with the elements of the program window a little.

Also have a quick browse through the menus to get a first impression of
the options, even though you may not understand what they all mean yet.

When you first start up the program, you’ll be presented with an initial screen
like the one shown below:

Figure 5.2 The AntConc startup screen

You can see that the tab for ‘Concordance’ has automatically been activated.
The first thing we need to do now is to select either a single file or a number
of different files to concordance on. As you might have expected, we do this by
choosing the appropriate option from the ‘File’ menu. Here, AntConc provides
us with two different options, one for selecting one or more individual files, or for
choosing a whole directory at once, as depicted in the Figure 5.3.

CONCORDANCING 71

Figure 5.3 AntConc file opening options

If you find yourself regularly using AntConc, you might also want to learn
the appropriate shortcut keys for opening files (‘Ctrl + f ’) or directories
(‘Ctrl + d’), which are listed next to the menu entries. For using a whole directory,
there are further options regarding specific file types and file information that you
can choose from the ‘Global Settings’ menu/dialogue as shown in Figure 5.4.

Figure 5.4 AntConc file settings

When you work with directories, you should probably set the file type option
to ‘ALL’, as many of the files you may be analysing might contain additional
markup and have a different extension, and therefore not automatically be made
available by AntConc otherwise. If you then want to have this configuration
option available permanently, you can overwrite AntConc’s default configuration
file by choosing ‘File→Export Settings To File…’ and simply replacing the file
‘antconc_settings.ant’. To create additional configuration options – which also
store information about the files you had open and your last searches, etc. – later,
you can create separate configuration files and then load them via ‘File→Import
Settings from File…’ as and when required for a particular research purpose.

72 CONCORDANCING

Don’t worry if you open a directory and there may be files listed that you don’t
really want to include in your analysis – you can always remove them from the
analysis corpus later. For now, however, we’re going to start by selecting only two
files for concordancing as part of Exercise 20, which is designed both to give you
some initial practice on running concordances, and to illustrate one of the most
important linguistic issues you’ll encounter in concordancing, that of polysemy,
that is, the ability for word forms to either represent multiple meanings or belong
to different word classes.

Exercise 20

Search for the folder in which you’ve saved the Jane Austen texts Emma
and Sense and Sensibility.

Open the two files in AntConc. The result should look similar to this.

Figure 5.5 AntConc ‘Corpus Files’ window (two files loaded)

In the search box, type in the word, round as indicated in the following
graphic.

Figure 5.6 AntConc ‘Search Term’ and search options

Note that the option to search for ‘Words’ is automatically pre-selected
by default and that ‘Case’ is not selected, which means that the search will
be case-insensitive. In other words, no distinction is made between capital
and non-capital letters, so that you could actually have typed in Round or
even rOuNd, too, even if the latter doesn’t really make much sense. We’ll
discuss the third option, ‘Regex’, in more detail in Chapter 6.

Think about what kind of results you would expect to get from the search
(in terms of word classes, etc.), and then click on . You should get a
result that looks like Figure 5.7.

CONCORDANCING 73

Figure 5.7 AntConc results for round in two novels by Jane Austen

In the window on the left, you see the number of the occurrence (‘Hit’)
found, in the middle the results in KWIC format, with the search term
highlighted in blue on your screen, and on the right, the file name where the
hit was found. Above the KWIC window, you can see the overall number
of hits displayed. You can adjust the size of all the (sub-)windows to suit
your needs. If you need more or less context for your KWIC display, then
you can also adjust the options by the ‘Search Window Size’ as shown here.

Figure 5.8 AntConc ‘Search Window Size’ options

If you click on the search term, you’ll be taken to the display in the
file ‘File View’ window where you can see the current hit in its complete
context in the file where it was found.

Click anywhere in the KWIC window, apart from on the search term,
and scroll down the list of occurrences to check the results and see whether
they match your expectations or whether there’s anything unusual. Think
about the potential of word forms for representing different meanings or
word classes (polysemy) and usage!

74 CONCORDANCING

5.2.1 Sorting results

If you think about how long it would have taken you to find all these occurrences
manually in both texts, you can see how useful it is to be able to create concor-
dances like this within a few seconds. However, as useful as an ordinary KWIC
concordance may be, AntConc also offers us the functionality to create much bet-
ter views of our search results by providing options for sorting the results based on
their immediate left or right contexts. We’ll have a quick look at how this is done,
and then you’ll hopefully understand the usefulness of this option without much
further explanation, although, as usual, some will be provided in the solutions
section.

Exercise 21

Take a look at the sort options immediately to the right of the search
options.

Figure 5.9 AntConc ‘Kwic Sort’ options

You’ll see that for ‘Level 1’, which is already pre-selected, there’s ‘1R’
in the box by default, for ‘Level 2’, ‘2R’, and for ‘Level 3’, ‘3R’. This
means that, once you click on , the primary sort will be conducted
alphabetically on the word immediately to the right of the search term,
and in descending order of frequency. However, the sorting is then not yet
complete, as it will be continued, based on the next word to the right, and
finally, also on the 3rd word to the right.

For our current purposes, we want to sort according to only the word
immediately to the left of the search term, so change Level 1 to ‘1L’ and
untick the check boxes next to the other two levels.

Before you try this, first change the search term to mind, then click on
and finally on .

Check the results and try to understand why this feature may be so
useful…

Tip: If you have problems in getting upper- and lowercase characters sorted
separately, open the ‘Tool Preferences’ for ‘Concordance’ and check the option
for ‘Treat case in sort’.

CONCORDANCING 75

5.2.2 Saving, pruning and reusing your results

5.2.2.1 Saving There are essentially two different types of ‘Save’ option in
AntConc, one that allows you to save your results as a regular plain-text file, and
one that provides the option to only save the results displayed inside the analy-
sis window temporarily, so that you can compare them to the results of another
search side-by-side. The first type is accessible through the ‘File→Save Output to
Text File…’ menu option, which saves the hit number, the concordance line, plus
the file name for each hit. Saving our results not only provides a means of keeping
a record of what we’ve found, but also to analyse and/or manipulate the data fur-
ther, perhaps also using different programs, so let’s see how we can produce such
output in Exercise 22.

Exercise 22

Save the results of the previous search to a text file. I’d suggest you save
all such files to a folder called ‘results’ inside your ‘AntConc’ folder, and
always give each file a suitably descriptive file name that will later allow you
to identify what its contents are. In this particular case, maybe something
like ‘mind_in_jane_austen.txt’ would be appropriate. Once you’ve saved
the file, open it in your editor to view the output.

Unfortunately the search term is not highlighted in a very useful form in the
output, although you can achieve some degree of ‘highlighting’ by changing the
delimiters between the different fields of the output. In order to get around this
slight limitation of AntConc, you can of course always use your favourite plain-text
editor and do a search-and-replace operation where you replace the search term
by something like >>> [search term] <<< (leaving out the square brackets). Let’s
try this:

Exercise 23

Open the file in your editor and run the search-and-replace operation to
add the highlighting.

The second ‘save’ option can be triggered by clicking the button
on the bottom right-hand side of the AntConc window and will open a separate
window containing the results of the current analysis, so that you can then run the
other analysis and compare it to the original one side-by-side. The search terms
in the saved window will still be displayed in colour, but are no longer clickable,

76 CONCORDANCING

so direct access to the larger file context, as it’s available in the main window, is
unfortunately no longer possible.

5.2.2.2 Pruning Sometimes, not all the results of a search may be relevant to
the problem or topic you’re investigating, or you may simply end up with too
many examples of a similar nature, so that you need to make some decisions as
to which ones of the results you want to keep or treat as relevant to your pur-
pose. If necessary, you should also document the decisions, maybe if you need to
explain your choices to other people. For instance, in the grammatically polyse-
mous results for mind in Exercise 21, you might want to only retain the noun
usages for your research because you’re only interested in nouns, but to discard
all verbs, or vice versa.

In such cases, you have two choices for removing unwanted hits. The first one
is to save the results to a file, as described above, and then delete all irrelevant
material from this file. However, AntConc also allows you to remove some hits
before you save the results. You can best do this by holding down the ‘Ctrl’ key,
clicking on the hit number, and then pressing the Delete key. If you want to delete
more than one non-consecutive hit, then simply keep the ‘Ctrl’ key pressed down
and select any other hits until you’ve highlighted all the ones you want to remove,
and then press Delete. If you’re lucky enough to have all the data you want to
delete in consecutive order, then you can also use ‘Ctrl’ + click on the first one,
and then, holding down the ‘Shift’ key, click on the final one. This technique for
making multi-selections is something you should already be familiar with from our
discussion in Section 4.4.5 on how to select files for archiving in a file manager.

In case you’re now worried that this may destroy your corpus data, there’s no
need, because whatever AntConc displays as a list of results in its KWIC window
is in fact copied from the original file, rather than showing the original data itself.

Exercise 24

Try pruning a few hits in the current result set, perhaps deleting all non-
noun occurrences. Don’t worry, you’ll always be able to re-run the concor-
dance to get the original results back

Save the results of the search that you’ve just pruned under a suitable file
name.

5.2.2.3 Reusing Once you’ve extracted some data from a corpus, or a number
of different corpora, there are different options regarding what you can do with
this material. In some cases, you may already have identified all the relevant exam-
ples, and there’s no need for any further analysis if your examples already illus-
trate all the points you might want to make in your ‘research output’, whether
it’s an assignment, an academic paper, a dissertation or thesis, or some teaching
materials. This, however, is only the simplest case, and rarely do all those extracted

CONCORDANCING 77

examples simply speak for themselves, but instead may still require a substantial
amount of analysis before they really tell the whole story.

Although you can always look through your data and keep notes on any salient
features you’ve identified, as well as perhaps periodically go back to revise these
notes if you encounter some new relevant details that may confirm or contra-
dict your earlier observations, this may not be the best strategy for understanding
your data completely. Perhaps a better way to analyse some data is not just to work
through it, but, once you have all the relevant results in a file, to edit this file and
mark up your samples using some simple codes in order to categorise them. This
type of basic initial coding needn’t be very complex, but can consist of a few easily
identifiable markers that you insert somewhere in a text. The key to this is in the
two words “easily identifiable” because whatever codes you may insert in your
file, those shouldn’t easily be confused/confusable with any regular text. There-
fore, maybe simply inserting your codes in round brackets may look too much
like regular text to be really useful, and even replacing the round ones by other
types of brackets may be problematic, for instance, if you happen to be analysing
a linguistics text where different types of brackets are used to indicate different
levels of analysis, such as, for example, curly brackets to enclose morphemes, or
square ones to mark phonetic representation. Thus, you need to find something
that distinguishes you code from any ordinary text, ideally by using characters that
do not form a part of any normal text. For example, if you’re investigating gram-
matically polysemous words like the ones we searched for above, you can add an
underscore and a simple word category identifier – such as N for ‘noun’, V for
‘verb’, etc. (we’ll soon learn more about this when we discuss morpho-syntactic
annotation in Section 7.1) – to each occurrence of the word (form). Once you’re
finished, you can just load the resulting file in AntConc instead of the original cor-
pus, and filter out or sort the relevant entries in another concordance. And once
you’ve reached a more advanced level in your research, you might also want to
consider using a ‘proper’ markup language, such as HTML or XML, for annotat-
ing and categorising your data. Such options will be explored in some more detail
in Chapter 11. For now, we only want to practise adding simple word class codes
to our results file.

Exercise 25

Open the results file from Exercise 22, and categorise at least the first
30–40 search results, but ideally all, according to their grammatical cate-
gories as described above.

Save the file and load it in AntConc.
Run a search for the search term again, this time only searching for those

occurrences where the word mind occurs as a noun, then as a verb.

78 CONCORDANCING

Solutions to/Comments on the Exercises

Exercise 18
As you’ll hopefully observe while doing the online exercise (and can verify again
in the exercise paragraph replicated below), the computer search for our fairly
common sample words managed to find this, but not This, in as a word, but also
many other occurrences of the character (letter) sequence i+n (where both are
lowercase characters) that you would probably not have expected to find. This is
because the computer does not understand what a word is/may be, and can thus
only ‘blindly’ match characters. The only ‘word’ that was apparently not an issue
in this exercise is very, but I said “apparently” above because of course the same
issue as for this also applies to very, only that you may not have noticed it because
no form of very with an initial capital letter occurs in the text.

This is a short test paragraph to illustrate very basic concordancing. As you
can see, in this basic form, concordancing is very similar to a Google search,
only that it shows you the results in one or more pre-selected pieces of text,
rather than trying to find them online. The other thing is that our expecta-
tions concerning the results may differ from the actual output of the concor-
dancer, as you will hopefully have noticed while concordancing on the words
this and in. For the former, you might have expected to find both occurrences
of the word with and without an initial capital letter, but the very first word
of the paragraph did not in fact get highlighted because in general concor-
dances tend to be case-sensitive, so that they will only find exact matches. This
unfortunately resulted in you finding fewer occurrences than you would have
expected, whereas the search for in gave you many more hits (i.e. search results)
than you would probably have expected because the grapheme combination
<in> occurs as part of a number of other words in this paragraph. Both of
these issues are related to differences in the way that human readers and the
computer process texts and we’ll explore options for handling them later.

Exercise 19
This exercise was designed to allow you to explore (very roughly) the different
types of functionality a concordance program, such as AntConc may provide in
addition to pure concordancing. Furthermore, if you’ve paid close attention to
the configuration options, you may already have noticed that the program not
only allows you to work with single, or a number of different, files at the same
time, but that you also have some degree of control over the particular (plain
text) input format and its encodings, something you should by now be able to
understand better through the exercises we did in previous sections. As far as the
basic concordancing interface is concerned, you’ll hopefully already have spotted

CONCORDANCING 79

that you can in fact adjust the context displayed by the concordancer for showing
the result, as well as that there are various options for sorting our results, which is
something we’ll explore in more detail in Section 5.2.1.

Exercise 20
Essentially, the main aim of this exercise was – apart from giving you some initial
concordancing practice in AntConc – to further raise your awareness of the fact
that words – or rather word forms – in text are basically just sequences of characters
for the computer/concordancer. Thus, generally the concordancer will not be able
to ‘understand’ that you may be looking for a word with a particular meaning if
there are homographs or polysemous forms, as in the case of round, which may be
classified as an adjective, an adverb, a noun, a verb, or preposition. And, although
you would most likely have expected to mainly get hits for the adjectival meaning,
which is perhaps the most prototypical meaning associated with it these days, you
will have seen from the results from the two novels by Jane Austen that the adverb
or preposition meaning appear to have been much more common in her day, or
perhaps only in her writing, something which only an in-depth comparison with
the works of other authors of her period can establish for sure.

Another thing you could potentially have learnt from this exercise is that,
because we tend to have particular expectations regarding any data we may be
analysing, these expectations may sometimes initially make us blind to alternative
options. However, as the examples from the exercise will hopefully have shown
you, if we use a concordancer to investigate enough data, we’re bound to find
examples that may run counter to our imagination, and also help us deepen our
knowledge/understanding of how words are used, which is one of the reasons why
concordances are not only useful for research in lexicology or lexicography, but
also as a means for native and non-native speakers to develop their language skills.

Now, let’s briefly return to the issue of case-sensitive vs. case-insensitive
searches. The computer stores what we commonly refer to as small and capital
letters in a different way, so that it becomes possible to search for them separately,
for instance if we only want to find words that occur at the beginning of a syntactic
unit (‘sentence’) or proper names. In many cases, however, we just want to find all
instances of the word to get an overview of its different functions, and, for this, the
position may simply not always be relevant. To test and see what happens if you
make the search case-sensitive, go back to your search in AntConc, briefly change
the search term to Round with an initial capital letter, and run the search again.
This time, you should in fact get no hits at all because none of the occurrences of
the word round are in such an initial position in our texts.

Exercise 21
If you’ve observed the results of our search for the word form mind closely, you’ll
probably have noticed a number of things. First of all, that – just as in our previous

80 CONCORDANCING

exercise – the word form mind is again grammatically polysemous, i.e. may rep-
resent different word classes, in this case either the singular form of the noun or
the base/infinitive form of the verb. Secondly, that sorting the output in this way
makes it far easier to see which word forms may precede the hit most frequently,
and last, but not least, also which word classes/parts of speech may occur most
frequently/typically with a given word form. For example, by examining the first
121 hits, you’ll notice that more than half of all 225 hits are in fact nouns (apart
from number 29, don’t mind) because they’re preceded by determiners, posses-
sive pronouns, genitive nouns (e.g. Emma’s), qualifying attributive adjectives, and
quantifiers, while the rest of the examples do contain a few more instances of
verbs, characterised by preceding adverbs, such as never, or the negation operator
not.

However, as examples 212 – “the Highbury people, but if you call to mind
exactly the present line of the path.” – & 213 – “bake or boil. William did not
seem to mind it himself, he was so pleased to think” – illustrate clearly, dis-
ambiguating the word class simply based on the preceding word may not be
straightforward, either, as the first of them has the word form to occurring as
a position marker, and the second as an infinitive marker. Such issues may also
cause problems for approaches to the automated processing of language where
such disambiguation is of course also important, but näıve algorithms based on
probability-based assumptions regarding the word class of only a single word pre-
ceding a grammatically polysemous item would potentially fail, as such probabil-
ities would, in our case, clearly favour the more frequent use of to as an infinitive
marker.

Exercise 22
As this is more or less a ‘mechanical’ task, there isn’t really much you can do wrong
here, apart from maybe making one or two minor mistakes. The first could be that
of not choosing an appropriate output folder to store your results in, which could
mean that you may end up spending a considerable time searching for your output
files later. The second might be that you don’t label your output file sensibly, which
will have a similar effect in that you may find yourself searching for the right file
for longer than necessary if you have a number of different output files that are
not clearly distinguished from one another. Both of these mistakes basically may
cause you to lose valuable time that could be spent on actually analysing your
data, thus ‘throwing away’ one of the most important advantages of using corpus
linguistics as a methodology, which is that it allows you to save a significant amount
of time finding a large amount of potentially relevant and interesting data quickly.
In the past, having long file names wasn’t even possible, but these days, having a
maximally explicit file name that is up to maybe 20 characters long is no longer an
issue, although I have occasionally experienced some issues with exceedingly long
folder or file names when trying to back up files on even more recent versions of
Windows.

CONCORDANCING 81

Exercise 23
This exercise is very similar to the ones we did in Chapter 4 in order to clean up
our data, so it shouldn’t really be too difficult to do. The only thing you may need
to be careful with is not to accidentally highlight hits that you don’t want because
the sequence of characters that represent your hit might also be part of another
word. In order to avoid this problem, it may be best not to do all replacements
fully automatically, but instead use the search-and-replace functionality step-by-
step to identify and ‘OK’ each replacement.

Exercise 24
Again, this exercise is quite straightforward. The only thing that could happen is
that you accidentally either delete an entry you hadn’t intended to delete, in which
case you’ll need to re-run the concordance and delete more carefully, or that you
may accidentally select too many hits before pressing Delete. In the latter case,
you won’t need to re-run the concordance, but can simply click anywhere in the
hits to remove all selections, although you’ll still need to select the ones you want
again. In order to avoid any issues with this, it’s probably best to only select a few
hits each time before deleting, and then start selecting again…

Exercise 25
This exercise was really just meant to demonstrate a) how easy it is to categorise
your own data in a simple way, and b) how efficiently you can then work with
such pre-categorised data. Of course, adding this type of information can be quite
time-consuming, so, in later sections, we’ll explore ways of adding similar types
of information automatically, as well as looking into ways in which we can exploit
such annotated data even more extensively in order to search for and identify more
complex linguistic patterns.

Sources and Further Reading

Hunston, Susan. (2008). How Can a Corpus be Used to Explore Patterns? In McCarthy,
M. & O’Keeffe, A. (Eds.) (2010). The Routledge Handbook of Corpus Linguistics.
London: Routledge.

Sinclair, John. (1991). Corpus, Concordance, Collocation. Oxford: Oxford University Press.
Sinclair, John. (2003). Reading Concordances. Harlow: Pearson Education Ltd.
Tribble, Christopher. (2008). What Are Concordances and How Are They Used? In

McCarthy, M. & O’Keeffe, A. (Eds.) (2010). The Routledge Handbook of Corpus Lin-
guistics. London: Routledge.

6
Regular Expressions

Imagine yourself frequently having to look for very similar patterns that differ
only in a few minor details, such as in the different forms of a verb paradigm, for
example, (to) walk, walks, walking, walked, singular and plural forms of nouns,
or words that may start with either a capital or small letter. This is a very common
and important task in linguistics, even for languages that only exhibit a moder-
ate degree of inflection, such as English, but much more so for more strongly
inflected ones like German, etc. Now, even if you are aware of all the relevant
forms you may need to identify, and search for each of these forms separately
in a row in a concordance program, you can only save the results, maybe even
print them out, and then compare them afterwards. However, this makes your
job much, much more difficult and time-consuming than it needs be, and may
also lead to your overlooking some details or missing out on important generali-
sations. Thus, to be able to work more efficiently with a concordancer or similar
search tool, it would be very useful to be able to specify more complex patterns
that we could then look for all at once, and also make use of the other useful
options we’ve explored before, such as sorting, etc., to help us simplify our analysis
procedures.

Regular Expressions (or regexes, for short) are an important and very power-
ful means of specifying such complex search terms for concordances or computer
programs for language processing. Most concordance packages support at least
some basic forms of regexes, although they’re not necessarily as advanced as the
options offered by command-line search utilities, such as (e)grep (global regular

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

REGULAR EXPRESSIONS 83

expression printer), or programming languages, such as Perl, Python, or Java. Here,
we’ll discuss the most important general regex concepts in order to demonstrate
their usefulness for linguistic purposes, but may introduce further, more complex,
options later, as and when required for advanced analyses. We’ll start by discussing
some of the abstract notions behind regexes, each time accompanied by appro-
priate exercises that should allow you to observe and test the individual features
we’re discussing. At this point, perhaps a cautionary note is in order, as the indi-
vidual features related to regexes that we need to introduce individually will really
only make sense fully from a linguistic analysis perspective once we can put a num-
ber of them together in order to construct efficient searches. Therefore, the very
first exercises, even though I’ve always tried my best to make them as relevant
as possible to linguistics, may not yet appear very useful to you, and you might
well be tempted to give up if things appear too abstract. However, if you per-
sist, I can promise you that soon you’ll not only be able to understand the value
of regexes for achieving even highly complex tasks in linguistic analysis very effi-
ciently, but will also learn to hone your analysis skills related to morphology and
morpho-syntax, something you’ll definitely be able to profit from in your work
in corpus linguistics, as these two areas often form the basis for further linguistic
analyses.

Tip: When using regexes in any other program, always bear in mind that
there may be fairly large differences in their implementation, depending on the
purposes or design decisions made by the author! This is especially the case
for using them in search-and-replace operations, where many editors will only
offer a reduced set of functionality, or even implement a special syntax for some
purposes.

Below, you can see a short test passage. This passage will mainly be used in
the online exercises (http://martinweisser.org/pract_cl/regExes.html) for display-
ing the results of all the basic exercises that follow in this chapter because it’s
easiest to understand the results of our searches when they get highlighted. How-
ever, you should also try and train yourself to identify these patterns within the
printed text here, so that you’ll learn more efficiently how to use and speci-
fy regexes, which is why I’d suggest that before you look at the results high-
lighted in the online version, you first scan the sample paragraph below visu-
ally to see whether you can form any hypotheses as to what the results would
be, and also why a particular feature may be useful for linguistic analysis. Please
note that, in a real-life scenario, that is, other than for illustrative purposes, we
may never search for all of the features illustrated below individually, but usually
employ them to expand or constrain a certain search term in a manageable fa-
shion, that is, only to focus in on a linguistic pattern. Otherwise, we may end up
with too many, and potentially also meaningless results, which is why I’m delib-
erately restricting the size of the input text to a short paragraph here. Another
feature of the online exercise is that all occurrences of a regex feature get high-
lighted at the same time, while a normal concordancer would find and list them
individually.

http://martinweisser.org/pract_cl/regExes.html

84 REGULAR EXPRESSIONS

This is a short test paragraph. It will allow us to explore and test different regular expression

features and concepts, such as character classes, quantification, and grouping/alternation, by

displaying them in a separate colour. For good measure, and to be ‘well-rounded’, this also

contains some numbers, punctuation, and special characters here (1, 2, 3, 10, ! ;), as well as some

unusual words like ‘theme’, ‘rheme’, ‘phatic’, ‘thistle’, ‘chisel’, or ‘phishing’, and a bit of

. Can you understand all the results, based on your own intuitions

concerning different types of characters and how they make up words?

Figure 6.1 Sample paragraph for practising and understanding regex patterns

6.1 Character Classes

Character classes allow you to specify groups/ranges of characters in order to effi-
ciently search for such characters that have specific shared properties, maybe all
being vowel or consonant letters (as opposed to the actual vowel or consonant
sounds, i.e. phonemes), etc. These classes contain individual characters or ranges
of characters, where a range is indicated by a hyphen in-between characters that
should be consecutive. These patterns are enclosed in the same kind of square
brackets ([]) that we usually use for (narrow) phonetic transcription. Here are
some basic examples:

� [a-z] (all English lowercase letters); useful, for example, if you want to
exclude all proper names/nouns or sentence/paragraph-initial words from a
search

� [A-Z] (all English uppercase letters); useful for finding proper nouns or initial
words

� [0-9] (all digits, also often abbreviated \d); useful for finding and possibly
removing numbers from word lists

� [aeiouy] (all lowercase vowel letters for English); useful, for example, for fin-
ding words that begin or end in vowel letters

� [Tt] (either <T> or <t>); this will allow us to specify words that start with an
upper- or lowercase letter ‘t’, as in This/this, That/that, The/the, etc.

� [A-E0-3] (all uppercase letters between A and E, all digits between
0 and 3, and a space); potentially useful for finding specific English
postcodes

In order to develop a feeling for how to construct character classes and
establish their usefulness for identifying basic linguistic features potentially
shared by different word forms, let’s do a two-part exercise, both off- and
online.

REGULAR EXPRESSIONS 85

Exercise 26

Test the character classes shown above on the sample paragraph provided
in Figure 6.1 by first visually scanning the text for members of these classes
to see whether you could easily pick out what each class would allow you
to find.

Next, search for the same character classes in the online exer-
cise version at http://martinweisser.org/pract_cl/regExes.html and verify
whether your visual scanning did indeed allow you to identify the same
results.

Feel free to make your own changes to the classes, too, to explore some
more.

Other classes that are often predefined as shorthands/abbreviations are:

� \w for all word characters, usually including hyphens, theoretically also match-
ing characters that are not part of the character set used for English, such as,
for example, ß, ä, é, ç, ñ, 𝜉, etc.

� \W for all non-word characters, such as, for example, punctuation
� \s for (white)space characters (but sometimes a whitespace itself only)
� a single . usually stands for any arbitrary character, unless it occurs inside a

character class, in which case it simply means a dot.

Exercise 27

To experiment a little with the character class shorthands shown above, test
these on the sample paragraph above and online, and observe the effects.

Each character class, the way we’re defining and using them at the moment,
essentially represents options that act as placeholders for one single charac-
ter only. The only reason why all of them will get highlighted in the sam-
ple paragraph is because the script that allows you to display them identifies
them globally, that is, each and every one of them individually. Just seeing
the results may also not yet allow you to see the usefulness of creating/using
this type of class, but this will soon become clearer when we introduce
quantification.

One special feature to note is that, as hyphens are used to indicate ranges in
character classes, if we want to include them as hyphens in a class, we have to
place them somewhere where they don’t occur between characters, that is, either
at the beginning or the end of the class definition.

http://martinweisser.org/pract_cl/regExes.html

86 REGULAR EXPRESSIONS

6.2 Negative Character Classes

As we’ve already seen for \W, sometimes it’s useful to simply be able to negate
character classes if we want to exclude certain characters/constructs. Unless we
have such a predefined group as \W, we need to define this class ourselves, which is
done by creating the class in the same way as a positive class, only that the opening
square bracket needs to be followed by a caret sign (ˆ), for example, [ˆA-Z] (no
uppercase English letters).

Exercise 28

Try to think of some negative character classes and test them on the sam-
ple paragraph. If you still have difficulties thinking of any sensible ones
yourself, just negate the positive character classes we saw above, and try to
understand what’s happening.

As you’ll hopefully have observed, simply excluding a particular character by
negating it may have rather unexpected effects. So, for instance, if we simply
exclude a capital <T> and expect now only to find instances of words that
start with a <t>, just because the word form we had in mind may have been
<the> or <this>, this is clearly wrong because we’re only excluding one single
character option, rather than the whole set of potential options we may have
wanted to exclude. Thus, successfully specifying an exact pattern may often require
careful thinking and using a mix of different regex options to constrain our
pattern.

6.3 Quantification

Now, simply being able to look for single individual characters, or those belong-
ing to a specific class on their own, frequently doesn’t make such a lot of sense,
so we need a way of being able to specify how often they can occur. This can
be done by using quantifiers, which allow us to say whether a given character or
class may (or has to) occur zero or more times, maybe even infinitely, in a row.
This is a bit similar to using quantifiers in natural language, only that there we
tend to quantify noun phrases through ‘non-specific’ (or underspecified) quan-
tifiers like some, many, or all, as well as using numbers or numeral quantifiers,
such as once, twice, three times, etc., to say exactly how many subjects or objects
we may be talking about. On the other hand, in natural language we also have
quantifiers that signify the absence of something, such as none or no one, which
actually have pronoun character. The specific (basic) options for quantification in
regexes are:

REGULAR EXPRESSIONS 87

� a ∗ following a character (class)/group means it may occur from 0 to an unlim-
ited number of times; expressed in natural language, this would be from none
to infinitely many.

� a ? following a character (class)/group means it may be optional or can occur
at most once; in natural language: possibly (not) to maximally once.

� a + following a character (class)/group means it has to occur at least once but
up to an unlimited number of times; in natural language: minimally once to
infinitely many.

� a set of curly brackets {} following a character (class)/group specifies a more
exact quantification
� {5} matches exactly five times; or: no more and no less than 5 times.
� {5, } matches at least 5 times or up to an unlimited number of times: mini-

mally 5 times to infinitely many.
� {5,10} matches between 5 and 10 times.;

At least in this way, we can already specify that we may want to look for some-
thing like \s\w+\s, that is, only words, although, of course, we need to bear in
mind that not all words are actually surrounded (delimited, in technical terms) by
two whitespaces. This equally allows us to take into account dialectal differences,
such as the differing British and American English spellings of the word colou?r,
but still doesn’t quite give us the flexibility we may want in looking for specific
word forms or paradigms (i.e. all associated forms of a word), which is why we
need to introduce three further concepts below, after doing another exercise.

Exercise 29

Test the two quantification examples shown above using the sample text.
The text on the online page is editable, so you can also delete the u and
see whether the quantification using the question mark still works, or even
try some of your own words, if you know any other differences in spelling
that relate to one character only. You can also try to find words where a
character is repeated multiple times.

For the example of the whitespace-bounded words, also experiment with
the curly-bracket type to practise more exact quantification for the number
of characters allowed inside a word. Can you already detect any practical
use in this?

6.4 Anchoring, Grouping and Alternation

6.4.1 Anchoring

To be able to increase the precision in the search for words, we next need to
solve our problem of word boundaries that aren’t signalled by whitespace, that

88 REGULAR EXPRESSIONS

is, if a word occurs at the beginning or end of a line or in a different context. In
cases like these, we can anchor our search string in different ways. The greatest
flexibility in this is provided by marking word boundaries, for example, by writing
\band\b if we only want to look for the word and, where \b is the word boundary
marker. The backslash preceding the b here is just like the one we’ve seen in the
other abbreviation classes above and changes the ‘meaning’ of the b from a literal
character to something different. Thus, although our example may look like the
word band preceded by a backslash and followed by \b, it actually represents a
combination of boundary marker + and + boundary marker. To see exactly how
this works, let’s do another exercise.

Exercise 30

First, try the example of and as described above on the print version of the
sample text to see whether you can already spot the odd-one out, then try
‘searching’ with and without boundary markers in the online version.

Finally, using appropriate quantification, look for words of different
length.

If we want to anchor our search term at the beginning or end of the line (or
string), we can specify ˆ or $, respectively. However, please always bear in mind
that this may make sense in a program that reads texts line by line, such as grep,
a Perl script, or most of my own programs that allow you to run line-based con-
cordances, but not necessarily in a stream-based concordancer which usually reads
and processes all words as a continuous stream of characters/words and may there-
fore ignore these markers, or may only match at the beginning or end of the whole
file!

6.4.2 Grouping and alternation

Enclosing items in round brackets (in the first instance) causes them to be grouped.
Thus, for example, (\sapples\s)∗ would look for the exact group/sequence of
characters representing the (white-space-bounded) word apples, as well as specify
that the word may occur zero or any number of times in a row. Granted, we gene-
rally wouldn’t really expect this word to occur two or three times in sequence,
unless we may have encountered a copy-and-paste error where the word was redu-
plicated accidentally, or maybe in a question like “Why do we call apples apples?”,
so, in this case, we’re probably more interested in specifying that the word could,
but need not, occur. However, in some rare cases, apart from the question just
cited, it may indeed be grammatically correct to repeat the same word form twice
in a row, albeit with different grammatical functions and meanings. This could,
for example, happen in a relative clause that begins with the relative pronoun that,

REGULAR EXPRESSIONS 89

followed by the demonstrative determiner that, as in the following example taken
from the BNC: “I realize now that that is what I want more than anything else”
(A08 2983).

Grouping character sequences together, though, isn’t the only thing bracketing
allows us to do. It also gives us a way to express alternatives within our group, and
thus a much greater flexibility in specifying linguistic patterns. If, for instance, we
wanted to be able to search for a number of different types of fruit at the same time,
we could construct a regex like this: (apples|bananas|grapes|pears), where
the pipe symbol (|) separates the alternatives from one another. This way, we can
also specify alternatives within alternatives because we can nest brackets within one
another, as in, for example, (\b(an?|the)\b (old|young) (wo)?man), which
would group and find all occurrences of a/an/the old/young man/woman, where
I’ve indicated the alternatives options using slashes, allowing for either an indefi-
nite or definite article, followed by either one of the two adjectives, and followed
by either man or woman.

Exercise 31

Try something similar by specifying a regex that will find all the verbs in
the sample text above, then do the same thing for all nouns. First, draft
the regex on paper and then try it in the online interface. Are there any
unexpected results or difficulties in specifying the patterns?

Another ‘side effect’ of using brackets in many programs/programming lan-
guages that use regexes is that whatever is enclosed in a group is captured and
can usually be ‘referred to’ again via a so-called backreference, where each group
of brackets, starting with the outermost, can be referred to by a number, gener-
ally preceded by a backslash. Thus, if we had only one pair of brackets, as in the
fruit example above, we’d be able to retrieve whichever one of the alternatives
was found by \1. In the more complex example with the nesting, \1 would con-
tain the whole expression found, \2 whichever article was found, \3 either one of
the adjectives, and \4 the initial morpheme of woman, provided that woman was
matched in the first place, but nothing if only man was matched.

As concordancers generally only match one search term, though, they are very
unlikely to let you do much with backreferences. However, in programming or
in converting data from one particular format to another, this is extremely use-
ful for extracting parts of complex matches, and ‘re-using’ them. In some edi-
tors that allow regex search-and-replace operations, you can even do things like
automatically swap \1 and \2, for instance to move adverbs after auxiliaries, as
in for instance turning the phrase I (rarely) (have) seen automatically into I have
rarely seen, or even turn some declaratives into interrogatives (or exclamatives),
provided that you ignore punctuation and sentence case, as in, for example, I

90 REGULAR EXPRESSIONS

have seen it to have I seen it (?!). If you want to, and your editor, like the ones
I recommended above, supports regex replacements, you can try this on the
above example for swapping the adverb with the auxiliary. To do this, simply
type the initial phrase into an empty document and then search for (rarely)
(have) and replace this by \2 \1, making sure that the option for regex replace-
ments is switched on. You’ll probably learn to appreciate backreferences much
more once you’ve learnt about how to construct linguistic annotations in Chap-
ter 11, where you’ll be able to convert some original data into a special coding
format using techniques such as the one above to carry out the conversion more
efficiently.

6.4.3 Quoting and using special characters

Now we’ve discussed almost all the essential details to begin using regexes properly
inside a concordancer, apart from one little detail. If certain characters, such as
the dot/full stop (.), question mark, or caret, etc., have a special meaning for the
program interpreting the regex, how do we actually specify those characters if
we explicitly want to look for them? Well, this is done by escaping them, which is
generally achieved by preceding them by a backslash (\), that gives them back their
literal meaning. Therefore, in order to search for a full stop, you simply write \.
(but note that this is not necessary inside a character class, where all punctuation
marks retain their ‘punctuation meaning’).

For linguistic purposes, when we quantify character classes or shorthands, we’ll
mainly search for and use constructs that represent word characters, for example,
something like [a-z]+ or \w+, which is somewhat safer than using a . to simply
indicate any character. This is because quantifying the latter will literally find any
character at all, including spaces, line breaks, as well as even special control charac-
ters that only the computer may understand, or even word boundaries themselves.
Thus, if we, for example, want to look for words with particular beginnings or ends
and think that, instead of using appropriate constructs representing word charac-
ters, we can be lazy and just write the dot followed by an appropriate quantifier,
we may end up with rather unexpected results. For instance, if we wanted to look
for all pronouns that start with the character sequence <the>, i.e. them, these, their,
etc., and just specified \bthe.+\b, assuming that what this would find starts with
said combination and ends at the next word boundary, we’d be in for a surprise.
This is because what it would in fact generally match is the very first occurrence of
the character sequence, followed by the rest of the text, that is, a combination of
word characters, whitespaces, punctuation marks, etc., until we reach the end of
the text itself, which is – perhaps not so obviously – also a kind of word boundary.
This happens because most regex engines assume that quantification is by default
greedy, that is, supposed to match as many characters as possible. In order to avoid
this problem, and still use our ‘lazy’ version of a shorthand, we have to make the
quantification non-greedy, which is done by adding another question mark after
the first quantifier. In our case, we’d then have to write \bthe.+?\b, which would

REGULAR EXPRESSIONS 91

stop the match as soon as the regex finds the first word boundary following the
quantified shorthand expression, also finding non-pronouns like theme, thematic,
thesis, etc., though.

6.4.4 Constraining the context further

In some cases, rather than just specifying everything we want to find, we also
need to be able to indicate that something either should or should not occur in
an environment. To some extent, we’ve already done this when we used word
boundaries above, because whenever we inserted a boundary marker in our regex
constructs, we effectively said “don’t allow another word character to occur here”,
thereby constraining the options for a match. To return to our example of and
from Section 5.4.1, where we wrote \band\b, we stated that there should be no
word character preceding the <a>, and no word character following the <d>. This
is a very powerful construct, but only allows us to constrain one particular envi-
ronment, that is, the beginning or end of a word we’re looking for. Sometimes,
however, we also need to be able to constrain certain patterns inside or around
parts of a word or a grouping, in which case we need other ways of being able
to indicate that we either don’t want something to precede or follow a specific
pattern. This can be achieved by using so-called lookaround, which is subdivided
into lookahead and lookbehind. The former allows us to constrain what is (posi-
tive lookahead) or is not (negative lookahead) supposed to follow, while the latter
provides positive and negative options for whatever is or is not supposed to pre-
cede, our search term. As groupings normally capture, and we don’t want what-
ever is supposed to be constraining our grouping to become part of the match,
and thus be highlighted by the concordancer, these constructs actually use a spe-
cial syntax that excludes them from being captured, which is that the opening
bracket of the grouping parentheses is immediately followed by a question mark,
i.e. (?…).

To illustrate the usefulness of such a feature, let’s assume you want to teach stu-
dents vocabulary about different types of containers to store things in, in which
case you may want to run a search for compounds involving the words box and
case to find all singulars and plurals. From what we already know, we can eas-
ily achieve looking for the stems of these compounds by writing the following
regex: (boxe?|case)s?. However, using this expression, we’re not only bound
to find many occurrences of the stems themselves (which are relatively uninter-
esting), but at the same time also retrieve instances of the word case in its legal
meaning or as part of the prepositional phrase in case. To avoid this, we can use
negative lookbehind like this, (?<!\b)(boxe?|case)s?, stating that the stem
should not be immediately be preceded by a word boundary. The counterpart,
positive lookbehind, can for instance be used to find all words at the beginning of
a sentence, using the following expression: (?<=[.!?])\w+\b. As you’ll hope-
fully already be able to guess, this finds all words that follow a major punctuation

92 REGULAR EXPRESSIONS

mark and a space, but unfortunately misses all first words in paragraph-initial sen-
tences, as these are not preceded by punctuation. Now, unfortunately, we cannot
simply combine these searches because the one limiting feature of lookbehind
in most regex implementations currently is that they have to be fixed, so that
we have no option but to run both searches and then combine the results, if
necessary.

Lookahead, probably because it’s easier to implement, doesn’t suffer from this
limitation, so that we can specify more complex expressions, such as the counter-
part of the one we just tried, in one go, i.e. \b\w+(?=([.!?]|$)), which finds
all words that occur at the end of a sentence and also the end of a paragraph,
along with, unfortunately, Roman ordinal numbers and some abbreviations that
may occur in the middle of the sentence. Negative lookahead basically allows us to
exclude unwanted constructions, such as parts of a paradigm. Thus, if we wanted
to find all but the ing-forms of the verb want, we could say \bwant(?!ing)\w∗\b,
where we first ensure that <ing> cannot follow the stem, and then say that any
other word characters may or may not follow before the boundary. Of course,
depending on your corpus, you may also find some rather unexpected words that
have nothing whatsoever to do with the verb want; for instance, because my test
corpus for trying out regexes contains more ‘archaic’ language, I also found the
adjective wanton, as well as some other constructions, this way. In comparison
to the genuine expected results, though, those were extremely small and easy to
weed out after sorting.

6.5 Further Exercises

In order to do these exercises, you should have AntConc installed on your
system or on a memory stick. The exercises are based on the Project Guten-
berg e-text of Wuthering Heights, which you can obtain from Project Gutenberg
(http://www.gutenberg.org/) and clean up as we’ve practised before.

Exercise 32

Start AntConc and type in hand as your search term. View the results to
see how many different words or word forms you get. Tip: It’s best if you
sort your results.

Next, check the tick mark for ‘Regex’, run the search again, and
observe/interpret the results to see what additional useful or not-so-useful
information may have been added to the results.

Next, in our first attempt to narrow down our search to forms we know
belong to either the noun or verb paradigm, specify hand(ed|ing|s)?

http://www.gutenberg.org/

REGULAR EXPRESSIONS 93

instead. Check the results and see how/whether they differ from what you
found before.

Change your search term to include a \b at the end of your search term
and observe the difference.

Now, add \b at the beginning of the term, too, and compare the results.
Last, add [ˆ-] at the beginning of the term and check the result again.

Some more, diverse, exercises:

Exercise 33

Do a search for all occurrences of the ‘verbs of belief’, guess, suppose, think,
believe and assume.

In the next step, add all possible inflectional endings to the search. What
will you fail to catch with this?

Do the same for see and understand. Do you encounter similar problems
here?

For all the above exercises, it obviously doesn’t make sense to only do them
purely mechanically, but you should always analyse and evaluate the results very
carefully. This generally involves keeping a record of how you achieved the results
by setting up and possibly modifying your regex until you’ve managed to find all
the expected results, keeping track of interesting, but unexpected, ones as well as
saving some suitable examples and discussing them with regard to their (morpho-)
syntax, semantics, pragmatics, possible frequency distributions, etc.

Solutions to/Comments on the Exercises

Exercise 26
Character classes clearly represent one of the features referred to above, where we
would get too many, and probably also linguistically uninteresting, search results,
if we simply look for these in a corpus. However, what you’ll hopefully have learnt
from the online demo display is that a character class on its own simply repre-
sents alternative options for finding a single character, which is why I’ve chosen
to surround all instances by a little extra space to make the individual characters
stand out more clearly. When using character classes, and also partly when looking
at the most salient examples in the list of basic examples above, it’s perhaps easy
to be confused into thinking that character classes always represent consecutive

94 REGULAR EXPRESSIONS

ranges, but of course they can represent any kind of grouping that may be (lin-
guistically) meaningful in any way, as in, for example, [mnN], which would find all
nasal consonants in a corpus of phonetic transcriptions.

Exercise 27
In my description of the \w word characters definition, I deliberately used the
word “theoretically” when stating that this construct should also match other
characters that occur in words, in whichever way or character set they’re tran-
scribed. Unfortunately, though, JavaScript, which I used to create the online exer-
cises, only seems to take characters from the traditional Latin (ASCII) character
set as being word characters, which is why the phonetic characters are also not
selected. However, when you use the ‘any character’ construct, i.e. the single dot
(.), the phonetic characters are at least also recognised as characters. I also tested
the same feature with some Chinese characters, which are clearly word charac-
ters, but again these were not recognised, which again proves that we always need
to test any regex constructs we use in different programs to see whether they’re
going to be recognised properly. In this case, JavaScript has shown that its imple-
mentation of regexes is still very limited, but many other languages or programs
– including AntConc – understand many more advanced regex options.

One further thing that may have been confusing when you tested for whitespace
is that around all the spaces you will probably have noticed strange so-called ‘pipe’
symbols (|). These indicate word boundaries and their being displayed here is due
to some tricks I had to use in writing the script to make it display everything the
way I wanted it displayed, so you can safely ignore them .

Exercise 28
As stated below the exercise itself, it’s quite easy to get confused about what nega-
tion does to a character class, partly because we may sometimes get the impression
that we’re actually just turning around a definition if we negate a range inside a
character class. However, although, for instance, negating the original character
class [A-Z] (i.e. all English uppercase letters) to [ˆA-Z] will predominantly have
the effect of now showing us/selecting all lowercase letters, it will also show/select
non-word characters, such as punctuation, spaces, or numbers, simply because
they’re obviously also non-uppercase characters. Thus, one thing you may need
to do when defining/using a negative character class, apart from thinking about it
carefully anyway, is to not think in terms of binary oppositions.

Exercise 29
Essentially, the two basic examples in this exercise have allowed you to explore a
number of things:

REGULAR EXPRESSIONS 95

a) how to specify one optional single character through the use of a question
mark: the difference between colour and color, or the presence/absence of a
3rd person singular or plural s, provided that you add a \s after the question
mark, which will then find only those instances that are not followed by a
punctuation mark,

b) how to possibly identify words that contain multiple occurrences of the same
character, such as double f, s, or l, or even words with duplicated vowel letters
such as the word good,

c) how to identify words of different length, but only if they’re in fact surrounded
by whitespace.

Examples of type a) allow us to work with different dialectal variants, or some-
times also to cover spelling variants in historical texts, where the spelling may not
yet have been standardised, so that even one and the same text may contain alter-
nate forms that represent exactly the same word meaning. In addition, we can
already model very basic morphological features, such as the plurals referred to
above, or vowel alternation in irregular verbs that may signify differences in tense,
for example, give vs. gave, or in a small number of singular–plural distinctions
for nouns, such as in man–men. Examples of type b) make it possible to identify
phonotactic features, such as the presence or absence of reduplication and its effect
on pronunciation, while type c) may be useful for selecting or extracting words of
different length in order to establish potential correlations between word length
and complexity, or, if we assume that shorter words are indeed less complex, to
extract simpler vocabulary from texts in order to teach it at less advanced learner
levels. Obviously, though, to what extent we’ll in fact be able to use these regular
expression constructs in the ways described here again depends on which parti-
cular program we’re using and how regexes are implemented there.

Of course, although we’ve already made great progress towards identifying
words, we still have the issue of words not surrounded by whitespace to consider,
but we’ll soon find a solution for this, too.

Exercise 30
When scanning the printed sample text visually, you’ll hopefully already have spot-
ted that the character sequence <and> not only occurs in the conjunction, but also
as the final part of the word understand. If not, then the online exercise will have
revealed this very quickly, although you may still have had to look carefully to see
it. Of course, now knowing that this sequence may occur inside another word, we
could make it easier to highlight such examples simply by adding a \w in front
of the character sequence <and> in our search, thereby specifying that it has to
be preceded by at least another word character. However, this still wouldn’t allow
us to identify all occurrences where the sequence occurs at the very beginning of
the word, so we need to be even more precise and formulate our regex like this:
\b\w∗and\w∗\b . If you cannot immediately recognise what this means, then I

96 REGULAR EXPRESSIONS

suggest you spend a few minutes thinking about this and maybe even test it on a
longer text in AntConc, as described in Section 6.5.

As I hope you’ll also have seen, by using the boundary markers in combination
with the shorthand for word characters, you’ll now definitely be able to look for
words of fixed or variable length properly, where, for example, \b\w{2}\b will find
all words that are exactly two characters long, \b\w{2,5}\b between two and five
characters, and \b\w{2,}\b at least 2 characters long.

Exercise 31
Your first attempt at finding all verbs will probably be to simply identify all
existing verb forms in the sample paragraph and group them together in one
fixed regex that matches everything exactly as it occurs in the text, which
would probably look like the following string: (allow|test|displaying|
\bbe\b|contains|Can|understand|based|concerning|make), where hope-
fully you’ll already have realised that the sequence <be> can also be part of another
word and thus we’d at least have to add boundary markers around it to only find
the base form of the verb. However, if you think about this more closely from a
linguistic perspective, doing this only allows you to find what’s really there, but
wouldn’t be suitable for identifying all the different potential word (paradigm)
forms of the verbs we may be interested in if we were actually researching them.
In order to properly investigate all the different verb forms, we’d minimally
have to try and specify a regex that groups the base forms of the verbs together,
and then adds another optional grouping that expresses all the possible verb
endings that could be present, and which may then initially end up looking
somewhat similar to the following, already considerably more complex, construct:
(allow|test|display|\bbe\b|contain|Can|understand|base|concern|
make)(e?d|ing|s)?. This regex, though, still has a number of problems, not
least of all that it would also potentially find the word shallow, so that we’d at
least need to use a boundary marker before the word allow, too. Other things
the expression may also find, and which we may or may not actually want it
to find, are the ‘negative counterparts’ of some of the verbs (or nouns) that
carry a negative prefix, for example, disallow, misunderstand(ing), debase(d),
unconcerned, and unmake. If we want to exclude some of these, but still not
the noun forms understanding, base(s), concern(s), or make(s), not to forget
capitalised can, which was yet another issue above, then we’d at least have
to add a boundary marker before the whole group, and ideally also after it,
thus yielding something along the lines of or at least close to this: \b(allow|
test|display|be|contain|Can|understand|base|concern|make)(e?d|
ing|s)?\b. To make this expression completely flexible to cover almost
everything we want it to find, we’d then still need to adapt it a little more by
allowing for initial small (lowercase) and capital letters: \b([Aa]llow|[Tt]est|
[Dd]isplay|[Bb]e|[Cc]ontain|[Cc]an|[Uu]nderstand|[Bb]ase?|[Cc]
oncern|[Mm]ake)(ed|ing|s)?\b.

REGULAR EXPRESSIONS 97

Now, if you have a keen eye for, or at least some substantial training in,
morphology, you’ll also have spotted that, among all the regular verbs, we have
two irregular ones that we haven’t dealt with properly. The first one, make, is
relatively easy to fix because we only need to add a character class that specifies
the consonant options, i.e. [dk], as well as make the final <e> optional, so that
we can also ‘create’ the present participle form, which, incidentally, we also have
to do for the verb base. For the verb be, though, we have no choice but to list the
full paradigm. So, the ‘final’ version of our regex would then be: \b([Aa]llow|
[Tt]est|[Dd]isplay|[Aa](m|re)|[Bb]e(en)?\b|[Ii]s|[Ww](as|ere)|
[Cc]ontain|[Cc]an|[Uu]nderstand|[Bb]ase?|[Cc]oncern|[Mmdk]e?)
(e?d|ing|s)?\b. Now, I put the word final above in scare quotes because of
course this regex still wouldn’t be able to handle the negative contraction forms
of the BE paradigm, which, however, I leave up to you to add as another exercise.
Please also note that our regex would of course ‘overgenerate’, that is, match
more than just legitimate words, e.g. also errors like maked, which could still
occur, for example, in child language or learner interlanguage. One other thing
we need to be aware of here is that the above regex could still be made more
compact, albeit less readable, to the novice, if we grouped all the words that start
with the same letter together, which would obviously lead to more brackets and
pipe symbols within brackets.

I’ll leave the second part of the exercise, to identify all the nouns, to you. Now
that you’re aware of the main issues, you should probably be able to handle this
one relatively ‘easily’ if you bear in mind that nouns do have singular and plu-
ral forms, etc. Unfortunately, though, given our current means, and even using
the most sophisticated regexes, we still have no means of distinguishing between
grammatically polysemous nouns and verbs. To solve this problem, though, we’ll
soon look into ways of enriching our data with word-class information.

Furthermore, now that you’ve gone through a lot of trouble to painstakingly
create two sets of fairly complex regexes, you’ll probably want to test them on
more than just my short paragraph, so I’d suggest that you open a file in AntConc,
paste the regexes in the search box, tick the ‘Regex’ option, and see what the
results will be…

Exercise 32
When you do a basic word search for hand in AntConc, not using the regex
feature, you should get 94 hits altogether. To distinguish between your exam-
ples, you can simply sort on the first word to the left (Level 1: 1L). This
should allow you to quickly establish that there are no occurrences of hand as
a verb, but instead a number of different noun uses, ranging from the basic noun
(phrase) use (a hand, her hand, an unformed, childish hand), via temporal/locative
prepositional/circumstantial phrases (at hand, on either hand, at your left hand, by
the hand), idiomatic/metaphorical expressions (take him in hand, try my hand at,
came to hand; He shall have his share of my hand [i.e. be beaten], offering the right

98 REGULAR EXPRESSIONS

hand of fellowship), to textual deixis (on the one hand). Furthermore, there’s also
a single compound noun, minute-hand.

Once you tick the ‘Regex’ option, you’ll probably be very surprised that you
suddenly end up with 199 hits instead of the original 94. Sorting the hits again,
this time by the word itself (Level 1: 0), and then by the first word on the left
(Level 2: 1L) quickly shows us that now we not only find many more forms of the
noun, including plurals, plus a few ED-forms of the verb (commonly referred to
as ‘past participles’), which we did want to find, but also quite a few words that
simply contain the character sequence <hand>, such as, for example, handsome or
even chandelier, which we definitely didn’t want to find.

When trying to narrow down our search to noun or verb forms of hand by
specifying the regex hand(ed|ing|s)?, unfortunately we still get all of the 199
hits that the most basic regex string has already given us, so we definitely need to
explore better ways of limiting our search via additional regex options. The most
basic thing to do here is to ‘say’ that the verb/noun ‘endings’ we specified really
have to occur at the very end, and ‘word end’ here means ‘word boundary’, i.e.
\b. Please note that, even if you may have assumed that we could simply replace
the ? quantifier in the regex by a + to force the endings to occur at least once,
this simply would not work because we would then be excluding all uninflected
forms.

Adding the boundary marker at the end now already reduces the number of
hits to 159, that is, excluding 40 unwanted hits, but still leaves us with some
unwanted cases, beforehand, close-handed or minute-hand. Adding another boun-
dary marker at the beginning of our regex now eliminates the 2 occurrences of
beforehand, reducing the number to 157, but still leaving us with close-handed
and minute-hand because hyphens are generally considered to be parts of words,
for instance many compound nouns, so, in order to get exactly the results we
want, we also need to exclude the hyphen, thus making the final regex \b[ˆ-
]hand(ed|ing|s)?\b and only leaving us with 155 relevant results.

Exercise 33
As in the previous exercise, we’ll develop the solution here as far as possible,
in a step-by-step manner in order to ‘fine-tune’ the regex as much as possi-
ble. I’d thus suggest that, at every stage, you try out the adjusted regex and
observe the results closely to enable you to understand the process better. To
begin exploring the options here, you’ll probably want to start with the simple
pattern \b(assume|believe|guess|suppose|think)\b. To make it easier to
read, I’ve already put the words into alphabetically sorted order, which has the
added advantage of speeding up the search process a little because regexes actu-
ally try to match in alphabetical order. This first attempt will give us 210 hits, but
unfortunately miss all the inflected forms.

In the next step, to add inflectional endings, and having noticed that
the final <e>s in assume and believe and suppose may actually need to be

REGULAR EXPRESSIONS 99

made optional in the groupings for the inflections for the sake of cre-
ating a more consistent pattern, we can already change the pattern to
\b(assum|believ|guess|suppos|think)(e?[ds]?|ing)?\b. This will give
us 284 hits that are already fairly close to what we want to be able to find, but still
of course misses the ED-form of think, thought.

Adding an option for this will then provide us with an improved solu-
tion for the regex, \b(((assum|believ|guess|suppos|think)(e?[ds]?
|ing)?)|thought)\b, increasing the number of hits to 414, and indicating the
importance of the past tense form of think in the text. However, after sorting
the list on the search term and scrolling down to the end of the hits, we can see
that our attempt to cover all inflectional verb endings has inadvertently led to our
also finding a number of occurrences of the plural of the noun thought, which is
definitely something we’d like to avoid if possible.

Now, obviously, we don’t really want to have to specify all the verb paradigms
for each verb separately, but, on the other hand, cannot simply exclude
the 3rd person singular present {s} morpheme because it’s such an impor-
tant part of the paradigm for verbs. Luckily, though, the {s} morpheme is
not a part of the paradigm for the past tense forms, where we only have
thought in both the simple past and perfect tense forms. Therefore, what
we can do here is use a little negative lookahead to exclude the <s> from
our pattern definition for the past tense form, yielding \b(assum|believ|
guess|suppos|th(ink|ought(?!s)))(e?[ds]?|ing)?\b, and reducing the
final number of hits to 400.

In this way, we’ve now managed to exclude all the plural forms of the noun
thought, but are still left with a number of occurrences of the singular noun, as in:

1 every thought
2 an evil thought
3 Catherine’s first thought
4 there lay immense consolation in that thought
5 ere they had a thought to spend for any
6 Hareton seemed a thought bothered
7 while I can bestow a thought on the matter
8 for every thought she spends on Linton
9 Our first thought

10 my great thought in living
11 no thought of worldly affairs
12 the slightest act not prompted by one thought
13 sometimes shuddered at the thought of.

Looking at this list, we may assume that, in order to improve our search results,
we could adjust to restrict our search to only finding instances of thought not
preceded by a determiner or quantifier, which, from a linguistic point of view, is
obviously correct. However, unfortunately the one construct we know that should

100 REGULAR EXPRESSIONS

allow us to express such restrictions, that is, negative lookbehind, is (currently
still) restricted to a single fixed pattern, so we could maximally exclude one of our
options, in this case possibly<a> because it occurs marginally more frequently than
any other form, but still only three times. Although, of course, we could easily add
the negative lookbehind for <a>, this seems hardly worth it, especially because the
effect is negligible, and because sorting the hits according to the first word on the
left will relatively easily allow us to identify and delete all noun occurrences of
thought. For the moment, we therefore simply need to accept that we have no
ideal way to exclude the nouns form our search until we learn how to work with
morpho-syntactically annotated versions of our data, which will then allow us to
only look for verb forms much more easily.

A similar problem to the one above could also exist for the singular and plural
forms of the noun guess because they look identical to the base form of the verb
and the 3rd person singular present, but luckily an investigation of the data reveals
that those don’t actually occur in our text. If they did, we’d have to resort to the
same solution again.

Regarding the search for see and understand, the first thing to note would be
that the past tense forms are both irregular, so that the regex ‘suffix’ pattern would
only need to include the 3rd person singular and ing-form, with one minor addi-
tion, the <n> that allows us to create the ED-form of see, while all other irreg-
ular forms would need to be specified as part of the stem allomorph pattern as
in \b(s(a|ee)|underst(an|oo)d)(ing|[ns])?\b, which is the most compact
and efficient way of writing this expression. This pattern should return 249 hits,
out of which, luckily, only a single one represents a case we’d want to exclude,
which is It is right to establish a good understanding at the beginning, where the
word understanding is, of course, a deverbal noun.

Sources and Further Reading

Friedl, J. (2006). Mastering Regular Expressions (3rd ed.). Sebastopol, CA: O’Reilly.
Weisser, M. (2009). Essential Programming for Linguistics. Edinburgh: EUP.

7
Understanding Part-of-Speech

Tagging and Its Uses

This chapter will explore one of the main breakthroughs in corpus linguistics,
morpho-syntactic annotation, which is also referred to as Part-of-Speech (or PoS)
tagging. This kind of linguistic technology makes it possible to enrich data with
information that facilitates extracting and analysing specific word forms or con-
structions in a way that’s more advanced than what we’ve discussed previously.
However, despite this obvious advantage, we still need to be cautious and aware
of its limitations when using it. Thus, the following sections will try to provide you
with a rough overview of what exactly PoS tagging is and how it can be carried
out, where its strengths and weaknesses lie, and how you may be able to use it
with your own data.

The following is an extract from the beginning of the Brown Corpus that illus-
trates what basic PoS-tagged text may look like, although the exact format and
conventions for representing the tags may vary for different annotation schemes:

The_AT Fulton_NP1 County_NN1 Grand_JJ Jury_NN1 said_VVD Friday_NPD1
an_AT1 investigation_NN1 of_IO Atlanta_NP1’s_GE recent_JJ primary_JJ elec-
tion_NN1 produced_VVD no_AT evidence_NN1 that_CST any_DD irregulari-
ties_NN2 took_VVD place_NN1 ._.

For the moment, you don’t need to understand what the tags mean, as we’ll
soon explore which different bits of information may be contained in a PoS tag.

As we’ve seen in some of our previous exercises and discussions, frequently
one and the same word form may have different meanings or functions, that is,

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

102 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

be semantically or grammatically polysemous. Very frequently, this polysemy is in
fact of a morpho-syntactic nature because these differences in meaning depend
on the word class associated with the word form in a particular context, as well
as potentially its inflection. Remember the example of the duplicated word form
that in Section 6.4.2, where the first occurrence was a relative pronoun and the
second a demonstrative determiner? This type of grammatical polysemy is actually
far more likely than you may assume, although it rarely occurs in such reduplicated
word form contexts, but more frequently in the shape of words that are commonly
assumed to be the products of zero-derivation or conversion. The following table,
based on DeRose (1988), lists the number and degree of ambiguity found in the
word-class labels – in corpus linguistics circles better known as PoS tags – assigned
to words in the Brown Corpus.

Table 7.1 Ambiguous PoS tags in the Brown Corpus

Degree of Ambiguity Number of Words Percentage

unambiguous (1 tag) 35,340 89.604%
ambiguous (2-7 tags) 4,100 10.396%
2 tags 3,760 9.533%
3 tags 264 0.669%
4 tags 61 0.155%
5 tags 12 0.030%
6 tags 2 0.005%
7 tags 1 (still) 0.003%

Here, we can see that slightly more than 10% of all word forms that occur in the
Brown Corpus are in fact ambiguous. This means that, even in a comparatively
small corpus like the Brown, one out of ten words may become a potential source
of error in our analysis, unless we check our results carefully! For the majority of
these, there are only two options, with the likelihood of a word belonging to more
than two word classes dropping drastically, but still being a possibility, although
the more extreme cases do get very rare indeed.

As stated above, some of the high potential for grammatical polysemy in English
stems from what is generally described as zero-derivation in morphology, that is,
the ability of certain words to change their word class without any form of inflec-
tion or affixation. Most of the instances of this tend to involve noun–verb pairs
that need to be disambiguated by their context in writing. Sometimes, in spo-
ken language, we also have the option to recognise them through their differing
stress and/or pronunciation patterns, for example, house (noun; /haUs/) vs. house
(verb; /haUz/) or insult (noun; / I̍ns√lt/) vs insult (noun; /In ̍s√lt/), etc., but of
course, without additional grammatical information, this would only be possible
in phonetically transcribed corpora.

For this and other reasons, it’s highly useful to have corpora enriched with
morpho-syntactic tags. At least some of the existing corpora that we’ll be using

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 103

here already do contain such information, and we’ll also explore ways of getting
our own data tagged to some extent later. Being able to make use of such extra
information will not only help us to distinguish between word forms that are gram-
matically polysemous, but also to look for collocational or colligational patterns
(see Chapter 10), in other words, to investigate formulaic language or language
patterns more easily.

7.1 A Brief Introduction to (Morpho-Syntactic) Tagsets

To be able to understand exactly what type of information we can usually get from
many tagsets, let’s start by exploring a relatively simple tagset for English, the Penn
Treebank Tagset, depicted in Table 7.2, which only contains 48 tags, a number
that already exceeds, to a fairly high extent, that of the traditional word classes
you’ll be familiar with from school or any basic or advanced linguistics courses,
though.

Table 7.2 The Penn Treebank tagset (based on Taylor et al. 2003: 8)

Tag Description

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NP Proper noun, singular
NPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PP Personal pronoun
PP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol

104 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

Table 7.2 The Penn Treebank tagset (based on Taylor et al. 2003: 8)
(Continued)

Tag Description

TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb
Pound sign (AmEn), hash mark (BrEn)
$ Dollar sign
. Sentence-final punctuation
, Comma
: Colon, semi-colon
(Left bracket character
) Right bracket character
′′ Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

Exercise 34

Look through the list of tags in Table 7.2 and check to see whether you’re
familiar with all the grammatical (sub-)categories listed in the right-hand
‘Description’ column, or can at least roughly imagine what the individual
tags may stand for.

Do an online search for categories you’re unfamiliar with, and try to see
whether this will allow you to understand the categories better.

Think about whether there are any tags that may be unusual, either in
the sense that they represent independent categories or that they may be
‘lumping together’ categories you’d normally have seen as being separate.

As you’ll hopefully already have observed when going through the tagset, typi-
cally a morpho-syntactic tag will consist of one (in the case of punctuation in the

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 105

Penn tagset) or more, often three, (capital) letters or special characters, begin-
ning with one that represents the ‘major PoS’, that is, noun, verb, adjective,
adverb, etc. Usually, and whenever possible, the designers of tagsets try to choose
a mnemonic for this initial letter, based on the first letter of the word class
itself (e.g. N for n oun, V for v erb). But of course, due to the fact that the
names of some word classes start with the same letter (e.g. article/adjective/adverb;
pronoun/preposition/particle), this is not always possible. In this case, an alterna-
tive letter that doesn’t constitute the beginning of any word class will be used, for
example, commonly J for ad j ectives, R for adve r bs, where at least the letter used
tends to be part of the word class name. The second character then often repre-
sents a form of sub-categorisation – such as N or P for nouns, where the N can be
seen as a mnemonic for ge n eral and P for p roper –, if applicable, whereas the third
(or sometimes whichever is the final one) often stands for other properties of the
word, such as number or person, etc. Those are just very general rules, though, and
depending on the exact number of distinctions made – i.e. how fine-grained it is –
a tagset may also contain tags that are much longer. This is especially the case for
more strongly inflected languages, as more distinctions can, and need to be, made.

Let’s explore this a little further by looking at another of the currently best-
known tagsets, the CLAWS (Constituent Likelihood Automatic Word-tagging
System) C7 Tagset, which is already far more detailed at 152 tags, exceeding the
48 tags observed in the Penn tagset by 104 tags.

Table 7.3 The CLAWS 7 (C7) tagset

Tag Description

! punctuation tag - exclamation mark
"""" punctuation tag - quotes
(punctuation tag - left bracket
) punctuation tag - right bracket
, punctuation tag - comma
- punctuation tag - dash
---- new sentence marker
. punctuation tag - full-stop
… punctuation tag - ellipsis
: punctuation tag - colon
; punctuation tag - semicolon
? punctuation tag - question mark
APPGE possessive pronoun, pre-nominal (e.g. my, your, our)
AT article (e.g. the, no)
AT1 singular article (e.g. a, an, every)
BCL before - clause marker (e.g. in order (that), in order (to))
CC coordinating conjunction (e.g. and, or)
CCB adversative coordinating conjunction (but)
CS subordinating conjunction (e.g. if, because, unless, so, for)

(Continued)

106 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

Table 7.3 The CLAWS 7 (C7) tagset (Continued)

Tag Description

CSA as (as conjunction)
CSN than (as conjunction)
CST that (as conjunction)
CSW whether (as conjunction)
DA after-determiner or post-determiner capable of pronominal function (e.g. such, former,

same)
DA1 singular after-determiner (e.g. little, much)
DA2 plural after-determiner (e.g. few, several, many)
DAR comparative after-determiner (e.g. more, less, fewer)
DAT superlative after-determiner (e.g. most, least, fewest)
DB before determiner or pre-determiner capable of pronominal function (all, half)
DB2 plural before-determiner (both)
DD determiner (capable of pronominal function) (e.g. any, some)
DD1 singular determiner (e.g. this, that, another)
DD2 plural determiner (these, those)
DDQ wh-determiner (which, what)
DDQGE wh-determiner, genitive (whose)
DDQV wh-ever determiner (whichever, whatever)
EX existential there
FO formula
FU unclassified word
FW foreign word
GE Germanic genitive marker - (’ or ’s)
IF for (as preposition)
II general preposition
IO of (as preposition)
IW with, without (as prepositions)
JJ general adjective
JJR general comparative adjective (e.g. older, better, stronger)
JJT general superlative adjective (e.g. oldest, best, strongest)
JK catenative adjective (able in be able to, willing in be willing to)
MC cardinal number, neutral for number (two, three ..)
MC1 singular cardinal number (one)
MC2 plural cardinal number (e.g. sixes, sevens)
MCGE genitive cardinal number, neutral for number (two’s, 100’s)
MCMC hyphenated number (40-50, 1770-1827)
MD ordinal number (e.g. first, second, next, last)
MF fraction, neutral for number(e.g. quarters, two-thirds)
ND1 singular noun of direction (e.g. north, southeast)
NN common noun, neutral for number (e.g. sheep, cod, headquarters)
NN1 singular common noun (e.g. book, girl)
NN2 plural common noun (e.g. books, girls)
NNA following noun of title (e.g. M.A.)
NNB preceding noun of title(e.g. Mr., Prof.)
NNJ organization noun, neutral for number (e.g. council, department)

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 107

Table 7.3 The CLAWS 7 (C7) tagset (Continued)

Tag Description

NNJ2 organization noun, plural (e.g. governments, committees)
NNL1 singular locative noun (e.g. island, street)
NNL2 plural locative noun (e.g. islands, streets)
NNO numeral noun, neutral for number (e.g. dozen, hundred)
NNO2 numeral noun, plural (e.g. hundreds, thousands)
NNT1 temporal noun, singular (e.g. day, week, year)
NNT2 temporal noun, plural (e.g. days, weeks, years)
NNU unit of measurement, neutral for number (e.g. in, cc)
NNU1 singular unit of measurement (e.g. inch, centimetre)
NNU2 plural unit of measurement (e.g. ins., feet)
NP proper noun, neutral for number (e.g. IBM, Andes)
NP1 singular proper noun (e.g. London, Jane, Frederick)
NP2 plural proper noun (e.g. Browns, Reagans, Koreas)
NPD1 singular weekday noun (e.g. Sunday)
NPD2 plural weekday noun (e.g. Sundays)
NPM1 singular month noun (e.g. October)
NPM2 plural month noun (e.g. Octobers)
NULL the null tag, for words which receive no tag
PN indefinite pronoun, neutral for number (none)
PN1 indefinite pronoun, singular (e.g. anyone, everything, nobody, one)
PNQO objective wh-pronoun (whom)
PNQS subjective wh-pronoun (who)
PNQV wh-ever pronoun (whoever)
PNX1 reflexive indefinite pronoun (oneself)
PPGE nominal possessive personal pronoun (e.g. mine, yours)
PPH1 3rd person sing. neuter personal pronoun (it)
PPHO1 3rd person sing. objective personal pronoun (him, her)
PPHO2 3rd person plural objective personal pronoun (them)
PPHS1 3rd person sing. subjective personal pronoun (he, she)
PPHS2 3rd person plural subjective personal pronoun (they)
PPIO1 1st person sing. objective personal pronoun (me)
PPIO2 1st person plural objective personal pronoun (us)
PPIS1 1st person sing. subjective personal pronoun (I)
PPIS2 1st person plural subjective personal pronoun (we)
PPX1 singular reflexive personal pronoun (e.g. yourself, itself)
PPX2 plural reflexive personal pronoun (e.g. yourselves, themselves)
PPY 2nd person personal pronoun (you)
RA adverb, after nominal head (e.g. else, galore)
REX adverb introducing appositional constructions (namely, e.g.)
RG degree adverb (very, so, too)
RGQ wh-degree adverb (how)
RGQV wh-ever degree adverb (however)
RGR comparative degree adverb (more, less)
RGT superlative degree adverb (most, least)

(Continued)

108 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

Table 7.3 The CLAWS 7 (C7) tagset (Continued)

Tag Description

RL locative adverb (e.g. alongside, forward)
RP prep. adverb, particle (e.g. about, in)
RPK prep. adv., catenative (about in be about to)
RR general adverb
RRQ wh-general adverb (where, when, why, how)
RRQV wh-ever general adverb (wherever, whenever)
RRR comparative general adverb (e.g. better, longer)
RRT superlative general adverb (e.g. best, longest)
RT quasi-nominal adverb of time (e.g. now, tomorrow)
TO infinitive marker (to)
UH interjection (e.g. oh, yes, um)
VB0 be base form (finite i.e. imperative, subjunctive)
VBDR were
VBDZ was
VBG being
VBI be infinitive (To be or not… It will be…)
VBM am
VBN been
VBR are
VBZ is
VD0 do base form (finite)
VDD did
VDG doing
VDI do infinitive (I may do… To do…)
VDN done
VDZ does
VH0 have base form (finite)
VHD had (past tense)
VHG having
VHI have infinitive
VHN had (past participle)
VHZ has
VM modal auxiliary (can, will, would, etc.)
VMK modal catenative (ought, used)
VV0 base form of lexical verb (e.g. give, work)
VVD past tense of lexical verb (e.g. gave, worked)
VVG -ing participle of lexical verb (e.g. giving, working)
VVGK -ing participle catenative (going in be going to)
VVI infinitive (e.g. to give… It will work…)
VVN past participle of lexical verb (e.g. given, worked)
VVNK past participle catenative (e.g. bound in be bound to)
VVZ -s form of lexical verb (e.g. gives, works)
XX not, n’t
ZZ1 singular letter of the alphabet (e.g. A, b)
ZZ2 plural letter of the alphabet (e.g. A’s, b’s)

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 109

As you should have been able to observe easily, the Penn tagset is much more
compact, whereas the C7 tagset makes a lot of rather fine-grained distinctions.
This makes it easier to search for highly specific grammatical phenomena, but also
forces the user to have a high degree of awareness of which categories exist and
what their exact meaning is. As we don’t have enough space here to discuss all the
differences in detail, I’ll just point out a few exemplary ones, and briefly discuss
their potential significance here.

Where the Penn tagset occasionally conflates categories – sometimes for reasons
that aren’t immediately obvious, such as, for example, to use the same tag for
‘subordinating conjunctions’ and prepositions – C7 goes exactly the opposite way,
making much finer sub-distinctions. Even just for the conjunctions, it has 5 sub-
categories (CS, CSA, CSN, CST, & CSW) that are applied in cases where the
word forms themselves are grammatically polysemous, for instance using CST to
mark that in its function as a conjunction (which, incidentally, subsumes relative
pronouns), as opposed to that of a demonstrative determiner (DD1). Regarding
prepositions, it distinguishes between general ones (II), and again specific forms
that may be grammatically polysemous, namely for (IF, as opposed to CS), of (IO,
as opposed to as adjective, in e.g. matter of fact, out of date, or adverb, in e.g. of
course, sort of, in multi-word units), or without (IW, as opposed to as adverb, e.g.
in without giving away).

Whichever tagset is more useful, though, really depends on the kind of analysis
that is being conducted. The Penn tagset, for example, was specifically ‘optimised’
to be used as a basis for further syntactic analysis (see Santorini 1990), where many
categories (as e.g. for nouns) can easily be ‘lumped together’ because they behave
in a very similar manner from a syntactic point of view. If we’re more interested
in issues of ‘semantic compatibility’, i.e. collocability, however, then a tagset like
C7 may provide us with more insights.

7.2 Tagging Your Own Data

Now, let’s start taking a look at how you can make use of tagging in your own
data, beginning by exploring how you can actually get your texts tagged in the first
place. Unfortunately, most of the best-known taggers that have been developed
over the years, such as, for example, the CLAWS system, for which a number of
tagsets, such as the C7 discussed above, have been developed, are generally not
freely available to the public or may require the purchase of a commercial licence
for tagging suitable quantities of text. Furthermore, even though some tagger
implementations are available as freeware/open source programs, these frequently
come in the shape of programming modules or command-line based programs
that many linguists are not accustomed to using, may necessitate additional soft-
ware to be installed on your computer, require special configuration, or produce
an output that’s not easily adaptable to one’s needs without much effort. In other

110 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

words, free taggers often lack simple, easy-to-use interfaces that make them acces-
sible to the average researcher.

As a further exercise, let’s download a freely available and easy-to-use PoS tag-
ger, and see how we can tag our own data and post-edit it.

Exercise 35

Go to the Project Gutenberg website and download a copy of The Adven-
tures of Sherlock Holmes.

As tagging longer texts may take a fairly long time, let’s first prepare a rel-
atively short sample. Make a copy of the file you just downloaded, calling it
‘adv_of_sherlock_holmes_beginning.txt’. Tip: Whenever you make copies
of files, always use the appropriate functionality inside your file manager.

Open the copy in your editor and place the cursor at the end of line 66,
which should give us enough text to evaluate the tagging. Tip: In many
editors, pressing ‘Ctrl + g’ will allow you to ‘go to’ a particular line.

Delete the rest of the text, using the time-saving methods we learnt ear-
lier, and save the text.

Download my ‘Simple PoS Tagger’ from http://martinweisser.org/
tools/Tagger/Tagger.zip and extract it to your computer/memory stick. As
before, if you’re using Mac OS X or Linux, you’ll currently need to run it
through Wine.

Run the program by (double-)clicking Tagger.exe.
Choose ‘File→Load input file’ from the menu or press ‘Ctrl + f ’ on the

keyboard, then find the file you just prepared. Select, and open it, so that
it gets displayed in the window on the left-hand side.

Click on or press ‘Ctrl + t’. This will automatically tag your file and
display the result in the right-hand window, as shown in Figure 7.1:

Figure 7.1 Sample output of the Simple PoS Tagger

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.org/tools/Tagger/Tagger.zip
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.org/tools/Tagger/Tagger.zip

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 111

Look through the text and see whether you can spot any problems with
the tagging that may need correcting. As the tagset is similar to the Penn
tagset we just looked at, you should already have a rough idea about what
the tags mean, but if you’re unsure, just find the relevant tag among the
buttons on the right-hand side and hover your cursor over it in order to
get a tooltip displayed.

Whenever you find a tagging error, correct it by selecting the erroneous
tag and clicking the relevant button in order to insert the right tag. Also
think about whether you can imagine why the tagger has made such an
error.

Once you’ve corrected a number of errors, you can update the colour-
coding display by pressing ‘F5’ to refresh the view.

Once you’ve finished, save the tagged file, either by choosing
‘File→Tagged file→Save tagged file’ or pressing ‘Ctrl + s’. You can also
save the file if you’re unable to finish the corrections directly, and open it
again in the interface later by choosing ‘File→Tagged file→Open for edit-
ing’ or pressing ‘Ctrl + e’.

Another way to get a sizable amount of text tagged is to use the CLAWS trial
service. This allows you to get a maximum of 100,000 words annotated in either
the shorter C5 or the full-length C7 tagset. While this may seem a lot, just remem-
ber that a 150-page novel may already contain about 60,000 words, so this will
definitely not be enough for larger files or projects…

Exercise 36

Open the CLAWS trial page at http://ucrel.lancs.ac.uk/claws/trial.html.
Open our Sherlock Holmes sample and copy and paste the contents into

the text box on the page. Make sure the output style is set to ‘Horizontal’,
and select the C7 tagset.

Run the tagging operation, and copy and paste the results into another
text file in your editor.

Save the file and compare the results to the output produced by the Sim-
ple PoS Tagger, focussing on mainly higher-level category tag elements to
ensure comparability.

Having now compared the results produced by two different taggers, you’ll
hopefully already have developed some basic sense of how reliable such programs
in fact are – or rather, how unreliable they may be under certain circumstances.
As this book is only of an introductory nature, though, I cannot really describe

http://ucrel.lancs.ac.uk/claws/trial.html

112 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

all the reasons for this in proper detail, but, in the rest of the chapter, will try to
present some of the causes for this in a highly, but hopefully not over-simplified,
manner.

In the solutions to the exercises, I’ve already hinted at the fact that, sometimes,
the taggers may not have had ‘knowledge’ of an appropriate rule or ‘understood’
the complexity of particular linguistic structures. Just as in the preceding sen-
tence, I often used words that refer to meaning or understanding of linguistic
rules in scare quotes, to indicate that, frequently, the notion of linguistic rules and
knowledge in tagging may not really represent a proper kind of understanding
that is/can be applied to morpho-syntactic annotation. What you may, perhaps,
näıvely have assumed, without any prior knowledge of how modern taggers work,
is that most of them use a lexicon to look up words and then apply some linguis-
tic – in technical terms referred to as symbolic – morphological or syntactic rules
in order to assign a PoS tag. This, however, is not true for many modern PoS
taggers because they often primarily rely on lexica in combination with statistical
rules of co-occurrence for fixed, and highly limited, sequences of words extracted
from existing pre-annotated data. And, although the CLAWS tagger is exceptional
here in the sense that it uses a hybrid approach combining probabilities and a sub-
stantial number of symbolic rules – which already allows it to perform somewhat
better than the Simple PoS Tagger –, it’s still limited by the fact that the proba-
bilities do not reflect exceptions or longer sequences of words, such as complex
NPs, well. Hence, although the results of modern taggers are fairly remarkable,
with claimed accuracy rates generally between 95–98%, as we’ve seen from our
short exercises, it’s always advisable to check their output as thoroughly as possi-
ble before using it for any kind of analysis, especially when this is carried out on
a more quantitative than qualitative basis. Furthermore, we also need to be aware
of the fact that taggers do not always perform equally well on all types of texts
or genres. Therefore, because most tagsets and taggers are generally designed for
written language analysis, their adequacy tends to drop strongly when used with
spoken data, partly because some of the PoS categories may not always be appro-
priate. We’ll learn a little more about that issue when we practice annotating some
spoken data in Chapter 11. However, even for written language, the accuracy of a
tagger across different text types/genres may vary strongly. According to Paroubek
(2007: 6, based on Illouz 2000), the performance of the TreeTagger (see below
for more details) “varies from 85% to 98% with an average value of 94.6%” for the
different categories of the Brown Corpus, which means that, in the worst case, 15
out of 100 tags may be wrongly assigned!

Now that you should have a basic understanding of morpho-syntactic tagging,
we can soon learn how to exploit this feature in concordancing in order to improve
our search results. Before we do so, though, we should probably still talk briefly
about the availability of taggers for languages other than English. Whereas most
of the early taggers developed for English were predominantly rule based, these
days, most taggers contain fewer and fewer linguistic rules, but more and more
probabilistic components instead. In other words, they generally use large lexica

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 113

to look up word classes and are trained on pre-annotated data in order to ‘learn
about’ sequences of (likely) co-occurrences of PoS tags that may help to disam-
biguate grammatical polysemy. This makes it easier to design new taggers, and is
at least part of the reason why many modern taggers can often handle multiple
languages. A good example of a tagger that can do so, simply by adding so-called
‘parameter files’ for a language, is the TreeTagger (Schmid 1994), which is avail-
able for Bulgarian, Chinese, Dutch, English, Estonian, Finnish, French, Galician,
German, Italian, Portuguese, Latin, Mongolian, Polish, Russian, Slovak, Spanish,
and Swahili. Although claims of up to around 98% accuracy for such taggers are
made, the main problems with them are that they are generally trained on rela-
tively limited data, such as (for English) the Penn Treebank or freely available data
from the Wall Street Journal, which are often not representative of the whole
language, and that such probabilistic approaches do have strong limitations, as
we’ve already seen in the solution to Exercise 35 and in our previous analyses of
the tagged texts. Thus, their output always needs to be treated with caution, at
least if a high degree of linguistic accuracy is required for one’s analyses. A fur-
ther drawback is that the tagsets they tend to use are usually rather small, often
derivatives of the Penn Treebank tagset, and may therefore not allow fine-grained
grammatical/semantic distinctions, so that frequently they tend to be more suit-
able for language engineering tasks where a certain error rate is deemed acceptable
in order to achieve a task.

Some languages, such as Chinese, are also more difficult to tag because recog-
nising word boundaries is an issue, due to their not using spaces between words.
We’ll discuss issues like this further in Chapter 9, but, for the moment, suffice it
to say that the PoS tagging of such languages normally requires programs to arti-
ficially introduce spaces during the so-called tokenisation process. As a basic rule,
morphologically (slightly) richer languages, such as German, tend to be some-
what easier to tag, because they often exhibit less grammatical polysemy due to
case-marking or other features, such as the capitalisation of nouns in German,
although of course such morphological features may also be ambiguous at times.
Morphologically highly complex languages like Korean, for example, again present
more issues because they tend to fuse a number of items related to grammar or
honorifics into agglutinated word forms, a process that may also involve a certain
amount of morphological adjustments.

Solutions to/Comments on the Exercises

Exercise 34
Most of the tags listed in the tagset should probably be relatively familiar to you,
apart from maybe UH, interjection, which basically represents something like
exclamations or expressions of surprise, such as maybe wow, blimey, crikey, shoot,
etc., or RP, particle, which represents words you may be more familiar with as
prepositions, but are generally used with so-called ‘phrasal or prepositional verbs’,

114 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

rather than NPs, as in, for example, run off, give up, etc. Another, possibly unfa-
miliar, category is PDT, predeterminer, which most grammars would probably
categorise as quantifier.

What may be a little more surprising to you is to find separate categories for EX
(existential there), TO (to), POS (possessive ending). This is basically because they
may – or do – fulfil different functions from their adverb and preposition, or con-
tracted BE-form ‘look-alikes’. In other words, there in an existential construction
no longer functions as a locative adverb, to as an infinitive marker is nearly twice
as frequent in the BNC than in its function as a preposition (16,470 vs. 9343;
see Leech et al. 2001: 111), although, actually, the tagset treats them as equal
here, and the ’s-genitive is different from the contracted form of is. In contrast,
you may have been surprised to find that the category IN subsumes both prepo-
sitions and ‘subordinating’ conjunctions (albeit the latter has always been a bit of
a misnomer).

Some other categories that probably look relative unfamiliar to you, but are easy
to understand when we think about the diversity that exists in general (written)
corpora, are SYM (symbol), FW (foreign word), and LS (list item marker). The
first refers to mathematical and other symbols that may (predominantly) occur
in scientific or academic texts, the second can easily occur in humanities writing,
newspaper reportage, or data that includes code-switching (such as the ICE cor-
pora), while the final one can also occur in a large number of different types of
written data, including online materials, where numbered or bulleted lists are fre-
quently used to ‘summarise’ facts.

In terms of the punctuation marks, which are obviously not words but still need
to be included, it’s interesting to note that all final punctuation is here subsumed
under the full stop, and both colon and semi-colon are represented by a colon.
While some punctuation labels are thus ‘conflated’, some others appear to be more
fine-grained than necessary, for example, through making a distinction between
straight double quotes, and opening and closing typographical ones, something
that seems to be motivated by the nature of the data used when establishing the
tagset. The same goes for the use of a hash mark (labelled ‘Pound sign’, as it’s
an American tagset), which could normally have been subsumed under SYM, but
must have occurred sufficiently frequently in the original data and represented an
important enough feature to make the distinction necessary.

Another thing that’s interesting here is that, on the surface, no distinction is
made between the right closing single quote and an apostrophe marking contrac-
tions. However, from some original data I obtained that was annotated with the
tagset, it appears as if the apostrophe in such constructions (like it’s) is actually
counted as part of the paradigm for BE and therefore rendered as ’s/VBZ.

Exercise 35
The first thing you’ll probably notice in terms of tagging errors is that most of the
Roman numerals, apart from, strangely, “IX”, have been tagged as proper nouns

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 115

(NNP), apparently because the tagger has mistaken them for initials. All of these
should be changed to CD for ‘cardinal number’, and if they’re followed by PP
(‘Punctuation, sentence ender’), the full stop and the tag deleted.

In the first title, “A” has been marked as a proper noun (NNP), while it should
be a determiner (DET). In the second one, “Red_NNP -_PPS headed_VBN
League_NNP” has apparently been interpreted as compound proper noun
(NNP), which would – theoretically – be acceptable, but what is problematic
here is that the hyphen in red-headed has been treated like a dash, consecutively
marked as punctuation (PPS), rather than a hyphen, and hence the whole word
has erroneously been split, with headed marked as a past participle (VBN), rather
than as being part of a compound pre-modifying adjective. In general, probably
either the whole expression should be tagged as a proper noun, or “Read-headed”
as adjective (JJ) and “League” as a common noun (NN). Similar issues affect
the rest of the titles, presumably due to the capitalisation of content words that
‘confused’ the tagger into believing that they were parts of names. As we’ve just
seen, dealing with proper names may involve difficult decisions, even for human
annotators, but the problem here still remains that some parts of what are poten-
tially compound proper names are inconsistently marked as NNP, while others
are marked as general nouns, etc. We’ll soon discuss why such issues may arise in
tagging.

Moving slightly further down the text, we can see that, again, the determiner
“A” in the first section/chapter title has, again, erroneously been tagged as NNP,
but what’s more surprising is that the word “Scandal”, which was previously
tagged as NN, is now tagged as NNP, too. Next, the cardinal Roman number
“I.”, which was previously tagged as NNP, is now confusingly marked as PRP,
that is, a pronoun, apparently because the tagger confused it with the first person
singular personal pronoun. This should, again, be changed to CD. Overall, we’ve
already seen that the tagger seems to have difficulties in making the right decisions
when it encounters a number of words with initial capitals or that are completely
capitalised, as may frequently occur in headings.

In the main text, things seem to be going better. The first real errors we
encounter are that both eclipses and predominates are tagged as plural nouns
(NNS), while they should be 3rd person singular present tense verb forms (VBZ),
which indicates that the tagger seems to ‘know’ no rule that states that subject
pronouns are generally not followed by nouns, but by verbs. Next, we find the
combination “that_IN one_CD”, where that is tagged as a conjunction, when in
fact it’s a demonstrative determiner. Here, the tagger has apparently ‘overlooked’
the fact that that is grammatically polysemous. Now, we may assume that one has
been tagged correctly as a number, or numerical quantifier, to be more precise, if
we simply go by form, rather than considering the function of word forms. How-
ever, as it’s not followed by a noun here, it actually constitutes the head of the
noun phrase, and it would hence probably be better to tag it as a noun or pro-
noun. The next error we encounter is abhorrent being marked as a general noun
(NN), when it’s really an adjective. The final issue we’ll discuss here is that most

116 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

in “the most perfect” has been identified as a superlative adjective, when in fact it
modifies perfect and is therefore a superlative adverb and should have been tagged
RBS. I’ll leave the identification and possible explanation of the rest of the errors
to you here, but include a (hopefully) fully corrected version below:

THE_DET ADVENTURES_NNP OF_IN SHERLOCK_NNP HOLMES_NNP
by_IN SIR_NNP ARTHUR_NNP CONAN_NNP DOYLE_NNP

I_CD A_DET Scandal_NN in_IN Bohemia_NNP
II_CD The_DET Red-headed_JJ League_NNP
III_CD A_DET Case_NN of_IN Identity_NN
IV_CD The_DET Boscombe_NNP Valley_NNP Mystery_NN
V_CD The_DET Five_CD Orange_NNP Pips_NNP
VI_CD The_DET Man_NN with_IN the_DET Twisted_JJ Lip_NN
VII_CD The_DET Adventure_NN of_IN the_DET Blue_NNP Carbuncle_NNP
VIII_CD The_DET Adventure_NN of_IN the_DET Speckled_JJ Band_NNP
IX_CD The_DET Adventure_NN of_IN the_DET Engineer_NN ’s_POS
Thumb_NN
X_CD The_DET Adventure_NN of_IN the_DET Noble_NN Bachelor_NN
XI_CD The_DET Adventure_NN of_IN the_DET Beryl_NNP Coronet_NNP
XII_CD The_DET Adventure_NN of_IN the_DET Copper_NN Beeches_NNP

ADVENTURE_NN I_CD A_DET SCANDAL_NN IN_IN BOHEMIA_NNP

I_CD

To_TO Sherlock_NNP Holmes_NNP she_PRP is_VBZ always_RB THE_DET
woman_NN ._PP
I_PRP have_VBP seldom_RB heard_VBN him_PRP mention_VBP her_PRP
under_IN any_DET
other_JJ name_NN ._PP In_IN his_PRPS eyes_NNS she_PRP eclipses_VBZ
and_CC
predominates_VBZ the_DET whole_JJ of_IN her_PRPS sex_NN ._PP It_PRP
was_VBD not_RB
that_IN he_PRP felt_VBD any_DET emotion_NN akin_JJ to_TO love_VB for_IN
Irene_NNP
Adler_NNP ._PP All_DET emotions_NNS ,_PPC and_CC that_DET one_NN
particularly_RB ,_PPC were_VBD abhorrent_JJ to_TO his_PRPS cold_JJ ,_PPC
precise_JJ
but_CC admirably_RB balanced_JJ mind_NN ._PP He_PRP was_VBD ,_PPC
I_PRP take_VBP
it_PRP ,_PPC the_DET most_RBS perfect_JJ reasoning_NN and_CC observ-
ing_VBG
machine_NN that_IN the_DET world_NN has_VBZ seen_VBN ,_PPC but_CC
as_IN a_DET
lover_NN he_PRP would_MD have_VB placed_VBN himself_PRP in_IN a_DET
false_JJ
position_NN ._PP He_PRP never_RB spoke_VBD of_IN the_DET softer_JJR
passions_NNS ,_PPC save_IN with_IN a_DET gibe_NN and_CC a_DET
sneer_NN ._PP

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 117

They_PRP were_VBD admirable_JJ things_NNS for_IN the_DET observer_NN
-_PPS
excellent_JJ for_IN drawing_VBG the_DET veil_NN from_IN men_NNS ’s_POS
motives_NNS
and_CC actions_NNS ._PP But_CC for_IN the_DET trained_JJ reasoner_NN
to_TO admit_VB
such_DET intrusions_NNS into_IN his_PRPS own_JJ delicate_JJ and_CC
finely_RB adjusted_JJ
temperament_NN was_VBD to_TO introduce_VB a_DET distracting_JJ
factor_NN which_WDT
might_MD throw_VB a_DET doubt_NN upon_IN all_DET his_PRPS mental_JJ
results_NNS ._PP Grit_NN in_IN a_DET sensitive_JJ instrument_NN ,_PPC
or_CC a_DET
crack_NN in_IN one_CD of_IN his_PRPS own_JJ high-power_JJ lenses_NNS
,_PPC would_MD
not_RB be_VB more_RBR disturbing_JJ than_IN a_DET strong_JJ emotion_NN
in_IN a_DET
nature_NN such_IN as_IN his_PRPS ._PP And_CC yet_RB there_RB was_VBD
but_CC one_CD
woman_NN to_TO him_PRP ,_PPC and_CC that_DET woman_NN was_VBD
the_DET late_JJ
Irene_NNP Adler_NNP ,_PPC of_IN dubious_JJ and_CC questionable_JJ
memory_NN ._PP

I_PRP had_VBD seen_VBN little_JJ of_IN Holmes_NNP lately_RB ._PP My_PRPS
marriage_NN had_VBD drifted_VBD us_PRP away_RB from_IN each_DET
other_NN ._PP
My_PRPS own_JJ complete_JJ happiness_NN ,_PPC and_CC the_DET home-
centred_JJ
interests_NNS which_WDT rise_VBP up_RB around_IN the_DET man_NN
who_WP first_RB
finds_VBZ himself_PRP master_NN of_IN his_PRPS own_JJ establishment_NN
,_PPC
were_VBD sufficient_JJ to_TO absorb_VB all_DET my_PRPS attention_NN ,_PPC
while_IN
Holmes_NNP ,_PPC who_WP loathed_VBD every_DET form_NN of_IN
society_NN with_IN
his_PRPS whole_JJ Bohemian_JJ soul_NN ,_PPC remained_VBD in_IN our_PRPS
lodgings_NNS in_IN Baker_NNP Street_NNP ,_PPC buried_VBN among_IN
his_PRPS old_JJ
books_NNS ,_PPC and_CC alternating_VBG from_IN week_NN to_TO week_NN
between_IN
cocaine_NN and_CC ambition_NN ,_PPC the_DET drowsiness_NN of_IN
the_DET
drug_NN ,_PPC and_CC the_DET fierce_JJ energy_NN of_IN his_PRPS own_JJ
keen_JJ
nature_NN ._PP He_PRP was_VBD still_RB ,_PPC as_RB ever_RB ,_PPC
deeply_RB

118 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

attracted_VBN by_IN the_DET study_NN of_IN crime_NN ,_PPC and_CC
occupied_VBD
his_PRPS immense_JJ faculties_NNS and_CC extraordinary_JJ powers_NNS of_IN
observation_NN in_IN following_VBG out_IN those_DET clues_NNS ,_PPC
and_CC
clearing_VBG up_IN those_DET mysteries_NNS which_WDT had_VBD
been_VBN
abandoned_VBN as_IN hopeless_JJ by_IN the_DET official_JJ police_NN ._PP
From_IN
time_NN to_TO time_NN I_PRP heard_VBD some_DET vague_JJ account_NN
of_IN his_PRPS
doings_NNS :_PPS of_IN his_PRPS summons_NN to_TO Odessa_NNP in_IN
the_DET
case_NN of_IN the_DET Trepoff_NNP murder_NN ,_PPC of_IN his_PRPS
clearing_NN up_IN
of_IN the_DET singular_JJ tragedy_NN of_IN the_DET Atkinson_NNP
brothers_NNS at_IN
Trincomalee_NNP ,_PPC and_CC finally_RB of_IN the_DET mission_NN
which_WDT he_PRP
had_VBD accomplished_VBN so_IN delicately_RB and_CC successfully_RB for_IN
the_DET
reigning_JJ family_NN of_IN Holland_NNP ._PP
Beyond_IN these_DET signs_NNS of_IN his_PRPS activity_NN ,_PPC
however_RB ,_PPC
which_WDT I_PRP merely_RB shared_VBN with_IN all_DET the_DET
readers_NNS of_IN
the_DET daily_JJ press_NN ,_PPC I_PRP knew_VBD little_JJ of_IN my_PRPS
former_JJ
friend_NN and_CC companion_NN ._PP

Exercise 36
To do the comparison between the two results, it would be best if you either
printed out both versions and then marked up whatever errors may exist or what
either tagger may have done better than the other in colour, for example, red or
orange for errors, and green for better performance. Alternatively, you could also
use Notepad++ or another editor that allows you to display two files side by side
and then examine the files in parallel. In Notepad++ you can achieve a split screen
by opening both files and then clicking on one of the tabs and selecting ‘Move to
other view’.

The CLAWS output is a little more difficult to read through because the (trial)
tagger unfortunately didn’t preserve the original line breaks, apparently in an
attempt to either end the line at a sentence end or to truncate it below 80 charac-
ters to ensure convenient on-screen display/formatting.

UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES 119

Concerning the actual tagging performance, the first thing you’ll probably
notice here is that CLAWS already performs somewhat better on the Roman
numerals, although its input format guidelines (available on the web page) indi-
cate that these should have been entered without a following dot to be recog-
nised properly. Only 6 out of the 14 Roman numerals indicating section titles
have been mis-tagged, mainly as singular proper nouns (NP1), but some also as
singular general nouns (NN1), and “V.” strangely as a general preposition (II),
perhaps because the tagger ‘assumed’ that it may be an even further abbreviated
form of vs., hence ‘contrasting’ the two titles. The dots following the numerals are
sometimes integrated with the numerals, but sometimes also tagged separately as
sentence-final punctuation.

In the first title, both in the list of sections and in the heading for the first
section, the initial determiner has again been mis-tagged, only this time not as
a general noun, but a special form thereof, the name of a letter of the alphabet,
that is, potentially part of a spelling sequence. Thus, both taggers had difficulties
with this, but ‘chose’ to somehow identify the word as a noun form. In the se-
cond title/heading, CLAWS fares better at marking “Red-headed” as a compound
adjective because it doesn’t split at the hyphen.

CLAWS also correctly identifies the two word forms eclipses and predominates
further down as verb forms, but makes the same mistake as the other tagger in
mis-identifying that in “that one” as a conjunction (CST), rather than a deter-
miner, despite that fact that it’s identified “one” here as a pronoun (PN1). In the
same sentence, we find the grammatically polysemous form “cold” having been
incorrectly tagged as its noun representation (NN1) because it immediately fol-
lows the possessive pronoun “his” (APPGE). The reason for this error seems to be
that CLAWS was unable to identify the remainder of the sentence as being the rest
of a complex NP, presumably because it doesn’t ‘understand’ comma-separated
lists that well, and thus ‘mis-took’ the comma as a phrase boundary, in which case
the annotation would have made perfect sense.

Unlike the other tagger, CLAWS correctly classifies most in “the most perfect”
as a grading adverb (RGT), but is inconsistent in marking reasoning and observing,
which form part of the complex compound noun reasoning and observing machine,
because it marks the first one as a noun, while the second one is tagged as a verbal
-ing form. As before, this seems to be due to its inability to recognise complex
NPs. A little further down save in “save with a gibe” is marked as the base form
of the verb (VV0), while in fact it’s used as a conjunction meaning ‘apart from’,
the conjunction “But” in “But for the trained observer” incorrectly identified as
part of a multi-word preposition (II21 + II22), and “Grit” at the beginning of
the next sentence again as a verbal base form – which, theoretically, ought to then
cause the sentence to be an imperative, whereas it’s in fact a noun. A little further
on in the same sentence, we find “than” marked as a conjunction (CSN), when
in fact it’s part of a comparison and should thus be counted as a preposition. A
similar thing happens with “but”, marked CCB, in the next sentence, which, in

120 UNDERSTANDING PART-OF-SPEECH TAGGING AND ITS USES

this case actually has the – perhaps slightly old-fashioned – meaning of ‘only’, and
is therefore an adverb.

As before, for reasons of space, I won’t discuss the rest of the text here, but
leave it up to you to identify any further potential issues…

Sources and Further Reading

Cloren, Jan. (1999). Tagsets. In van Halteren, H. (Ed.). (1999). Syntactic Wordclass Tag-
ging. Dordrecht: Kluwer Academic Publishers.

DeRose, Stephen. (1988). Grammatical Category Disambiguation by Statistical Optimiza-
tion. Computational Linguistics 14(1), pp. 31–39.

Garside, Roger, Leech, Geoffrey, & McEnery, Anthony. (Eds.) (1997). Corpus Annota-
tion: Linguistic Information from Computer Text Corpora. London: Longman.

Garside, Roger & Smith, Nicholas. (1997). A Hybrid Grammatical Tagger: CLAWS4. In
Garside, R., Leech, G., & McEnery, A. (Eds.) (1997). Corpus Annotation: Linguistic
Information from Computer Text Corpora. London: Longman.

Santorini, Beatrice. (1995). Part of Speech Tagging Guidelines for the Penn Treebank
Project (3rd Revision, 2nd Printing).

van Halteren, Hans. (Ed.). (1999). Syntactic Wordclass Tagging. Dordrecht: Kluwer Aca-
demic Publishers.

8
Using Online Interfaces to Query

Mega Corpora

While smaller corpora may often not allow us to make as many generalisations
about language as we might want to, modern mega corpora, such as the BNC,
ANC, or COCA, offer remarkable possibilities for investigating general aspects of
language and drawing more valid conclusions from them. As they’re very costly
and time-consuming to produce, though, one of their potential drawbacks is that
their full versions may not always be available for free, and obtaining them may be
prohibitively expensive for the individual (non-funded) researcher. Furthermore,
even if they are obtainable, there may be a number of issues that make it difficult
to handle them for the average corpus user. First of all, working with them, due to
their sheer size, may require a relatively powerful computer with adequate mem-
ory and processing power. With increasing sophistication of PCs, this is turning
into less and less of an issue. What may be more problematic, though, is that such
mega corpora are often annotated in ways that make them difficult to use without
dedicated software that has been written specifically for analysing them or display-
ing their contents in a way that’s still easy enough to digest. Such software may,
in the worst case, only run on very specific computer systems, or require complex
installation procedures or changes to the system configuration that most linguists
will be unable to carry out.

Luckily, these are problems that have already been overcome to some extent by
the advent of web-based interfaces to these mega corpora, which, even if they may
not allow us to do everything we might want to do with such a corpus, already
provide many facilities for investigating the data in relatively complex ways that

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

122 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

will probably satisfy the needs of most researchers. In the following sections, we’ll
explore two of these web interfaces, one that allows us to work with the BNC for
general British English, and the other with the COCA, for investigating features of
American English. In doing so, we’ll also make use of the knowledge you gained
in the previous chapters for specifying linguistic patterns and working with PoS
tags, in order to fine-tune our searches.

8.1 Searching the BNC with BNCweb

8.1.1 What is BNCweb?

BNCweb is a web interface to the BNC which is fairly straightforward to use.
Essentially, being a concordance facility, too, some of its basic features are rather
similar to the ones we’ve already discussed for AntConc. In order to be able
to use BNCweb for free, you need to register at http://bncweb.lancs.ac.uk/
bncwebSignup/user/register.php, providing a valid email address and other details.
Once you’ve registered successfully, you can always access the site directly at http://
bncweb.lancs.ac.uk/.

The following illustration shows the startup screen you’ll see once you’ve
logged in successfully. I’d suggest that you take a few seconds to try and familiarise
yourself with this, and to see whether you can already understand what kind of
functionality you may be able to expect from the interface.

Figure 8.1 The BNCweb startup screen

As BNCweb in fact allows you to access the BNC not in its original form, but
through a database interface, in technical terms, you don’t run a search on the
BNC, but formulate a query, as searches are known in database terminology. This
is why you can see the word query appearing a number of times in Figure 8.1.

http://bncweb.lancs.ac.uk/bncwebSignup/user/register.php
http://bncweb.lancs.ac.uk/bncwebSignup/user/register.php
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}bncweb.lancs.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}bncweb.lancs.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}
http://bncweb.lancs.ac.uk/
http://bncweb.lancs.ac.uk/

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 123

In the latest edition of BNCweb, there’s only one top-level option available for
doing queries, the ‘Standard Query’. As a sub-type of this query option, there are
also two highly useful menu options for querying in only spoken or written texts.
In addition, these also provide the user with a convenient interface for selecting a
number of different textual properties, as we’ll see later.

8.1.2 Basic standard queries

The standard query in BNCweb is similar to a combination of the basic and regex
searches in AntConc and, in order to use it efficiently, you need to be aware of a
few conventions. Before we start exploring these, though, let’s begin with a very
basic search, just so you can get a feel for the new interface.

Exercise 37

Type the word assume into the query box and run the query by clicking on
.

As before, pay particular attention to issues of polysemy when you look
at the results. We’ll later explore ways of disambiguating these, at least with
respect to grammatical polysemy (though not for this example).

Figure 8.2 Results for simple search for assume

The default view we get here is not the familiar KWIC view, but something
called ‘Sentence View’. This, however, can easily be ‘fixed’ by changing the default
through adjusting the ‘User settings’ from the main page, or, temporarily, by click-
ing on .

124 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

Exercise 38

Experiment with the two different views by switching back and forth
between and .

Also try hovering with your mouse over the individual hits and the file-
names on the left-hand side to see what happens.

8.1.3 Navigating through and exploring search results

At the very top, you can see a display showing your query string, the number
of matches/hits, how many texts these occurred in, and some basic statistics. The
‘bar’ below it contains the navigation links that allow you to navigate through all
the results pages, where |< means ‘go to the very first page’, << ‘one page back’,
>> ‘one page forward’ and >| ‘go to last page’. As you can see, you can also ‘jump’
straight to a particular page if you remember where you’ve found specific results.

Exercise 39

Practise navigating through the pages of results, jumping to the next or
previous page, or the very beginning or end of the set of results.

As you’ll have observed, the concordance output itself consists of the number of
the hit, the name of the file it was found in – as a hyperlink – and the concordance
result. As the order of the hits that are returned is exactly the same as the ordering
in the BNC itself, simply looking at the hits that are returned may sometimes give
a misleading picture, though, because the initial ones will all be from the general
domain of informative written texts. In order to try and remedy this potential bias,
you can click on the button, which will ‘jumble up’ the results
for you.

Exercise 40

Try this and see whether it changes your impression of the earlier results.

As the results are now in random order, if we do want to know which particular
category of the corpus (or ‘genre’) the individual result was found in, we need to
check the category details. This can be done by following the hyperlink behind
the file name on the left, which will switch to a full, static, display of all the file
details, rather than just a tooltip when you hover over the link. Tip: If you want

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 125

to explore the bibliographical details in more depth, I’d suggest you use a right
mouse click to open the information in a new tab. This way, you just need to close
the tab in order to return to the concordance results.

Exercise 41

Click on one or more of the links, and explore the exact nature of the
information you can get on the file the search term was found in.

The dropdown list to the left of the button allows you to access the set of
options shown in Figure 8.3:

Figure 8.3 BNCweb query follow-on options

We’ll explore some of these options in more detail in other sections, but, for the
moment, we only want to take a look at the two basic ways of storing our results
somewhere. These are hidden behind the two options ‘Download…’ and ‘Save
current set of hits…’, where the latter may be somewhat misleading as the results
won’t actually be saved physically somewhere on your own computer/memory
stick, but stored under your BNCweb user account where you can always retrieve
them again. Thus, in most cases, if you want to save the results physically, perhaps
in order to analyse them further using different programs, you’ll probably prefer
the ‘Download…’ option. Let’s try both of these methods, so you can preserve
the results of your search.

Exercise 42

Select ‘Download…’ from the dropdown list and click on .
Take a look at the ‘Output format options’, try to understand them, and

choose the ones you think are most appropriate for you.

126 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

For the moment, ignore all the category meta-information options listed
in the section in the bottom half of the page.

Change the name of the output file to something sensible and click
.

Once the file has been saved, open it in your editor to see what the output
looks like.

Next, let’s practise the other option for ‘saving’ our results.

Exercise 43

Return to the query by clicking on the back arrow in your browser (or
pressing ‘Alt + ←’ on the keyboard in Windows/Linux, ‘ + ←’ on the
Mac).

Choose the ‘Save current set of hits…’ option and click on .
Enter a suitable name for the query. If you want to choose a multi-word

name, use underscores (_) instead of spaces, and click on again.
Go back to the main BNCweb page. The easiest way is to keep ‘New

query’ selected in the dropdown box and click on .
Click the ‘Saved queries’ link below ‘User-specific functions’ on the top

left-hand side to verify that the query result has been saved correctly, then
click on the link with the query name to see the original results re-displayed.

8.1.4 More advanced standard query options

The next thing we might want to be able to investigate in BNCweb is how to
evaluate different options or alternative constructions. The mechanisms for this
in BNCweb are sometimes misleadingly similar to the use of regular expressions
we’ve learnt in Chapter 6, but the most basic forms employ a different system
referred to as wildcards, whereas genuine regular expressions are in fact a feature
of the CQP (Corpus Query Processor) syntax that BNCweb uses internally for its
queries (without you necessarily noticing it), or that you can use to write more
advanced and complex queries yourself.

8.1.5 Wildcards

Wildcards look like the basic quantifiers we’re familiar with from regular expres-
sions – i.e. ?, ∗, and + –, but they don’t actually quantify the characters or character
classes that precede them, and instead are comparable to the regex combination
of a dot (any character) + quantifier, though not always the same. To make this

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 127

easier to understand, let’s take a look at the different options, including some
(non-exhaustive) examples of possible results:

� ?: represents any single character, but not an optional one! Therefore, yell??
finds yell ow , yell ed , yell er , etc., but not yell or yells.

� ∗: 0- (theoretically) ‘unlimited’, but only within single words! Hence, call∗
finds call, call s , call ed , call er , call ing , call ous , call igraphy , etc.

� +: 1-‘unlimited’, again, only within single words! So, call+ finds call s , call ed ,
call er , call ing , call ous , call igraphy , etc., but not call.

Now, let’s put theory into practice and try this out on an example that illustrates
spelling differences between British and American English.

Exercise 44

Type colo∗r into the query box, think about which result(s) you would
expect, and then run the query.

Rather than having to scroll through the list to find potential different
variants, you can use a handy feature called ‘Frequency breakdown’, trig-
gered from the dropdown menu on the top right-hand side, to explore
this.

Select this and click on .

The results probably aren’t quite what you expected…

Exercise 45

Next, try replacing the ∗ by a ? and see what the result is, again using the
‘Frequency breakdown’ feature to see how this changes the results.

Unfortunately, the results may still not conform to our expectations, but we’ll
soon learn how to fix that

The wildcard syntax in BNCweb also has a number of shorthand expressions
that, again, sometimes look misleadingly similar to regex shorthands in that they
have lower- and uppercase variants. However, while, as we’ve seen, in regexes lo-
wercase refers to a ‘regular’ character class and using uppercase indicates the ‘nega-
tion’ of this character class, in BNCweb lowercase indicates the occurrence of sin-
gle characters and uppercase of multiple (potentially unlimited) ones. For instance,
\w finds a single word character, and \W multiple word characters, so that our

128 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

‘colour’ examples from above could also have been written colo\Wr instead of
colo∗r, or rather colo+r, to be more precise, and colo\wr instead of colo?r.
For further options, see Hoffmann et al. (2008: 105).

One other important thing about wildcards in BNCweb is that they can also
represent word slots, if separated from other words in a phrase query. Thus, a ?
can stand for a single-character word token, punctuation or apostrophe, while ∗
can stand for a word that may or may not occur, and + essentially means that a
word has to occur in a slot.

8.1.6 Word and phrase alternation

BNCweb allows us to express alternation in a number of different ways. This can
sometimes be bewildering to the beginner, so we’ll explore the options step-by-
step. In the Simple Query Syntax, which is the one we want to use at this level,
we have two different options that allow us to use wildcards in a more complex
way, one form that is normally used to express alternatives within a word, and one
that’s used for specifying phrases. The first one essentially looks very similar to the
way in which we defined character classes in regular expressions. It uses the same
form of square brackets to express alternative variants, only that, this time, they’re
not restricted to single character only, and all alternatives in this form of notation
have to be separated from each other by a comma. Therefore, to find the antonyms
thoughtful and thoughtless at the same time, we could write thought[ful,less].
In addition, it’s also possible to specify nothing as an element within an alternation
by writing a comma followed by nothing inside the brackets.

Exercise 46

Try expressing the different spelling variants now by using simple alterna-
tion.

Next, try to see whether you can use alternation to express all three dif-
ferent spelling variants of ice cream: ice cream, ice-cream, and icecream.

To be able to complete the above task, we need to employ phrase alternation,
which is meant to allow us to specify searches for a number of words at a time, and
looks rather like the kind of alternation we know from regular expressions. As this
option is specifically designed to look for phrases, that is, combinations of words,
it also allows us to specify spaces. As with regexes, we need to use round brackets
and pipe symbols to delimit the alternatives, only that here, we cannot use the
round brackets to group only part of the search term. Instead, each alternative
has to be spelt out fully inside the brackets, as the alternative representation of
our earlier example of antonyms, (thoughtful|thoughtless).

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 129

Exercise 47

With this knowledge, try to now write a query that will find all the three
variants, including the one with a space.

Once you’ve succeeded, take a closer look at the frequency breakdown.

The results should present a relatively clear indication as to which form of the
compound is the most commonly used, and therefore probably also the one that
should be taught to learners. Frequency breakdowns of this kind can often help us
in making decisions as to which forms can be seen as more appropriate, and maybe
in which context, too. They therefore represent a highly useful tool, both for peda-
gogical purposes as well as helping us personally to identify the right grammatical
or stylistic choices, something that can equally well be used by advanced learners
of a language to enhance their awareness of such choices, and native speakers who
want to get around the limitations of a standard word-based thesaurus.

The following represents a brief summary of some of the linguistic points of
interest the different wildcards and alternation features in BNCweb may be used
to search for/investigate:

Table 8.1 Wildcards and their uses for investigating linguistic features

wildcard/option linguistic feature (within word) linguistic feature (within slot)

∗ optional pre- and suffixes/
inflectional morphemes

word (optional)

+ (non-optional) pre- or suffixes/
inflectional morphemes

word (non-optional)

? vowel alternation in strong verb
paradigms

single-character word token,
punctuation or apostrophe

[] simple spelling variants n/a
() spelling variation in compounds & phrases

One further feature you should be aware of involving the bracket notation is
that, just like in proper regular expressions, the round brackets can be quantified
to allow for optional or multiple element slots.

8.1.7 Restricting searches through PoS tags

As we’ve seen a few times previously when concordancing in AntConc, gramma-
tical polysemy may ‘interfere with’ our search for a particular word form that can
represent different parts-of-speech. As the BNC data available through BNCweb
has been PoS-tagged using the C5 tagset, a tagset that is more complex than the
Penn one, though not as much as its ‘big brother’ C7, this becomes much less
of an issue. Now, we can simply restrict our searches to forms that belong to a

130 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

particular PoS category only, which then only leaves us with cases where there’s
basic semantic polysemy to contend with, which may or may not be a problem,
depending on the particular goal we’re pursuing.

However, a word of warning is in order before we start using this feature. As
constructing the BNC was a major exercise involving the digitisation of very large
amounts of text, sorting out meta-information as much as possible, and PoS tag-
ging and annotating the data in a number of ways, the care taken in checking
and correcting the final result of the tagging has, at least to some extent, been
sub-optimal. Thus, we’ll frequently find word forms that have either been tagged
with two possible options for tags, even when, for the human annotator, only one
would have been correct and possibly even easily identifiable, or many tags that
are simply incorrect. This ‘feature’ does affect the reliability of the results that you
can get out of BNCweb and other interfaces to some extent, the more so if you
rely only on quantitative analyses of the results extracted. Therefore, when using
such data, especially in the form of frequency lists, you should always be a little bit
suspicious and try, as much as possible, to double-check the results to see if they
may be affected in any way by this issue. Nevertheless, this now shouldn’t dis-
courage you from using the BNC, as it still represents a highly useful and amazing
resource for investigating relatively recent British English in a form that is highly
representative and will probably remain unmatched for a very long time.

After this brief excursion, let’s return to investigating how we can make use of
PoS tagging in BNCweb. The general notation that allows us to look for a com-
bination of word form and tag here involves specifying a word form, followed
by an underscore (_), followed by a PoS tag. As it turns out, the wildcard fea-
tures we’ve just learnt about can also help us to a great extent in simplifying the
specification of PoS patterns, so that we don’t need to remember or specify all
the different possible variant tags for a particular PoS category if, for instance, we
want to look for all verb, noun, or adjective forms. Let’s see how this will allow
us to restrict our searches for a few grammatically polysemous word forms we’ve
already encountered.

Exercise 48

To ensure that you don’t get biased results, based on the order of the texts
in the corpus, first go to the ‘User settings’ from the main query page and
change the ‘Default display order of concordances’ to ‘random order’ and
click on .

Run a search on the word form mind, initially without specifying a PoS
tag.

Inspect the results visually by reading through them and trying to identify
roughly what kind of a distribution in terms of nouns and verbs you may
have in your random sample.

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 131

Next, to confirm your intuitions – and to verify the tagging –, hover
over the hits to see which tag CLAWS assigned to them, and whether this
is always unambiguous.

Select the ‘Frequency breakdown’ option from the options menu in the
top right-hand corner and click .

Next, select the option ‘Frequency breakdown of word and tag combi-
nations’ and click again. This will show you a breakdown of how often
the word form occurs with a particular PoS tag, at the same time allowing
you to see which tags it may occur with in the first place.

Investigate the different tag options first, then start a new query where
you use a combination of word form, underscore, and a suitable wildcard
for extracting all verb forms at the same time.

Do the same thing for round, first exploring the different word-class
options through the breakdown, and then extracting only those that are
adjectives.

To get a better sense of the query options and the C5 tagset, you can also
take a look at – and possibly download – the ‘Simple Query Syntax help’, a PDF
hyperlinked to the main query page. If you choose not to download it, I’d suggest
that you open the link in a new tab and keep it open whenever you run anything
but the most basic queries.

8.1.8 Headword and lemma queries

So far, we’ve learnt that we can specify different word forms/phrases via wildcards
and/or tag restrictions. However, since it’s somewhat of a nuisance having to do
this all the time, apart from being error-prone, it’s quite useful to be able to specify
a search for all different forms of a headword or lemma. Here, the distinction
between the two is essentially that the headword encompasses all the occurrences
of a base form, regardless of PoS, while the lemma always represents a combination
of base form + PoS tag (forms). Let’s explore the two different options, beginning
with searches for the headwords run and take. To be able to do this, we simply
need to enclose the particular base form in a set of paired curly brackets ({…}).

Exercise 49

Start by searching for the headword run.
Explore the results through a frequency breakdown (with tags), as we

did in the previous exercise.
Repeat the same for the headword take.

132 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

To limit our searches to lemmas by specifying a PoS, BNCweb provides us with
two separate options, both based on the following simplified (representation of a)
tagset:

Table 8.2 Simplified tags in BNCweb

Simplified Tag(s) Coverage

A or ADJ adjectives
ADV adverbs
ART articles
CONJ conjunctions
INT or INTERJ interjections
N or SUBST nouns
PREP prepositions
PRON pronouns
V or VERB verbs
$ or STOP punctuation
UNC unclear

To specify the lemma form, BNCweb allows two different variants. The first
one requires both base form and simplified tag to be included inside the same
set of curly brackets, but separated by a forward slash, e.g. {make/N} to find all
occurrences of the noun make. The second one allows us to specify the headword
and the simplified tag separately, both enclosed in curly brackets, but this time
separated by an underscore, e.g. {make}_{N}. Essentially, the two options produce
the same results, but I wanted to introduce the second option to you here because
enclosing the simplified tag in curly brackets in this way also allows us to use it
when we’re not looking for lemmas, but for sequences of words where we may
only want to specify the word class, rather than a word form + tag, and use a
wildcard to find any word that occurs with this particular word class.

8.2 Exploring COCA through the BYU Web-Interface

Unlike the BNC, which is now freely available in its offline version, too, the
COCA – at least in its free online version – can only be accessed through its
interface at Brigham Young University. As there’s also a database behind the inter-
face, many of the operations that you can carry out in COCA resemble those in
BNCweb. Unfortunately, however, the syntax for anything but the most basic
word searches is fairly different, so that we need to learn new ways of doing
old things, at least to some extent. Furthermore, the logic behind the interface,
depicted in Figure 8.4, is also rather different in that it offers a wider initial choice
of display options, groupings for results, or even comparison to other corpora
available on the website, including a different form of access to the BNC.

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 133

Figure 8.4 The basic COCA interface

In our discussions, apart from providing a general overview of the interface,
we’ll mainly try to focus on the most important differences that not only allow
us to investigate American English here, but also conduct analyses of corpus data
that weren’t possible in BNCweb. Here, one of the biggest strengths of the COCA
interface is probably that it was also designed for comparisons across different parts
of the corpus, as well as to other corpora, from within the same interface.

As the COCA is a monitor corpus, you also need to bear in mind that the
overall results you might get will probably change over time. Thus, for instance
the number of hits I’ll be reporting below, as well as their relative frequencies,
may well change over time, due to changes in the language itself, and should only
be considered accurate at the time of writing this book.

8.2.1 The basic syntax

As hinted at above, the syntax for basic word and phrase queries is somewhat
similar to BNCweb in that typing in a word or a number of words separated by
spaces and clicking on will find instances of this word or phrase. If the
display option is set to the default, LIST, something that looks quite similar to
the frequency breakdown in BNCweb will appear in the top window on the right-
hand side, which can be seen in Figure 8.4 for the lemma of the word movie. To
the right of the listing for the word(s), the frequency of occurrence for each sub-
item is shown, followed by a bar that indicates the percentage to which the hit

134 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

contributes to the overall search results. Unfortunately, though, there’s no way to
get the frequency breakdown for a word form in terms of different PoS categories.

Luckily for us, though, wildcards work in the same way as in BNCweb, so there’s
really nothing new to learn there, and we can now focus directly on identifying the
options and differences to BNCweb in the query syntax. For instance, alternatives
can be specified as list separated by forward slash (or pipe), but this time without
any brackets around them. For example, thoughtful/thoughtless finds both
antonyms at the same time, as well as providing a convenient frequency breakdown
(see Figure 8.5).

Figure 8.5 Display of antonyms thoughtful and thoughtless as alternatives

Here, it becomes fairly obvious simply by looking at the relative frequency bars
that the positive member of the antonym pair is far more frequently used than the
negative one.

As a general rule, any searches that go beyond simple words and phrases involve
the use of (possibly multiple) square brackets ([…]) and allow the user to find PoS-
tagged words, words followed by a particular PoS tag, or lemma forms (see Figure
8.4), where COCA here makes no terminological distinction between headword
and lemma as in BNCweb. The consistent use of square brackets probably makes
it easier to learn the syntax, whereas we’ve already seen that BNCweb forces us to
remember different types of syntax for different purposes. The latter is especially
true for the advanced query options we haven’t been able to discuss earlier.

The following list represents all the basic word-level options, which can be
‘picked and mixed’ for phrase queries again. Please note that I sometimes change
the slot for illustrating a given feature to either occur on the left or right if multiple
slots are involved in a query. Plus symbols used below do not appear in queries,
but simply indicate combinatorial options in a more abstract form:

� word form(s): finds exact words or phrases only
� word form(s) including wild cards: finds variable words or phrases
� [base form] finds lemma: e.g. [mind] finds mind, minds, minded, minding,

both as nouns and verbs (equivalent to headword search in BNCweb)
� word form + . + [tag]: e.g. mind.[n∗] finds single word form mind only as a

noun
� word form + space + [tag]: e.g. go [r∗] finds single word form go followed

by any adverb

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 135

� -[tag] + space + word form: e.g. -[n∗] water? finds word form water or
waters (including watery), preceded by anything that’s not a noun, e.g. for
excluding noun-noun compounds, such as mineral water, from searches for
different types of water in count and non-count form

� [base form] + . + [tag] finds lemma of specific word class: e.g. [mind].[v∗]
finds all word forms mind, minds, minding, but only as verbs (equivalent to
lemma search in BNCweb)

� [=base form] finds ‘synonyms’, e.g. [=strong] finds a number of interesting
suggestions, although not all of these might correspond to our expectations
for synonyms

All tags (including in the BNC interface) are C7 tags and need to be written in
lowercase, unlike BNCweb, where they’re C5 tags, written in uppercase. This is
basically everything you need to know about standard word and phrase queries in
COCA, so let’s see how you can apply this, first to a basic lemma query, and then
to a comparison of American and British English.

8.2.2 Comparing corpora in the BYU interface

Exercise 50

Start by running a lemma query on the word movie, as depicted in Figure
8.4.

Investigate the results by first clicking on the hyperlink for the singular
form, then doing the same for the plural, and last, but not least, by ticking
the two boxes next to the separate forms and clicking on to get
all results displayed at once.

The obvious advantages the COCA interface has over the BNCweb search
results here are that a) we get a frequency breakdown of all forms immediately,
rather than having to switch to a separate view first, and b) the results can be dis-
played in the bottom frame for individual sub-results immediately without having
to open them in a new window or needing to navigate back a page each time we
want to look at another sub-result. This is especially useful if we want to investi-
gate lemmas with many different potential forms, as, for example, for verbs. The
main disadvantage of the COCA interface, on the other hand, lies in the fact that
it’s not possible to get the frequency breakdown according to tags, which makes
it more difficult to discern between polysemous forms.

In the next step, we want to see how we can compare this result to occurrences
in British English, where the original word for what’s called a movie in American
English is generally assumed to be film, although some older people may also refer
to films shown in the cinema as pictures. The latter basically comes from the same

136 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

expression as its American counterpart because the word movie is derived from the
expression moving picture(s), where the first component has simply been clipped
in American English, while in British English, the second part of the compound
noun was originally retained.

Exercise 51

In order to compare the results to the equivalent data from the BNC, click
to open the dropdown list that initially reads SIDE BY SIDE. Here, it may
be a bit misleading at first that you don’t use COMPARE, but this would
simply switch us to the other corpus.

Select BNC and wait for a few seconds for the result to appear.

The initial result of the side-by side-comparison should look like Figure 8.6.

Figure 8.6 Side-by-side comparison for the lemma of movie in the COCA and BNC

These results show us a number of interesting things. First of all, in the online
interface, what appears in light grey on the left-hand side in Figure 8.6 would be
in green, which indicates that both sub-forms of the lemma are, somewhat unsur-
prisingly, far more frequent in COCA than in the BNC, while red or pink (here
appearing in dark grey) indicates considerably lower frequency. Another thing we
can see here is that the plural form is ranked more highly in the BNC half on the
right-hand side, as apparently the ranking is based on the ratio of hits per mil-
lion words. We’ll talk more about frequency norming issues and what they might
signify in a later part of the book. For the moment, all we need to know is that
frequency norming simplifies the comparison between data sets of unequal size.
For our analysis at the moment, the ordering on the right-hand side is actually
irrelevant, anyway, and we can essentially get the information we wanted from the
left-hand side, where the ratio tells us that the singular form is nearly 7 times, and
the plural from 5½ times, as frequent in the COCA as in the BNC. This large
difference already seems to indicate that the word movie, although it’s certainly
used in British English today, still doesn’t seem to have replaced the word film
yet. However, in order to verify whether this is actually true, and of course also
whether movie is indeed the preferred form in American English, we really ought
test and see how frequently the noun film is used in both varieties, so let’s do this
as our next exercise.

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 137

Exercise 52

Click on the dropdown list that initially reads ‘-- START --’ and select
‘COCA’. This will return you to the basic single-corpus COCA interface.

Run a search for the lemma of film, this time constraining the results to
nouns, as, of course, film can also be a verb and we’re not interested in this.

Next, switch to the side-by-side comparison again and investigate the
results.

As you’ve hopefully seen, this kind of comparison between two different
varieties is quite easy to carry out in the BYU web interface, and you can also use
your knowledge of the query syntax to investigate further varieties through the
Corpus of Global Web-Based English (GloWbE), which is accessible through
the same interface.

We’ll explore further analysis options in COCA in some of the following sec-
tions, but before we do so, I still want to mention a further display option COCA
offers, the KWIC display, which can again be selected directly from within the
display options in the left-hand search frame. Choosing this option will initially
provide you with a selection of 100 random samples (adjustable to a maximum
of 1,000) that are distinctively colour-coded for the main content word PoS cat-
egories, but unfortunately not for function word categories, which are marked
with a single colour. The output can also be sorted using variable sorting options
for a visual indication of the PoS of a search term(s), plus surrounding tags. This
type of display may already be highly useful for identifying most of the potential
for grammatical and semantic polysemy, but the maximum number may not allow
you to extract enough samples in cases where a search term has a high degree of
polysemy on both levels.

Solutions to/Comments on the Exercises

Exercise 37
As you’ll hopefully see from the examples on the first page, the verb assume here
has two distinct meanings, one that represents a verb of cognition (similar to
think), and the other a behavioural verb that may mean to ‘adopt a position or
role’, either literally or metaphorically. The text displayed here just looks like any
plain text from a book, article, etc., with only the hit highlighted and formatted
as a hyperlink.

Exercise 38
Toggling the view to KWIC will provide you with a display that’s similar to that
in AntConc, with the keyword centred in the window. When you hover over the

138 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

hyperlink for the hit itself, you should be able to get a tooltip that shows the
hit and displayed context as morpho-syntactically annotated data where the hit
is highlighted in red. Hovering over the file name on the left displays a different
tooltip, this time providing fairly detailed information about the text the hit was
found in.

Exercise 39
This exercise should present no difficulty, so there’s nothing to discuss here

Exercise 40
Because you’ll now get random results, obviously there’s no guarantee that you’ll
always be able to observe any difference. However, what may well happen is that
some of the results illustrate the different meaning potentials more clearly, so, for
instance if you were trying to find suitable examples for teaching or creating a
textbook, repeatedly running the same query may be a useful option.

Exercise 41
As you’ll have seen, the file information for every file in the BNC contains various
types of information extracted from its header, partly referring to textual statistics,
such as the length in words, and approximate sentence length, the full file name, as
well as certain types of bibliographical information. However, what you may also –
sadly – notice fairly frequently is that, although there’s the basic provision for a
possible piece of information in the left-hand column of the table displayed, often
the information itself is actually marked as ‘unknown’ in the right-hand column.

Exercise 42
In choosing your options, you first need to make a decision as to whether you want
any meta-information included, so you either need to have some of the options
selected in the bottom half of the page or simply leave all un-ticked. I’d suggest
that you initially remove all absolutely unnecessary information, such as meta-data
or information required for re-importing into BNCweb, etc., so that you end up
with a relatively simple list that primarily contains the hits with the query results
marked, similar to the output we got from AntConc.

In order to get the most plain – but still useful – form of output, make sure
that none of the boxes in the second half of the page are checked and also choose
‘no’ for ‘Download both tagged and untagged version of your results’. In order
to make it easier to see the hit, keep the ‘Mark query result…’ option set to ‘yes’,
though. Under the options for choosing the operating system, make sure that
you select something appropriate, as this’ll affect the line endings in the output. If
you’re only viewing the result in a good text editor, this won’t really make any dif-
ference, but if you may be planning to use other programs to further process your

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 139

results automatically, it may make a difference if these programs expect operating-
system specific line endings, and thus potentially lead to errors. Keep the option
‘Write information about order…’ set to ‘no’ as well because it only describes the
order of the basic output fields, that is, number of hit, file name, unit number
where the hit was found, possibly speaker ID (for spoken language), left context,
hit, and right context. The output should then look like the short example excerpt
provided below:

1 A01 407 Many people wrongly <<< assume >>> that all they have
automatically goes to their loved ones .
2 A04 170 The description is rather slender , but Pater was able to <<<

assume >>> some existing knowledge on the part of his reader : [We all know
the face and hands of the figure , set in its marble chair , in that circle of
fantastic rocks , as in some faint light under sea .]
3 A05 1282 It was lively enough to marry Bellow to a [stylish Radcliffe
graduate] of whom Roth had been [enamoured] -- if we are to <<< assume
>>> that The Facts has not imagined the connection .
4 A06 1358 Here is an example of an impro exercise for two actors : [An actor
is asked to <<< assume >>> the character of a close family friend who arrives
at the house with the news of the death of the wife ’s husband in an accident .
5 A06 1413 Read newspapers , and do n’t <<< assume >>> that the
whole world is as interested in acting as you are .

If you choose the option for downloading the tagged version, too, you get
something that looks like this:

1 A01 407 Many people wrongly <<< assume >>> that all they have
automatically goes to their loved ones . Many_DT0 people_NN0 wrongly_AV0 <<<

assume_VVB >>> that_CJT all_DT0 they_PNP have_VHB automatically_AV0
goes_VVZ to_PRP their_DPS loved_AJ0 ones_NN2 ._PUN
2 A04 170 The description is rather slender , but Pater was able to <<<

assume >>> some existing knowledge on the part of his reader : [We all know
the face and hands of the figure , set in its marble chair , in that circle of fantastic
rocks , as in some faint light under sea .] The_AT0 description_NN1 is_VBZ
rather_AV0 slender_AJ0 ,_PUN but_CJC Pater_NP0-NN1 was_VBD able_AJ0
to_TO0 <<< assume_VVI >>> some_DT0 existing_AJ0 knowledge_NN1
on_PRP the_AT0 part_NN1 of_PRF his_DPS reader_NN1 :_PUN [_PUQ We_PNP
all_DT0 know_VVB the_AT0 face_NN1 and_CJC hands_NN2 of_PRF the_AT0
figure_NN1 ,_PUN set_VVN-VVD in_PRP-AVP its_DPS marble_NN1
chair_NN1 ,_PUN in_PRP that_DT0 circle_NN1 of_PRF fantastic_AJ0
rocks_NN2 ,_PUN as_CJS in_PRP some_DT0 faint_AJ0 light_NN1 under_PRP
sea_NN1 ._PUN]_PUQ

Here, the output’s basically the same as before, only that the PoS tagged version
follows immediately after the non-tagged output. This, however, creates a bit of
redundancy, and it would be nice to be able to save the tagged version only, but

140 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

unfortunately, there’s no provision to do so. Therefore, if you only want to retain
the tagged part, you need to delete the non-tagged one manually.

Later on, depending on how much information you might need about a text,
you can also output as much meta-information as required (or is actually available),
in case you need to determine and/or distinguish which particular type of texts the
results come from. When outputting meta-information, to keep it easily readable,
I’d suggest you always go for the ‘full values’ option because otherwise you’ll
simply have to look up what each number means. This really only makes sense if
you’re planning to put the result into a relational database for complex analysis and
annotation, and where you’ll automatically be able to look up what the numbers
mean from a lookup table.

To illustrate the difference, here are two short samples that only contain the
first hit and all associated meta-information:

1 A01 407 Many people wrongly <<< assume >>> that all they have
automatically goes to their loved ones . 1 5 64 3 2 5
3 4 1 0 0 0 1 3 3 1 3
4 7 3 5 5 7 3 5 6 6 30

This first sample contains only the reference numbers, while the next one con-
tains the full textual descriptions, where ‘n/a’ (not applicable) essentially indicates
that those fields don’t apply to written, but only spoken, texts.

1 A01 407 Many people wrongly <<< assume >>> that all they have
automatically goes to their loved ones . Written Written miscellaneous
W:non_ac:medicine 1985-1993 Non-academic prose and biography Composite
Miscellaneous published Informative: Social science Low unknown
unknown unknown Corporate Adult Mixed Low n/a n/a
n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Exercise 43
Essentially, doing this exercise should be straightforward. The only thing that may
conceivably go wrong here is if you try to save the query with a name that contains
spaces, in which case you’ll get an error message saying: “Names for saved queries
can only contain letters, numbers and the underscore character ("_")! Please use
the "back"-button of your browser and change your input accordingly.”

Exercise 44
The results of this exercise may initially be somewhat surprising to you because
you may have expected to simply get the British and American spelling variants
of this word. Instead, the query will have returned any word that starts with the
grapheme combination/character sequence <colo>, followed by any number of
characters, and ends in an <r>, because the wildcard asterisk (∗) means ‘zero or
more characters’.

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 141

Exercise 45
Based on your knowledge of quantifiers, you might have thought that you could
find the two spelling variants by replacing the ∗ by a ?, but unfortunately this
still isn’t how wildcards work. You may again be surprised by the result because
you probably would have expected this to work, when in fact this query only
returned examples of the British spelling. The reason for this is that the wildcard
? always stands for any character and is thus the equivalent to the dot in regular
expressions. Given our current means, it may therefore seem as if we can’t really
express what we want using wildcards because the + always represents at least one
character, but potentially an unlimited number, too, so we clearly cannot use it
in this case, either. However, luckily for us, there is a way to solve this problem,
which is through expressing simple alternation.

Exercise 46
Using simple alternation in the query string colo[u,]r, you can now get the two
spelling variants (only) displayed. Apart from the fact that you can even find 115
examples (1% of the total forms) of the American spelling in the British corpus
data at all, the results should not be surprising now. You may now be tempted
to investigate further why you can find these American spelling variants in the
corpus, and of course the easiest option for this is to click on the link for ‘colour’
in the frequency breakdown to get to the concordance for the results, and then
checking the meta-information for each result. Unfortunately, however, doing so
remains relatively un-insightful, as in most cases you’ll only find information about
the author’s domicile being marked as ‘unknown’, or, surprisingly, in some cases
as ‘UK and Ireland’.

Of course, one thing we haven’t done yet here is to ensure that we really retrieve
all forms of the noun paradigm by including the plurals, which we can do using
the same mechanism and writing colo[u,]r[s,] instead. This, however, doesn’t
change the distribution, so the results, apart from now being complete, aren’t
really any more interesting.

Solving the second part of the exercise may again pose more difficulties than
expected. When you try to achieve this task, you’ll probably at best manage to
create a query that will find two of the above forms, and instead get an error
message saying “bracketing is not balanced”. This is because the space is not part
of the wildcard/simple alternation syntax, so we need to look for alternative ways
of solving the problem.

Exercise 47
With a little bit of experimenting, you’ll hopefully have come up with the solu-
tion (icecream|ice-cream|ice cream). This does indeed allow us to find all
three alternatives at once, but we can still make it more compact by writing
(ice[-,]cream|ice cream) instead, where the first part allows us to express

142 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

the hyphenated compound and the one completely written together as one word
at the same time.

Exercise 48
As your results are randomised now, I can only discuss the solution in a more
abstract way here, but hopefully, this’ll reflect your results well.

First of all, when you do the visual inspection, you may notice that the ran-
dom sampling could give you a little bit of a skewed impression because it might
just so happen that BNCweb has only returned either a majority of noun or verb
hits. However, even if this may be good enough for finding suitable examples to
illustrate the usage of the word forms, we don’t really get any idea as to whether
it’s used more frequently as one or the other, and it certainly doesn’t allow us to
easily extract only noun or verb usages. You may also notice that, occasionally,
as I’ve pointed out before, CLAWS has assigned two tags to a word form (e.g.
VVB-NN1), even if you might think that definitely just one of the two can be
correct.

When you display the ‘Frequency breakdown’, the first result will not be very
exciting because, as we’ve specified only one word form, it only displays that,
together with the ‘No. of occurrences’, and the ‘Percent’ value, which will be
100%. What may be a little puzzling, though, is that the word form displayed is
actually the one with an initial capital, which is perhaps not the most representative
way of displaying it because this exact form is bound to be much rarer than the
non-capitalised one.

Once you’ve specified the option for viewing according to ‘Frequency break-
down of word and tag combinations’, your display will show you the exact word
forms in combinations with all the tags – or ‘ambiguous’ tag combinations –
according to their frequency of occurrence. The results, which you can also down-
load by clicking ‘Download whole table’, should look similar to Table 8.3:

Table 8.3 Word + PoS tags breakdown for mind

No. Word and PoS-tags No. of occurrences Percent

1 mind_NN1 18270 67.5%
2 mind_VVI 3496 12.92%
3 mind_VVB 2551 9.42%
4 mind_NN1-VVB 2025 7.48%
5 Mind_VVB-NN1 724 2.67%
6 MIND_NP0 1 0%

As you can see, around 10% of all forms of mind have been tagged as ambiguous,
something that wasn’t as apparent when looking only at a small number of hits,
and hopefully serves to reinforce my point about having to be careful when relying
on the tagging in the BNC. Focussing on the ambiguous tags more closely, we

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 143

can also notice that sometimes the noun tag precedes the hyphen and sometimes
the verb tag. This ordering indicates that CLAWS ‘assumed’ that the first one is
the more likely of the two. What the breakdown also clearly shows us is that the
noun usage of mind is predominant.

However, investigating frequency distributions wasn’t our main objective here,
so let’s return to the main task at hand, exploring how we can actually make use of
the tagging in our searches directly. First of all, when you take a close look at the
listing of words + tags in the table, you’ll notice that they’re in fact hyperlinks that,
once clicked, provide you with a concordance of exactly the combination specified,
so that you can already narrow down your search in this way. This is still limited,
though, because the different tags for verbs and nouns are further sub-divided
in the output, so, in order to be able to find only verb forms, you need to use a
wildcard query like mind_V∗. This will then retrieve all hits where the tag starts
with a verb marker as the first element, including those that have an ambiguous
tag where the verb tag is listed first, but excluding the ones where the noun tag
comes first. In order to also capture the latter, we need to make use of ‘word-level’
alternation in a slightly more complex form, specifying mind_[V,N??-]∗.

Exercise 49
As you’ll be able to see when you run the search, you’ll immediately get a num-
ber of different forms of the verb and noun paradigms for the basic concordance.
When you then switch to the frequency breakdown, you may be surprised a little
because you not only get the regular forms of the two word categories displayed,
but also two slightly more unusual forms, the archaic form runneth, and runnin’,
which represents the pronunciation variant with so-called ‘g-dropping’, where the
final consonant is not realised as a velar, but an alveolar nasal. Now, you might
expect that all these forms actually come from the spoken part of the BNC, but
closer inspection of the meta-information reveals that they’re in fact from written
materials, where authors have simply tried to represent a stigmatised pronuncia-
tion form. The last interesting ‘form’, or rather feature, we can observe here is
that there are 5 instances of run with the UNC (unclear) tag. Closer examina-
tion by following the hyperlink reveals that these are in fact by no means ‘unclear’
examples, but in fact represent interrupted words that occur in the spoken part of
the BNC. However, despite the fact that interrupted words are very common in
spoken language, even that of highly fluent speakers, the CLAWS tagset provides
no tag for this, something that is probably due to the CLAWS tagsets originally
having been created for the morpho-syntactic annotation of written language, and
later adjusted for spoken language to some extent.

The headword search for take doesn’t really have any surprises to offer. The dis-
tribution indicates very clearly that the noun form is comparatively rare, and that
there’s a clear ranking in terms of frequency for the verb form, with the infinitive
being the most frequent, followed by the simple past, the ED-form, and the ing-
form. We again find one unclear form, but this time it doesn’t mark an incomplete

144 USING ONLINE INTERFACES TO QUERY MEGA CORPORA

word, but instead a form that should probably be marked as an infinitive, despite
the fact that it’s missing the infinitive marker.

As before, for both headword searches, we again get a considerable number of
ambiguous tags �
Exercise 50

Provided that you’ve used the correct syntax to search for the lemma, [movie],
COCA should have found 53,369 instances of the singular form, and 24,991 of
the plural. This exercise, on its own, doesn’t really reveal anything remarkable. All
we can really observe here is that, out of the overall 78,360 hits, the singular form
accounts for slightly more than 2/3 of all results, while the plural is far less frequent.
Rather than seeing the relative frequency in terms of percentages as in BNCweb,
though, the bars on the right-hand side provide us with a visual indication of the
extent to which each sub-form of the lemma contributes to the total.

Exercise 51
Other than what was already discussed in the chapter itself, you should have been
able to observe that, in the BNC, the singular form is also more common than the
plural, with 1,716 hits, and the plural only amounting to 1,013, so that the total
is 2,729. In other words, the distribution of singular to plural forms is somewhat
similar to that in the COCA, although the singular forms still make up less than
two thirds.

Exercise 52
The correct version of the lemma query, which excludes anything but (common)
noun forms, should be [film].[nn∗]. This should first yield 57,917 hits for the
singular, and 17,421 hits for the plural in COCA (total 75,338). Once you open
the comparison page, you should get 9,879 hits for the singular, and 3,189 for
the plural in the BNC (total 13,068). Actually, the number of singulars should be
adjusted for the BNC, as there’s also one instance where film followed by a full
stop has erroneously been marked separately because the punctuation mark was
apparently not split off correctly during the tagging process, probably due to the
fact that it was – equally erroneously – followed by a comma. This can easily be ve-
rified here by clicking on the raw frequency indication of the hit on the right-hand
side, which is hyperlinked and will therefore display the hit in the bottom frame,
as do all the entries for raw frequencies in the comparison table. Investigating the
ratios of 1.30 and 1.21 essentially shows us that, unlike we assumed before, film
isn’t really only the more common British variant, but actually appears to be an
alternative in American English that is almost equally common overall, but even
more common in its singular form, which is a surprising result that clearly seems to
contradict the stereotypical assumptions that Americans always ‘talk about’ movies,

USING ONLINE INTERFACES TO QUERY MEGA CORPORA 145

while Brits always say films. The reason why I hedged the claim above is that,
without more in-depth investigation of a large number of samples of the lemma,
we shouldn’t be making such a strong claim, as of course the word film doesn’t
only refer to ‘moving pictures’ but may also be used to refer to other concepts,
such as the pre-digital medium for capturing/storing photos, or ‘thin layers/coat
of a substance’ (e.g. a film of ice), etc.

Sources and Further Reading

Anderson, Wendy & Corbett, John. (2009). Exploring English with Online Corpora: An
Introduction. Basingstoke: Palgrave Macmillan.

Davies, Mark. (2009). The 385+ Million Word Corpus of Contemporary American English
(1990–2008+): Design Architecture, and Linguistic Insights. International Journal
of Corpus Linguistics, 14(2).

DeRose, Stephen. (1988). Grammatical Category Disambiguation by Statistical Optimiza-
tion. Computational Linguistics, 14(1), pp. 31–39.

Hoffmann, Sebastian, Evert, Stefan, Smith, Nicholas, Lee, David, & Berglund Prytz, Ylva.
(2008). Corpus Linguistics with BNCweb – A Practical Guide. Frankfurt: Peter Lang.

9
Basic Frequency Analysis – or What

Can (Single) Words Tell Us
About Texts?

The methods described in this chapter can be considered a starting point for
providing us with some quick hints as to which particular type of language, or
perhaps even genre, we’re dealing with in our corpus analysis by investigating
how frequently certain words occur in a corpus. In other words, what we want to
do here is to try and develop an understanding of how much, but perhaps also to
some extent how little, lists of single words can tell us about the texts they occur
in. This type of analysis will then be continued in the next chapter, where we’ll
discuss fixed or variable combinations of words that may be equally, or sometimes
even more so, relevant to a particular type of text or genre.

In order to develop this understanding thoroughly, as so often in corpus lin-
guistics we need to look at this task from at least two different angles, a theoretical
and a practical one. We’ll start with some theoretical considerations first, and then
see whether or how this may affect the way we carry out frequency analyses, or
need to interpret them.

9.1 Understanding Basic Units in Texts

Every text has multiple levels of meaning, and these levels tend to be – at least to
some extent – linked to the ‘physical’, structural, units we may encounter, ranging
from single ‘words’ via phrases, clauses, sentences, etc., to whole texts. There’s
frequently no direct one-to-one mapping, though, which means that we need
to make certain decisions as to which sizes of chunks of texts may be relevant

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 147

to various types of analysis. In order to develop some more concrete notions of
what the different potential units of meaning may be, and how they relate to the
structural units we can investigate, we’ll start with a bottom-up description of
potential units, working our way up from the level of the ‘word’. In later sections,
we’ll then move on to discussing longer sequences of units, both fixed, as in, for
example, idioms or proverbs, and flexible, as in different types of more or less
formulaic phrases.

9.1.1 What’s a word?

One of the fundamental issues that we encounter when processing texts is the
question of what exactly we should treat as a word. Initially, we may näıvely start
out with the idea that words are entities in texts that are separated by either white-
space or punctuation. Unfortunately, this is even the case for the PoS tagging of
the BNC, where the guidelines state that “our tagging practice in general follows
the default assumption that an orthographic word (separated by spaces, with or
without punctuation, from adjacent words) is the appropriate unit for word-class
tagging” (Leech & Smith 2000). These guidelines, however, also recognise impor-
tant exceptions, some of which will partly be discussed below, too, so they’re not
quite as narrow as the above quote may initially lead us to believe. Any attempt
to primarily define words in this way, though, largely ignores the fact that what in
practice functions as a single word need not only consist of a single entity delimited
in this way.

In English, for example, compounds may be represented by a combination of
‘words’ that can be

1 written together, in which case our näıve definition would generally work,
although it would technically exclude text-/paragraph-initial or -final words,

2 hyphenated, in which case our definition is likely to fail if we interpret the
hyphen as a type of punctuation mark, or

3 represented as two textual units with spaces between them, where our näıve
definition would most certainly fail.

We thus have three different (primary) means of creating a compound. As we’ve
already seen when we examined phrase-level alternation in BNCweb, for the word
ice cream we can find all three of these different variants within the BNC:

1 icecream: 28 matches in (17 texts),
2 ice-cream: 368 matches (174 texts),
3 ice cream: 471 matches (203 texts).

Based on this data, it’s certainly the last variant that’s the most frequent one,
but also the one our näıve detection algorithm would fail most miserably on. We
can find further similar problematic examples for other types of composite words

148 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

as well, such as for the word however, with how-ever occurring only once, how ever
used as a true adversative conjunction occurring at least 6 times, and however –
subsuming the true adversative and its ‘comparative’ use – 59,730 times. And
even for the negated version of the word smoker, which may at first glance seem
to be quite uncontroversial, we find the three variants non smoker (3x in 1 text),
un-hyphenated nonsmoker (7x in 4 texts) and – most frequently – non-smoker (55
in 36 texts).

Therefore, the choice of how to represent composite words clearly isn’t fixed
by a rule, but essentially seems to be a case of whatever form becomes convention-
ally more or less accepted by a majority of people in/for its written form. This is
a particular problem we have in dealing with written language or, more generally,
language that’s represented in some kind of orthographic form. In spoken lan-
guage, in contrast, this issue doesn’t normally arise because a) words there aren’t
generally separated by pauses – which the space is to some extent the equivalent of
in English and other Western languages – and b) the prosody/stress patterns usu-
ally help us to recognise which units belong together or not, at least for relatively
proficient speakers.

In other languages, such as Chinese, defining a word by the spaces surrounding
it makes even less – or almost no – sense at all, as most sentences there do not even
contain any spaces between characters. As a matter of fact, in the majority of cases,
a Chinese word is made up of two characters, with the ‘exact’ ratio of characters to
words apparently being around 1.7. In French, to cite an example from a language
that’s closer in nature to English, noun compounds such as, for example, machine
à laver (‘washing machine’) are generally formed from a noun + PP involving the
prepositions à or de, while in German, extremely long compounds without any
spaces can be created, although this is often exaggerated jokingly, as in the example
of Donaudampfschifffahrtskapitänswitwe (‘widow of the captain of a steam boat
that runs on the river Danube’).

Returning to English, further, but similar, problems are caused by other multi-
word units (often abbreviated MWUs), such as phrasal (prepositional) verbs, for
example, give up/in or get along with. Only that, in this case, we don’t need to
deal with three different potential forms for one ‘word’ but a sequence of up to
three orthographic units belonging together that act as one. The same goes for
multi-word conjunctions, such as as far as, as if, provided that, etc. (c.f. Biber et al.
1999: 85–86), which are at least occasionally treated as one unit in so-called ditto
tags (Cloren 1999: 45), for example, As_CS31 far_CS32 as_CS33 in C7. Here,
the whole MWU is tagged as a subordinating conjunction, with the first number
indicating the total number of elements and the second the position within the
sequence.

With contractions – such as can’t, won’t, she’s, he’d, etc. –, on the other hand,
we really have the opposite problem, that is, we only have one single word form,
but might in fact want to interpret this as two different words. In this case, if
we purely look at individual (untagged) words and don’t actually analyse the

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 149

context, we won’t necessarily be able to group the second part (i.e. the clitic)
with its appropriate full counterpart in a frequency list (something we’ll discuss
in detail in Section 9.2). For instance, we wouldn’t know whether a d following
an apostrophe actually represents a form of had or would or an s stands for a
third person singular form of be or a possessive marker, etc. If frequency lists are
ordered alphabetically, the same issue doesn’t necessarily arise because then the
un-contracted and contracted ‘first parts’ will appear close together, but if they’re
sorted in terms of their frequencies, we may overlook that one form or the other
could occur more frequently, as we’ll soon test practically in AntConc.

In this context, problems with the semantic content of frequency lists also
already become apparent to some extent, due to the polysemy of the little func-
tion word clitics indicated above. Of course, cases of polysemy aren’t restricted
to function words, something we’ve seen from the very beginning when we
started exploring concordances, but may also occur with content words. Here,
for instance, we have the well-known example of bank as a noun, either denoting
a ‘financial institution’ or the ‘sloping land/grounds alongside a river’. It may get
even worse if we further add the potential for grammatical polysemy, such as in our
example word bank, which may not only be a noun, but also a verb, where again
it can have two or more different senses, i.e. ‘turning steeply’ for planes, ‘having
a bank account with’ or ‘counting/relying on’, each time in conjunction with the
highlighted preposition. And, of course, a simple listing of the single word form
without context in a frequency list would (normally) not allow us to disambiguate
our examples, as would for example be possible through sorting a concordance of
the word by its left or right context.

All of the above are issues that are often largely neglected in the analysis of
corpus data, especially in more automated and quantitatively oriented types of
corpus analysis, where the norm still seems to be to assume that the traditional
‘definition’ of a word is relatively unproblematic, and that synonymous expressions
generally consist of single words only. Now, while of course it’s generally not
possible for us to directly change the design of any corpus tools we may be using
to allow us to deal with this issue, we at least ought to bear this ‘handicap’ in
mind in many of our analyses, and see whether at least some of the tools allow us
to avoid any of these problems, or whether we may be able to find a way to work
around certain issues by manipulating our data ourselves in simple ways.

9.1.2 Types and tokens

The problems we discussed earlier in deciding what exactly constitutes a word all
relate to the issue of how to assign a frequency count to a suitable representation
form of a word, something slightly similar to creating the entry for a headword
in a dictionary. Such a representative instance/word form in a frequency list is
referred to as a type, and each individual occurrence of a particular type as a token,
which is why splitting a text into individual word-level units is also referred to as

150 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

tokenisation. As we’ve already seen above, there are quite a few cases where we
may have difficulty in assigning multiple words to one single type, but it isn’t only
for multi-word units that we encounter such problems. Even for single units that
are clearly delimited by spaces or punctuation, we may end up having problems
assigning them to one and the same type because of such issues as polysemy dis-
cussed above, but also alternative spellings (colour vs. color) due to dialectal or
historical variants, typos (teh instead of the), or capitalisation/non-capitalisation.

For the latter, we can even distinguish two different types: capitals indicating
‘sentence’ beginnings or proper names vs. words that are completely in upper-
case, such as in emphatic headings or attempts at representing increased loudness
in spoken materials. Here, we may, for example, encounter the rendering of more
loudly spoken/shouted passages in fiction, or even in spoken and orthographically
transcribed corpora, such as the Hong Kong Spoken English Corpus (HKSCE;
Cheng et al. 2008), where uppercase characters are used to indicate stressed sylla-
bles. One of the nastiest kinds of emphasis I’ve ever encountered is that some web
page authors use uppercase letters that are each separated by a single space in order
to highlight different sections of pages, for example, N E W S, where a normal
tokenisation routine that works on whitespace would count each individual letter
as a token of the letter type, rather than finding an occurrence of the whole word.
Under normal circumstances, if we didn’t realise that this feature/format were
used in order to emphasise/highlight something, the impression this would prob-
ably create is that of someone spelling out the word news – where we’d actually
want to count the spelt letters as tokens –, but which was clearly not the intention
on these web pages.

In some cases, though, we may even deliberately want to force the grouping
together of disparate forms. This may for example be the case if we want to group
all forms of a certain paradigm together, such as all the forms of the suppletive verb
be or all different forms (infinitive, third person singular present, present/past par-
ticiple) of other verbs. This is referred to as lemmatisation (c.f. also Section 8.1.8,
where we looked at lemma queries in BNCweb), and many programs that produce
frequency lists offer this kind of facility. A similar thing can be done by expanding
abbreviations to their full form, but with both lemmatisation and expansion, one
always has to bear in mind that the individual forms may potentially also cause a
change in meaning of the whole textual unit in which they occur, or may have been
used deliberately as a (stylistic) feature of a particular type of genre. For instance,
some publishers force their book or journal authors to use word sequences like
that is instead of the more academic abbreviation i.e., which has direct impli-
cations for the writing style and – to some extent – even the length of the
article/book.

Now that you know about some of the issues that may affect our counting of
words in a text/corpus, we can start looking at frequency lists properly. Basically,
these lists can be created in two different ways by a program (or a person), either
by producing a token list first, then sorting it and counting how many times a
given word form occurs in a row, or, more efficiently, by keeping track of each

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 151

word form encountered and increasing its count as it recurs in the text. Both ways
of course require the text to be suitably cleaned, normalised, and tokenised into
words in the first place, which is at least part of the reason why I placed such a lot
of emphasis on cleaning up our data in earlier sections of this book.

And of course, because frequency lists consist of a combination of word types
and their associated frequencies, we also have multiple ways of sorting and display-
ing our results. The most useful output format in many areas of corpus linguistics
for such a list is generally to have a list that is first sorted according to the fre-
quency in descending order, that is, with the most common words occurring first,
and then ‘alphabetically’ if the same number of tokens occurs for more than one
type. However, we may also sometimes want to look at the least frequent words
first, assuming that they can possibly tell us something very specific about the ter-
minology used, for instance in a highly technical text that contains a number of
specialised words. If we’re working in the area of lexicography, though, and are
trying to create a comprehensive dictionary of a particular type of (sub-)language,
we may well want to start with an alphabetically sorted list first, and then inves-
tigate the individual types according to their specific features that would allow us
to classify and describe them optimally. To investigate this further, we’ll now look
at what exactly frequency lists may look like, and what they could be useful/used
for, from a more applied angle.

9.2 Word (Frequency) Lists in AntConc

We’ll begin our exploration into word (frequency) lists by creating a basic list of
a small corpus in AntConc to see what such a list may look like, and also whether
we can directly observe some of the problematic issues described above in our
data.

Creating a word frequency list in AntConc is a very simple task. All you need to
do to create a basic single-word list is load a corpus, select the ‘Word List’ tab, and
click Start . The output of this tool consists of either three or four separate sub-
windows, depending on which options you’ve chosen for it under the program’s
‘Tool Preferences’, and can be seen in Figure 9.1.

The first window from the left lists the rank of the word inside the frequency
list, the second the frequency itself, the third the word form, and the fourth, if
present, the lemma associated with the word form. The latter, however, is only
shown if the option for this is activated in the ‘Tool Preferences’ for word lists,
and a suitable lemma list loaded. Additional information indicated in Figure 9.1
is provided regarding how many different types overall have been found and how
many tokens in total. The output can also be sorted in different ways, which we’ll
try out later on in this section. For the moment, let’s just practise creating this
basic list on a small corpus that consists of a selection of files I’ve compiled for
you from the Trains (93) corpus. For more information on this particular corpus,
see http://www.cs.rochester.edu/research/cisd/resources/trains.html.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.cs.rochester.eduhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}researchhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}cisdhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}resourceshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}trains.html
http://www.cs.rochester.edu/research/cisd/resources/trains.html

152 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Figure 9.1 Output of a basic frequency list in AntConc

Exercise 53

Download the selection from http://martinweisser.org/pract_cl/data/
trains93_selection.zip.

Extract it to the folder where you’re keeping your downloaded data,
retaining the original folder name, so that you can easily load the whole
corpus.

Open AntConc and load the corpus.
As we’re not interested in lemmas at the moment, turn off the ‘Lemma

Word Forms(s)’ option under ‘Tool Preferences→Word List’. Also turn off
the option ‘Treat all data as lowercase’ in the same dialogue.

Switch to the ‘Word List’ tab or press and create the list, keeping the
default set to ‘Sort by Freq’.

Scroll through the list and try to understand what type of texts we may
be dealing with here, both in terms of text type/category and domain/topic.
Which particular words can help you to identify these and why?

If you’re unsure what a particular ‘word’ entry in the list means, click on
it and this will take you to a concordance of that entry. To get back to the
original list, simply go back to the ‘Word List’ tab.

http://martinweisser.org/pract_cl/data/trains93_selection.zip

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 153

Keep the list open, as we want to explore further options using the same
data later.

Exercise 53 was designed quite deliberately using this type of data in order
to demonstrate the potential usefulness of word frequency lists for identifying
distinctions between spoken and written language, as well as finding indicators for
possible domains. However, be warned that if you create frequency lists of more
general written data, it will probably be much more difficult to discern which
words may be particularly indicative of certain genres or domains.

The high incidence of function words is of course something you’ll be able to
observe in both spoken and written texts. Perhaps the only types of texts/textual
units where this is not so are the telegram, the heading, and the bullet point, where
function words are deliberately left out in order to save space or to create a more
‘immediate’, summarising, effect by only including content words.

As pointed out in the general discussion on frequency lists earlier in this section,
it’s fairly difficult to define what exactly a word is, and we may at least partly have
to accept simplified definitions or ones that are different from what we might find
acceptable. This is especially true when working with software written by some-
one else, and possibly also for a particular purpose we may not even be aware of.
Thus it’s generally advisable to first check any output of a frequency list produced
by some program to see whether it may exhibit any unusual features that could
influence the analysis negatively. You should probably minimally verify how the
program deals with contractions or hyphenations to be aware of what exactly the
author’s definition of a word is, as well as whether that particular definition fits
your own purpose.

As will hopefully have become clear from the discussion of Exercise 53, the
default frequency list in AntConc treats clitics, such as ‘s (but without the apos-
trophe) as separate words, which is often what we want because they’re in fact
abbreviated words that have been fused with a preceding word. This, however,
makes contractions less easy to spot, let alone count, for the untrained observer,
when they’re still a very useful indication of spoken language, until such time as
more people begin to realise that expanding and not using them in written lan-
guage is actually counter-productive because it not only disrupts the reading flow
to some extent but also creates the impression that at least some of the function
words that would normally be de-emphasised as clitics may in fact be stressed,
which is what using their full form indicates phonetically. Yet, in order to ascer-
tain the ‘spokenness’ of a text/corpus until such time, we may often want to handle
contractions as single units.

One of the great advantages of AntConc here is that it in fact allows you to
(re-)define what exactly constitutes a word token for your own purposes by editing
the definition of characters that are allowed to occur inside a word. Figure 9.2

154 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

shows the token re-definition options for including the apostrophe and the hyphen
to allow contractions and hyphenated compounds to be counted as single words.

Figure 9.2 Token (word) (re-)definition in AntConc

Exercise 54

Select ‘Global Settings→Token Definition’.
Add the apostrophe and hyphen in the box below ‘Append Following

Definition’ under ‘User-Defined Token Classes’, and tick the check box.
You may be tempted to simply tick the check box next to ‘Use Following

Definition’, as the definition below this at first glance appears to include
all the characters used in the English alphabet. This, however, may in fact
exclude some of the rare accented words borrowed from other languages
– although this is not applicable to our current data – and is therefore best
avoided.

Don’t forget to apply the setting, too.
Now, simply click again to re-create the frequency list including

the two extra characters, and observe the changes in the list by scrolling
through it.

As before, keep the list open, so we can re-use the data.

An important corollary of being able to control the parameters for creating
frequency lists is that, whenever you’re reporting any results of frequency analyses

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 155

in your research, you should always indicate what you’re treating as a word and
how you’ve controlled for this.

The above exercise should have demonstrated quite clearly what kinds of dif-
ferences to our analyses changes in token definitions might make, but still cannot
show us a full picture of all the advantages provided by creating customised fre-
quency lists on the computer. In order to understand this better, we also need
to take a look at the sorting options provided by AntConc. Unlike the sorting
options we had for concordance lines, where we were able to sort according to n
number of words to the left or the right quite freely, in this case, we have a more
limited set of options, based on the options for combinations of output for types
and frequencies, as already mentioned above.

Out of these options, we’ve already used one, sorting by frequency, when we
created our first basic frequency lists. However, what you may not have noticed
when looking through the results is that there’s an implicit secondary sort order,
which becomes relevant when we have the same number of types for different
word forms. You can see this, for instance, when you take a look at the hits ranked
numbers 28–30 in the ‘Rank’ window. All three of the words there – at, boxcars,
and oranges – actually occur with the same frequency of 123 tokens, yet at ‘ranks’
at the top, while the other two are ‘ranked’ lower, despite having the same fre-
quency. The reason for this is that, in order to be able to distinguish between the
types, the secondary sort order also sorts them alphabetically. Now, as we learnt
in Section 3.3.1, the computer normally distinguishes between upper- and lower-
case characters by using different (ranges of) numbers to refer to them, where the
uppercase characters normally always get listed first, so we should expect to find
any instances where types have the same number of tokens, but differ in case, to
exhibit this behaviour. However, if we scroll further down the list until we find
ranks 112–116, which all have the same token frequency of 20, we find that guess
is in fact listed above OJ because it starts with letter g. This is because AntConc
already automatically corrects the computer’s ‘natural’ sort order in order to allow
us to see types that occur with the same letter together, something that’s more
natural for human ‘consumers’ of such frequency lists. If you do want to insist on
seeing things the ‘computer way’, AntConc also allows you to do so by checking
the option ‘Treat case in sort’ in the settings for the ‘Word List’ tool. Doing this
will then sort the list ‘asciibetically’, that is, place OJ before guess. Let’s explore
the remaining options through another exercise.

Exercise 55

Return to the original frequency list sorted by frequency.
Under ‘Sort by’, switch the option from the dropdown list to ‘Sort by

Word’ and click on .
Scroll through the resulting list and observe the effects to see what you

can learn.

156 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

The remaining option under ‘Sort by’, ‘Sort by Word End’, is useful if you’re
carrying out morphological analyses on corpus data, as it groups together words
with the same endings, so that for instance plural forms of nouns or third person
singular and other forms of verbs will end up being grouped together. You can
test this, if you want, by applying this sort option, then typing ing into the search
box, and clicking on . This’ll search through the word list for the first
occurrence of the string ing, which, in most cases, will be followed by instances
of what’s commonly referred to as a present participle, although a better, more
neutral term for it would be ing-form. In some cases, though, the words below
this will also be instances of deverbal ing-adjectives or simply nouns or other word
forms ending in the grapheme sequence <ing>. As English these days exhibits
relatively little inflection, using this feature may not appear very useful, but for
other, more morphology-rich, languages this represents a highly useful way of
investigating morphological regularities, as well as productivity.

Despite the fact that we’ve now explored all the options from the dropdown
list, there’s still another possibility we’ve so far left unexplored. This is the ‘Invert
Order’ option that appears in the form of a check box above the dropdown list.
This allows you to perform reverse sorting for all the options in the dropdown
list, that is, from z-a for alphabetical sorts, from 1 to the most frequent (n) types
in frequency sorts, and z-a for endings, too, where the latter for instance sorts all
negated and contracted forms together quite nicely.

Once you’re happy with the results of your frequency list, no matter which
output format you’ve chosen, you can save the list to a text file again, just like
you were able to do with the concordance output. This way, you can not only
keep a record of it, but also analyse it further in a spreadsheet application, such
as Microsoft Excel or OpenOffice Calc, or compare it to lists from other corpora,
something we’ll also explore later on.

9.2.1 Stop words – good or bad?

Almost all texts, apart from maybe certain text types including telegrams and
recipes, tend to have a rather high occurrence of high frequency function
words, something we’ve just seen during our first explorations of frequency
lists. Since these words don’t actually tell us much about the lexical richness
or the content of a text/corpus, anyway, they’re often regarded as redundant
and thus lists that exclude them, at least in theory, ought to help us develop
better insights into the nature of any text or corpus under investigation. Words
that contribute little to the semantics of a text are also referred to as stop words,
and are often compiled into stop word lists that are excluded from frequency
counts.

Table 9.1 shows the 15 most frequent word types occurring in section A
(Press: Reportage) of the LOB corpus, together with their absolute and relative
frequencies, rounded to two decimals. For convenience, I’ve also totalled up the
frequencies.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 157

Table 9.1 Top 15 most frequent word types in
section A of the LOB Corpus

Rank Abs. Freq. Rel. Freq. Type

1 5,863 6.44% the
2 2,743 3.01% of
3 2,212 2.43% to
4 2,181 2.40% and
5 2,149 2.40% a
6 1,875 2.10% in
7 925 1.02% for
8 913 1.00% is
9 888 0.98% he
10 859 0.94% was
11 843 0.93% that
12 756 0.83% on
13 688 0.76% at
14 660 0.72% ’s
15 643 0.71% it
Total 24,198 26.67%

In Table 9.1 you can easily see that all of the types listed belong to the cat-
egory of function words, comprising determiners, prepositions, conjunctions,
auxiliaries, and pronouns. The frequency list in general looks relatively similar to
those AntConc produces for us, but unlike the ones there, this one has an extra
column, labelled ‘Rel.(ative) Freq.(uency)’. What this column displays is the per-
centage to which any of the particular types contribute to the overall number of
tokens in the corpus section. This information is more explicit and useful than
the pure rank, even if the latter is accompanied by the raw frequency, as the raw
frequency only tells us whether the contribution is larger than that of other types,
but not to which extent this is actually significant regarding the data.

The top 15 types above already contribute to more than a quarter of all word
types in section A. This is in line with Zipf’s (1949) observation that a small num-
ber of words generally account for the majority of tokens in language. And, as in
fact none of the items in the list is a content word, the semantic information pro-
vided in Table 9.1 is essentially next to none. In other words, there’s absolutely no
indication as to what the content of the section may be. To be able to simplify the
exploration of semantically relevant vocabulary in the data, it thus appears justified
to remove such function words from our frequency analyses.

However, there are certain problems in simply excluding specific types of
function words from frequency counts. Whereas it’s relatively safe to exclude
articles/determiners or pronouns from frequency lists, we already need to be
somewhat more careful with the auxiliaries (be/have; modals), since some forms
may actually represent full verbs, such as have, or even nouns, for example, being,

158 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

and, for example, question particles like which may well be relative pronouns
that are important parts of the content. Abney (1996: 6) lists an example of an
extremely atypical case of the noun phrase “The a are of I”, which at first glance
seems to consist entirely of function words until one realises that are in this case
actually refers to a measure of size (i.e. 100 m2), I to a quadrant on a map and a
modifies are by designating a particular are that has been assigned the letter a.

Just as with auxiliaries and pronouns, we also ought to be very careful when
eliminating prepositions and conjunctions from our frequency lists because they
may equally tell us something about the domain or genre of a particular text.
Imagine, for example, a text from the domain of finance about developments
on the stock market, where certain values rise above/to or fall below/down to
certain thresholds, etc., where the verbs on their own may not give us enough
grounds to distinguish the type of domain, just like the verbs that form part
of phrasal/prepositional verb combinations are often semantically relatively
empty.

We can avoid at least some of these problems in using stop word lists by
tagging our data grammatically before excluding any stop words, but there may
not be such a simple solution in terms of deciding which of the semantically
ambiguous types of potential stop words ought to be in- or excluded from our
lists.

9.2.2 Defining and using stop words in AntConc

As we’ve learnt in our discussion of stop words above, the large number of function
words that’s so typical of most spoken and written texts to some extent ‘obscures’
the content words that are deemed most relevant for the recognition of genres/
domains. This is why most search engines on the Internet, for example, tend to
have a list of these stop words that they exclude from their searches and possibly
also the production of indexes that these searches are based on. We can do a
similar thing in AntConc if we change the ‘Word List Preferences’ under ‘Tool
Preferences’ to include a stop word list, as shown in Figure 9.3.

To use a stop word list, first tick ‘Use a stoplist below’. As you can see, AntConc
then offers us two different ways of including stop words, one by specifying an
existing file that includes the list, and the other by adding words to the list on an ad
hoc basis by typing them in the box next to the label ‘Add Word’ and adding them
to the list using the button. Unfortunately, when using the latter option,
you have to type and add each word individually, so it’s often best to prepare a list
beforehand and then add to this manually if you find that it doesn’t filter the list
enough yet.

In my brief list shown in Figure 9.3, you can at least partly see that I’ve excluded
the utt marker signalling each individual utterance in the Trains dialogues, s and
u, the speaker identification codes, and a number of basic function words, mainly
determiners and different forms of the auxiliaries be and have.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 159

Figure 9.3 AntConc Word List preferences

Exercise 56

Experiment with this yourself by first specifying different function words
you want to exclude from the word list manually.

Gradually widen the list of exclusions to encompass other words that
aren’t normally classified as function words. Each time you’ve added a few
words, check to see whether your list has become ‘more explicit’.

Once you’re happy with the results, copy your list into a new text file and
save it as stop_words_trains.txt.

Be warned, though, that sometimes excluding too many function words, such
as possibly prepositions or conjunctions, may also skew your results because the
very frequency of particular word classes may be highly indicative of particular
genres/domains, as discussed previously, and illustrated by the prepositions to and
from playing a rather important role in our dialogues. In cases where you think
that the exclusion of specific (function) words may have such an effect, you can
of course always create and load an alternative stop word list. As a matter of fact,
you might want to create separate lists for many different types of data you work
with.

From all the problems we’ve seen above, it may seem as if single word frequency
lists are actually best avoided, but nevertheless, they may provide us with at least

160 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

some superficial information as to lexical density or makeup/type of a text/corpus.
In information retrieval, a frequency list, if properly constructed and filtered, may
also provide the basis for accessing indexes of search engines by ranking pages
according to the frequencies of occurrence of individual or combined search
terms. In stylistics, a word list created for the corpus of all writings of a particular
author may also tell us something about their preferences for expressions, so that
this may help us in deciding whether we should attribute a particular piece of
writing whose origin is deemed debatable to this particular author or not, as is,
for instance, done in the area of stylometry. And, of course, word frequency lists
also provide the basis for many probabilistic approaches to language processing,
such as establishing collocation measures or conducting probabilistic PoS tag-
ging, some of which we’ve already discussed before, and others we’ll turn to
soon.

Of course, suitably constructed word lists aren’t only useful for analysing indi-
vidual texts or corpora from a purely linguistic point of view, but can also have
other practical uses. In language teaching and learning, they can for instance be
used by teachers to analyse materials and select appropriate or required vocabu-
lary items, or by students to identify vocabulary they may need in order to cope
with specific types of language materials, for instance in English for Academic
or Specific Purposes (EAP/ESP). Attempts at creating such pre-fabricated word
lists for EAP from corpus materials have already been made in the past. One par-
ticular example here would be the Academic Word List (AWL; Coxhead 2002),
which appears to have gained widespread recognition as a resource for academic
vocabulary training, despite the fact that it’s heavily skewed towards the domains
of law and economics, due to rather imbalanced sampling that over-emphasises
these domains in comparison to the other domains of arts and science that are
also included in the corpus used for its construction.

9.3 Word Lists in BNCweb

Unfortunately, the COCA interface doesn’t allow us to create any frequency lists,
so, out of the two online interfaces we’ve explored so far, we can only investigate
how to do this with BNCweb.

9.3.1 Standard options

BNCweb allows you to create different types of frequency lists, either from the
whole of the BNC or individual parts of it, by following the link to ‘Frequency
lists’ in the ‘Main menu’ on the left-hand side of the browser window. Due to
the fact that 90% of the BNC contains written materials and only 10% spoken
ones, creating frequency lists of all words in the BNC, or even of individual words
or word classes, rarely makes sense because this would simply give us a wrong
impression of how frequent particular items may be in a heavily skewed selection

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 161

that isn’t really representative of the whole language. This is why, in order to be
able to make sensible use of frequency lists in BNCweb, we first need to learn how
to restrict our selection(s).

To be able to limit frequency lists to either the spoken or written part of the
BNC already makes far more sense because it allows us to understand these dif-
ferent categories of language better, and also compare frequencies across them.
Creating such a categorised list is relatively straightforward, as can be seen in Fig-
ure 9.4, which depicts the general choices for frequency lists, where I’ve chosen
to produce a list for ‘Spoken Texts only’ on the left-hand side.

Figure 9.4 BNCweb frequency list selection options

In the same way, you can just as easily select ‘Written Texts only’, but there
are also many other options that allow us to restrict our selections. These include
creating lists from user-defined subcorpora, something we’ll explore soon. While
the left-hand side contains options for basic (word) frequency lists, the right-hand
one does the same for headword/lemma lists.

Most of the options here should be more or less self-explanatory, predominantly
related to restricting or sorting the output in ways already discussed. One of the
most useful features in this setup, though, is probably that you’re able to restrict
the choices in different ways that can also be combined with one another. This will,
for instance, allow you to investigate the frequencies of individual word classes,
possibly in combination with different patterns (specified under ‘Word pattern’),
such as pre- or suffixes, etc., or even to state how many times such a word must
occur minimally. Such features may for instance be useful in cases where you’re
investigating issues of productivity in word-formation through affixation, or if you
want to create word lists from particular frequency bands for graded vocabulary

162 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

acquisition. Let’s experiment with this part of the interface a little, so you can get
a better feel for what it may help you to achieve.

Exercise 57

Try out the different individual options first to get a feel for the results.
Each time, step through at least a few of the results pages by clicking on

>>, and see whether you can make any interesting observations.
Next, try to combine some of the options, and see how this changes the

results.

As the options for headwords/lemmas are essentially the same, they should not
require any further discussion here, and I’ll leave it up to you to explore them.
And, before we move on to the next section, it’s perhaps also worth mentioning
here that different types of frequency lists can also be downloaded directly from
http://ucrel.lancs.ac.uk/bncfreq/, the website that accompanies Leech, Rayson &
Wilson (2001).

9.3.2 Investigating subcorpora

One special feature of BNCweb that potentially allows you to compare your own
corpus data with that of the BNC is the ability to create subcorpora, based on dif-
ferent selection criteria. Figure 9.5 shows the different top-level options available
for this:

Figure 9.5 Options for defining subcorpora in BNCweb

This dropdown list can be accessed via the ‘Make/edit subcorpora’ option from
the main page. Out of these options, we’ll only explore the first four because the
remaining ones are either too special for our current purposes or may not yield
appropriate results quickly enough. The most extensive set of choices is offered
by the two options for using meta-textual categories, either for written or spo-
ken texts. These are based on different types of information stored inside the
headers for the individual files for the BNC, and are too numerous to depict in an
illustration, so we’ll explore them again as an exercise.

http://ucrel.lancs.ac.uk/bncfreq/

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 163

Exercise 58

Select ‘Spoken meta-textual categories’ from the dropdown list and click
on .

First explore all the options, and try to develop an understanding of what
they might mean.

Once you’ve finished exploring, select ‘Dialogue’ from ‘Interaction
Type’, and ‘Leisure’ from the ‘Domain’ options, respectively.

Click on .
Explore the list of texts and then tick the option for ‘include all’ in the

top right-hand corner.
Make sure the option for ‘New subcorpus’ is still selected in the drop-

down list and click on .
On the following page, name the subcorpus ‘dialogues_leisure’ and click

on ‘Submit name’. You should then get a page confirming that the new
subcorpus has been created, including information on the number of texts
and words it contains.

Return to the main page by clicking on , then click the link to the
‘Frequency lists’ page.

From the ‘Range of texts’ dropdown list, select the subcorpus we just
added and create a frequency list.

Select ‘Download whole FrequencyList’ from the options, click on
and save the list as bnc_dialogues_leisure_frequency_list.txt to
your results folder.

When I first started writing this book, downloaded lists based on user-defined
subcorpora in BNCweb, unlike those based on pre-defined sub-parts of the BNC,
were not created with the sorting option we’d like to have by default, which is
according to frequency in descending numerical order. This initially made such
lists rather less than useful for our purposes, so in order to ‘fix’ this problem, I
created the next two exercises. And even though the issue has now been sorted out
in the interface itself, I decided to keep them, as they allow you to learn how you
can import lists into a spreadsheet application, such as MS Excel or OpenOffice
Calc, and then re-sort the data in order to achieve a similar flexibility to that we
have in AntConc.

The procedures described here, along with the screenshots, are based on Excel
2010, and different versions of Excel, or different spreadsheet applications like
Calc, may provide other options which unfortunately cannot all be covered here.
However, the basic logic behind importing the list into a spreadsheet application
and sorting it will always be the same, and should also prove useful for other
analysis purposes, such as, for example, comparing frequency lists from different
corpora, as we will see in Section 9.5.

164 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Exercise 59

Start Excel (or Calc) and click on ‘File→Open’ (or press ‘Ctrl + o’).
Select the appropriate file type that allows you to import text, generally

∗.txt and/or ∗.csv. The latter extension stands for ‘comma-separated values’,
but usually also covers tab-delimited data. In Excel, the option should read
‘Text Files (∗.prn;∗.txt;∗.csv)’ and in Calc ‘Text CSV (∗.csv;∗.txt)’.

Select the frequency list you just saved and click .
Excel’s (or Calc’s) Text Import Wizard will start and display the dialogue

shown in Figure 9.6:

Figure 9.6 Excel text import wizard (stage 1)

In Excel, next change the option for ‘Start import at row’ to 4 in order
to skip the first three lines, and click twice, simply accepting the
options for stage 2. In Calc, the dialogue looks very similar here, but has
fewer steps, and you should select ‘Tab’, ‘Space’ and ‘Merge delimiters’
under ‘Separated by’. You also need to select the second column (the one
that shows ‘Word’ in the fourth row) and change the ‘Column type’ to
‘Text’. Clicking will then complete the import.

In the next Excel dialogue, first click on the ‘Word’ field in the ‘Data pre-
view’ box (see Figure 9.7), then select ‘Text’ from ‘Column data format’.
This step is necessary because there may be some special characters in the
data that could otherwise be re-interpreted as mathematical operators by
the spreadsheet application.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 165

Figure 9.7 Excel text import wizard (stage 3)

Click and to accept the suggested output location.
We now have an empty row between our header row and the data, so

delete this by first clicking on the ‘2’ indicating the second row, then using
a right mouse click and choosing ‘Delete’.

Next, check to see whether all fields have been split correctly by scrolling
through the whole list and fixing any potential errors.

Once you’re happy with the results, save the file, ideally using the same
file name you used for the text file, apart from the extension.

We now have our frequency list stored in a very convenient format, as spread-
sheets not only allow us to re-sort our data easily (and repeatedly, if necessary),
but also because this makes it possible to investigate and enrich the data in various
ways. Lists in spreadsheet format can, for instance, be filtered quite easily, cells
colour-coded to indicate interesting features, or even comments or new category
labels added to classify different types of words. If you want to, you can also cut
less useful entries, such as maybe those pertaining to numbers or stopwords, from
the list and paste them to another if you’re not sure whether you might need
them again later. Unfortunately, we don’t have space to discuss all of the above
options here, so I suggest you find suitable (online) resources about working with
spreadsheets and/or experiment with such options yourself. For now, we’ll focus
on how to sort the list in order to bring it into a more suitable format for our
purposes.

166 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Exercise 60

Select all data on the spreadsheet. The easiest way to do this is to click
in cell A1 (the one that reads ‘Number’), then press ‘Ctrl + Shift + →’,
followed by ‘Ctrl + Shift + ↓’, which should highlight all consecutive cells
that contain frequency data, but of course you can also use the mouse if
you want to.

Activate the ‘Data’ tab in Excel, then click on ‘Sort’, and set the options
as depicted in Figure 9.8. To achieve the secondary sort, you need to add
a level. In Calc, you need to click on the ‘Data’ menu and select ‘Sort…’
from there to get custom options and select similar options to the ones
displayed for Excel below.

Figure 9.8 Sort options in Excel

Click OK.
Save the list again, and look through it to see whether you can identify

some interesting points.

As you’ll hopefully have seen from the previous two exercises, there are some
very distinct similarities to the earlier frequency list of spoken language data we
created from the Trains corpus selection. Furthermore, this will now also have
given you an opportunity to, at least to some extent, understand in which way(s)
spreadsheet applications allow you to work with frequency data. In addition to
being able to import tab- or comma-delimited data, spreadsheet applications usu-
ally also allow you to export your results to such plain-text formats. This will
obviously incur a loss of any special formatting, such as colour-coding, that you
may have applied to your data, but, on the other hand, makes it easier to exchange
the data you’ve already processed with other people who may not have any spread-
sheet applications installed on their systems, but who will still be able to view the
data in a basic editor. For even more complex analysis and annotation options,

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 167

such data can also, in much the same way as we just discussed, be imported into
databases. However, how to go on from there is a much more advanced topic we
cannot discuss here. We’ll explore some further options related to using spread-
sheets in later sections, but for now let’s move on to investigating other ways of
creating subcorpora and associated frequency lists in BNCweb.

Going through all the meta-textual categories on the restrictions pages for spo-
ken and written language may sometimes involve making a lot of decisions and also
doesn’t allow you to select mixed data from both media. This is why, for simple
domain-dependent tasks, it may occasionally be easier to use either pre-defined
categories or make a fine-tuned selection from the ‘Genre labels’ page accessed
through the ‘Make/edit subcorpora’ options list.

If you look at Figure 9.9, you’ll see that there are two options for making
selections, a single dropdown list with pre-defined choices in the top half,
and three selection boxes in the bottom half. The dropdown list consists of
hierarchically structured entries that have either two or three parts. Rather than
going through a whole set of options, you can simply pick from a few pre-defined
categories/domains here, although, of course, the options for choosing and com-
bining different meta-textual criteria in the bottom half give you far greater control
over the selection process, as the explanation below the three boxes indicates.

Figure 9.9 Options for defining subcorpora according to genre

In cases where you think you might not need a high degree of control over the
individual meta-textual factors, you might well want to investigate first whether
going through the options listed at the top is likely to give you the relevant results.
Let’s practise this in trying to find some suitable data we could compare to the
essays from the Uppsala Student English corpus that we downloaded from the
Oxford Text Archive in Exercise 9.

168 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Exercise 61

From the ‘Make/edit subcorpora’ page, choose ‘Genre labels’ from the
dropdown list, and click on .

Open the ‘Genre’ dropdown list and see whether there may be a suitable
pre-defined category. Strong hint: Remember, we want essays written by
university students.

Select the appropriate category and then click on .
Add all the files that were found to a new subcorpus named

university_essays.
Create a frequency list based on the new subcorpus, import it into a

spreadsheet, and sort it as we just did in the previous exercise.

The last form of creating a subcorpus we’ll discuss here is to use a ‘Keyword/title
scan’. ‘The Keyword(s)’ search option allows you to select files based on library
keywords or BNC-specific ones. We’ll ignore this option here, though, and will
instead use the ‘Title word(s)’ scan with the option ‘any word’ to search for tuto-
rials and lessons as depicted in Figure 9.10.

Figure 9.10 BNCweb keyword and title scan

Exercise 62

Open the ‘Keyword/title scan’ page and fill in the relevant information,
then click .

Include all files in a new subcorpus called tutorials_and_lessons.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 169

Go to the ‘Make/edit subcorpora’ page and ‘Compile’ the frequency list.
Save the list as a text file named bnc_tutorials_and_lessons.txt.

Based on the above exercises, it may now appear as if subcorpora created in
this way are only useful for comparing data from the BNC with your own, but of
course they can also be created in order to carry out analyses or comparisons in
particular domains within the BNC itself, both in terms of frequencies and other
options, such as ‘simple’ concordancing. To do the latter on a subcorpus you’ve
created, you can simply select your corpus from the BNCweb start page from the
dropdown list next to where it reads ‘Restrictions’.

9.3.3 Keyword lists

Another way to identify genre/domain relevant vocabulary is to generate keyword
lists (see Scott 1997). This approach is essentially based on comparing two word
lists, one from the corpus under investigation – referred to as the source corpus –
and the other from a (general) reference corpus – the target corpus. The output
then shows the significant differences as a filtered word frequency list of the corpus
that’s being analysed. These differences between the lists are usually computed
based on the average values of types occurring in both corpora, potentially using
different statistical analysis algorithms, such as the log-likelihood ratio or a chi-
square(d) (χ2) test.

A further distinction can be drawn between positive and negative keywords,
where the former represent types with an unusually high frequency in the source
corpus, while the latter are types with an unusually low frequency in comparison
to the target corpus.

9.4 Keyword Lists in AntConc and BNCweb

9.4.1 Keyword lists in AntConc

As of version 3.2.3, AntConc makes it possible to create keyword lists in two
different ways, either by specifying a list of files that ‘act’ as a reference corpus, or
selecting a frequency list created from such a set of files previously. The latter has
definite advantages in that you don’t need to select and load a number of different
files each time, but only a single one, which is also much easier to exchange with
colleagues who may not have access to the original data you used, or, in our case,
to use a frequency list based on part of the BNC. Figure 9.11 shows the ‘Keyword
List Preferences’ settings we’ll later use to investigate the differences between the
trains data and the spoken part of the BNC:

170 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Figure 9.11 AntConc Keyword preferences

The format expected for the frequency list file by AntConc is RANK FRE-
QUENCY WORD (separated by whitespace or tabs). This unfortunately isn’t the
same as in the frequency list we can extract through BNCweb, which has the
order RANK WORD FREQUENCY, so we first need to change the order of the
columns before we can use the BNC list in AntConc. We’ll do this as part of the
exercise for creating the keyword list below.

Exercise 63

Import the frequency list you named ‘bnc_tutorials_and_lessons.txt’ into
the spreadsheet application as we’ve done before.

AntConc uses a different concept of ‘word’ from BNCweb, based on
the token definitions you’ve chosen, and may thus throw an error when it
encounters something that doesn’t fit this definition, aborting the keyword
list comparison. Because of this, it’s best to prune the list as described in the
solution to Exercise 60. If you still want to retain the original list without
pruning, though, you can use a little trick and simply add a # symbol in
front of the number indicating the rank, and when you later save the list as
text, all lines marked thus will be excluded from the analysis when you use
it in AntConc.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 171

Once you’ve cleaned up the list, sort it as before, and then change the
ordering of the second and third data columns, which require swapping.
In order to do so, click on the column header above the word ‘Frequency’
(which should normally be ‘C’), thereby selecting the whole column. Next,
use a right mouse click inside the selection and choose ‘Cut’.

Select the ‘Word’ column (‘B’), right-click inside the selection, and
choose ‘Insert Cut Cells’. This should effectively have swapped the columns
for you.

Delete the header row, as AntConc only requires the data rows.
Save the file as a text file, choosing the option ‘Text (Tab delimited)

(∗.txt)’, and naming it ‘bnc_tutorials_and_lessons_for_AntConc.txt’.
Open AntConc and load the Trains data via the ‘File’ menu.
Next, change the ‘Tool Preferences’ for ‘Keyword List’ as shown in

Figure 9.11. To do this, select ‘Use word list(s)’, click on , select
the frequency list file you just created, click on , and finally on .
If you don’t get an error message regarding an incorrect token definition,
skip the next step.

Any errors reported by AntConc (as of version 3.4) will indicate both
the line number of the error in your list file as well as the token entry that
caused the error. The easiest way to fix the error is to open the file in your
editor, locate the line, and prepend a # to it. Hint: In Notepad++ and many
other editors you can jump straight to the line by pressing ‘Ctrl + g’, and
typing in the line number. Save the file, and click on again, repeating
this process until the file loads successfully, then click .

Go to the Keyword List tab and click . Unless you’ve previously
created a frequency list of the Trains data, AntConc will tell you that it
needs to create the list, which you can simply accept.

To compare the two lists, you can either use the button on
the ‘Word List’ or the ‘Keyword List’ tab, and then switch to the other tab,
ideally positioning the two windows side-by-side.

As Exercise 63 will have shown you, the keyword list, at least in our case and
for positive keywords, may not necessarily provide you with more information
than a frequency list that has been filtered well through the use of stopwords.
However, unless you need to prune the reference list extensively, it can certainly
allow you to identify some key terms much more quickly, and may therefore be
seen as an alternative way of looking at single-word lists for identifying genre-
dependent or semantic features of a corpus. In addition, the ability to highlight
negative keywords in AntConc may also allow you to investigate under-use of
specific vocabulary relatively easily, for instance when comparing learner data with
that produced by native speakers, etc., an option that, obviously, a pure frequency
list of only the source corpus is unable to provide.

172 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

9.4.2 Keyword lists in BNCweb

BNCweb provides two different ‘views’ of what may be ‘key’ in different
subcorpora/domains, one where the differences between the occurrences of words
are listed side-by-side, with the ‘dominant’ side highlighted, and the other where
it’s possible to display only lists of words that occur in one subcorpus/domain or
the other. The options for this are depicted in the top and bottom halves, respec-
tively, of Figure 9.12, and we’ll explore each of them in turn.

Figure 9.12 Keyword options in BNCweb

In order to be able to see how the output of the two options differs, it’s best to
do some exercises where we get to evaluate them, starting with the side-by-side
comparison of keywords.

Exercise 64

Go to the ‘Keywords’ page and select the subcorpus ‘university_essays’ we
created in Exercise 61 for the first frequency list, and ‘Written component’
for the second.

Leave the ‘Compare’ option set to ‘Words’, and all the analysis options
set to their defaults. In our exercises, we’ll actually trust them to be correct
and will never make any changes to them.

Click on and try to understand the results.

Let’s discuss the output briefly to clarify some of the points you will hopefully
already have noticed. In order to do so, we’ll use a screenshot (Figure 9.13)
showing the top 31 results of the log-likelihood (LL) analysis, a statistic that
compares the frequency of the items in both subcorpora on a basis that is
independent of the sample size.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 173

Figure 9.13 Keyword comparison of university essays and written component of the
BNC (top 31 entries)

Essentially, there are two separate indicators of ‘relative’ skewness of the fre-
quency occurrences of the individual types. The first one is that whenever the type
occurs with a significantly higher ‘relative’ frequency in one of the subcorpora, the
(hyperlinked) frequency output field inside the table for this type will appear in
a darker shade of grey. The second one can be found in the ‘+/-’ column, where
a + indicates a positive keyness in the first subcorpus, and a – indicates a nega-
tive keyness. In other words, whenever there’s a +, the relevant type occurs with
a statistically significant higher frequency in subcorpus 1 (written), but if there’s
a -, it’s much rarer in subcorpus 1 than in subcorpus 2.

To see how the list comparison feature works, let’s use a slightly different
approach.

Exercise 65

Start a ‘New keyword calculation’.

174 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Change the frequency list options to ‘Written component’ and ‘Spoken
component’, respectively.

Set the ‘Compare’ option to ‘Word + POS-tag combinations’ and leave
the ‘Display words that only occur in’ option set to the default, ‘Frequency
list 1’.

Run the comparison by clicking on and evaluate the
results. Do you notice anything unusual? To check on ‘strange items’ in
the list, you can use a right mouse click on the frequency to display a con-
cordance of the item in a new tab. Please note, though, that for some
special characters this link may not work, in which case you may need
to change the URL part behind where it reads ‘theData=’, either simply
putting a backslash after the = sign, or sometimes, if the special character
has been encoded, replacing everything between ‘theData=’ and ‘&chunk’
by a backslash followed by the character in question.

As the previous exercises have hopefully shown, keyword analysis does have at
least some potential in identifying domain-specific content, although it doesn’t
necessarily always perform better than a well-executed single-word analysis. The
latter will generally take a little longer to set up, but may in fact also force the
researcher to pay closer attention to the data. One further caveat in the auto-
matic generation of keywords based on statistical measures has been very clearly
summarised in Scott (2010: 50–51), who states that

The order of KWs is not intrinsically trustworthy, because it depends not only on
the frequency in the text we are studying […] but also on their frequencies in the
reference corpus.

and

[…] that there is no statistical defence of the whole set of KWs, but only of each
one, though the more there are the higher the chance that some of the comparisons
came up by chance, and that it is not certain that the order of the items in the set
itself reflects their importance. The implication of those conclusions is that KWs are
pointers which suggest to the prospector areas which are worth mining but they are
not themselves nuggets of gold.

It’s thus well worth bearing the above-mentioned factors in mind when con-
ducting any kind of statistics-based keyword analysis, and especially when report-
ing on the presumed importance of particular keywords for a given text/corpus.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 175

9.5 Comparing and Reporting Frequency Counts

While the keyword analysis procedures in AntConc, BNCweb, and other
concordancers/interfaces perform comparisons of frequency lists with the express
purpose of identifying keywords or unique word types, sometimes we simply
want to compare the distributions of types in two different sets of data. In order
to do so, we may need to norm our frequency counts to make them compara-
ble because otherwise the size of the corpora may provide us with misleading
information.

In order to be able to norm the data, we essentially need to establish the
relative frequency of the tokens and multiply these by a sensible common
factor/denominator. I deliberately said “sensible” here because the literature
frequently only refers to fixed factors, such as per thousand/ten thousand/one
million words, disregarding that, for corpora whose overall size is less than these
factors, this would be mathematically inaccurate and exaggerate the relative size
by interpolating values that do not actually exist (cf. Lindquist 2009: 42). For
instance, despite the fact that Biber, Conrad & Reppen (1998: 264) caution
against using too high a basis themselves, their made-up norming example for
the occurrence of modals in two texts, where one text is only assumed to contain
750 tokens and the other 1,000, still reports results per 1,000 words. To see the
effect of this, let’s take a look at Table 9.2.

Table 9.2 Recalculated norming sample from Biber,
Conrad & Reppen (1998: 263)

text modals size rel. freq. x500 x750 x1,000

1 20 750 0.027 13 20 27
2 20 1,200 0.017 8 13 17

Table 9.2 illustrates the normed frequency counts for three factors, two of
which, 500 and 750, are common denominators of both texts, while the last one,
1,000, isn’t. As we can easily see from this example, norming by 1,000 here exag-
gerates the overall number of occurrences, pretending that there are in fact 7 more
instances, thereby also increasing the perceived difference between the two texts.
In the same way, but without postulating non-existing values, norming by 500
plays the difference down a little, though not quite as much as the interpolated
counts do. This clearly demonstrates that it’s generally best to pick a number clos-
est to the lowest common denominator for comparison, which may even be the
exact size of the smallest corpus, although then the numbers may end up not
looking very round.

Of course, when comparing individual items in two texts/corpora directly, one
doesn’t even need to normalise in this way, but can easily get an indication of
the differences by looking at the ratio of the relative frequencies, something that,
unfortunately, none of the textbooks I consulted suggests, although, as we saw in

176 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Section 8.2.2, the BYU interface uses this in the comparison across corpora. For
instance, the ratio for the above example, which we obtain by dividing the relative
frequency of text 1 by that of text 2, would be 1.6, which clearly indicates that
modals are more than 1½ times as frequent in text 1. Conversely, if the ratio had
been below 1, we could easily have observed that they were more frequent in text
2. In order to test these two different options and to see how we can use them,
let’s do another exercise, based on more data from BNCweb, where we investigate
potential differences in the use of positions in economics texts.

Exercise 66

Open BNCweb and create two more subcorpora. Name these
commerce_general and commerce_in_newspapers, based on the genre
labels ‘W:commerce’ and ‘W:newsp:other:commerce’, respectively.

Open your spreadsheet program and create a header row that looks like
this:

rank_g type freq_g freq_n rel_g rel_n ratio rank_n type_n freq_n

Notice that freq_n appears twice. This is deliberate, as we’ll later transfer
frequencies from one column to another.

Save the spreadsheet and call it ‘norming’, plus suitable extension,
depending on which program you’re using.

For both subcorpora, extract and put the top 50 items into the spread-
sheet via copy-and-paste. When you paste the data, make sure you use
the ‘Paste Special…’ option and select ‘Unicode Text’ (or ‘Text’) because
otherwise the numbers in the frequency column may not be interpreted as
numbers by the spreadsheet, but still retain some HTML coding. Paste the
data from the general subcorpus into the cells below rank_g, ‘type’, and
freq_g, and the other data into the corresponding rows rank_n, type_n,
and freq_n, for now leaving the cells in between the sets empty.

Sort both lists alphabetically, but independently of one another. For the
general set, you should sort according to type, and for the newspaper data,
according to type_n.

Next, get the token count from the ‘Make/edit subcorpora’ page and
paste it into the spreadsheet, ideally at the top and to the right of the second
frequency list, as we may need to shift some items in the list down later to
align the data. Once you’ve pasted a total, click in the box immediately
above cell A1 of the spreadsheet and type n_general and n_newspapers,
respectively, followed by pressing the Enter key. This will name the cells for
you and later make it easier to calculate the relative frequencies.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 177

To align the data, check to see which types in the columns type and
type_n are identical, and transfer the corresponding values from the right-
most freq_n column to the one on the left.

When you find any differences, either in the general or newspaper list,
insert new rows for the types in the spreadsheet by clicking on the row
number where the difference occurs, clicking the right mouse button, and
choosing ‘Insert’ (Excel) or ‘Insert Rows’ (Calc), which will create a new
blank row above the selected one.

Transfer the type that only exists in one list into that row, making sure
that the rank is also moved to the appropriate place for the list it occurs in,
and setting the rank and frequency in the list where the type’s missing to
0.

Continue this operation until all the cells below the headings type_n and
freq_n are empty, then delete these columns. If you think you’ve made a
mistake, don’t panic, but simply use ‘Ctrl + z’ to undo the last few opera-
tions.

Save the file.
Next, place the cursor in the first empty cell in the rel_g column, 3

across from the word about, type =, then click in the cell below freq_g
that contains the frequency for this word, type /, and click on the number
that contains the total for the tokens in the general corpus (Excel), or type
n_general (Calc), then press the enter key. The formula in the formula bar
when you click in the same cell again should then read =C2/n_general.
You’ll probably need to adjust the decimals display for the cell until you see
something meaningful (i.e. other than just 0) because the resulting number
will be quite low.

Repeat this step for the frequency in the newspaper corpus, ensuring that
the formula bar reads =D2/n_newspapers.

Click in the relative frequency cell for about in the general corpus. You
should see a black frame with a small filled square also black now. When you
hover the cursor over that square, it should turn to a black cross. Once you
see this cross, click and hold the mouse button down and then drag all the
way down the same column to the cell across from the word worth. When
you release the mouse button, the spreadsheet application will automati-
cally have calculated and filled in all the relative frequencies for the general
corpus.

Repeat the same process for the newspaper corpus.
Save the file again.
In the final step, we’ll calculate the ratio. This can easily be done by

clicking in the cell below the heading ratio, again typing =, clicking the
cell containing the general relative frequency to select it, typing / again, and

178 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

then selecting the cell containing the relative frequency for the newspapers,
and pressing enter.

Now you can simply select that cell again and drag downwards to get the
spreadsheet program to automatically calculate all the remaining ratios for
you. Don’t worry about any errors that read #DIV/0, as these are only due
to instances where the newspaper subcorpus didn’t have any tokens at all,
for which there’s obviously no ratio

Once you’ve finished, don’t forget to save the file again, and then see
whether you get any interesting results.

One thing we also need to bear in mind when discussing or reporting on
frequency comparisons of these two types, either presenting normed frequency
counts or ratios, is that, while they’re fairly uncontroversial for comparisons of
single texts, for comparing corpora, both forms assume a certain level of homo-
geneity of the data and do not take any variability or dispersion, that is, the distri-
butions across different files, within the individual corpora into account.

As the above discussion should have indicated to you, it’s very important to have
all the relevant information, not only about the normed number of tokens, but
also about overall size (and composition) of all corpora involved in the comparison
in order to be able to judge frequency comparisons properly. This is why we should
usually ideally also report the raw frequency and the corpus sizes along with any
normed counts, which will then enable fellow researchers to judge our results fully.

9.6 Investigating Genre-Specific Distributions in COCA

The BYU interface makes it fairly easy to pick two sub-genres and compare the
frequencies of specific words or word classes, although it unfortunately doesn’t
allow you to create, save, or download frequency lists as BNCweb does. On top
of that, being a monitor corpus, it also makes it possible to track potential changes
across different periods in the same way. To see how the former works, let’s do a
short exercise exploring the distribution of modal verbs in two different types of
academic writing.

Exercise 67

Open the COCA interface.
In the display frame on the left, keep ‘LIST’ selected, then click in the

‘WORD(S)’ box to select it.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 179

Next, click on ‘POS LIST’ and choose ‘verb.MODAL’. This should put
[vm∗] into the ‘WORD(S)’ box above.

In the two list boxes below, scroll down until you find the sub-section
for academic texts, which start with ‘ACAD’, followed by a colon.

In the box on the left-hand side select ‘ACAD:Humanities’, and in the
one on the right-hand side ‘ACAD:Sci/Tech’.

Change the ‘SORT BY’ options to ‘FREQUENCY’.
Click and observe the results. To verify the results for any par-

ticular type in either subcorpus, you can use the hyperlinks in the columns
labelled ‘TOKENS 1’ and ‘TOKENS 2’, respectively to have KWIC con-
cordances displayed in the frame in the bottom half.

Unfortunately, the BYU interface doesn’t allow you to save these results to
disk, due to copyright restrictions, so, to store the results on your own computer,
you’d need to use the copy-and-paste options we explored earlier for extracting
parts of frequency lists from BNCweb, and then re-arrange the results a little in
your spreadsheet program, as the headings will unfortunately be mis-aligned, due
to the web layout.

Solutions to/Comments on the Exercises

Exercise 53
The first thing you should perhaps have observed before even looking at the list
itself is that the number of word types is 567, and that of word tokens 17,081.
We’ll learn more about what this may mean in Section 9.1.2.

If you’ve studied the list fairly closely, you should have recognised a number of
things: In terms of text type/category, the fairly high number of tokens for words,
such as okay, so, uh, um, etc., clearly indicates that we’re here dealing with a corpus
of spoken texts.

The initially perhaps odd-seeming type sil is further proof of this, as it represents
an abbreviation for ‘silence’, that is, a pause of undefined length, while utt repre-
sents markup for an utterance. You can verify this for sil by clicking on it in the
‘Word’ window, which will take you to a concordance view of the item, where you
can also see that this annotation normally appears in angle brackets in the source
texts. If you do the same thing for utt, you should be able to notice that each
occurrence is followed by the number of the utterance in the dialogue, a number
of spaces, then a colon, sometimes followed by space + s or u + colon, then again
a number of spaces, and finally the utterance itself. Here s and u represent codes
for the speakers, and they only occur when the turn changes from one speaker to
the other.

180 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

However, s also appears more frequently (834 times) in our list than u (only 666
times), which would be strange in a dialogue because we’d expect both speakers to
contribute more or less equally to the discourse, so we need to look for a different
explanation here. Again, clicking on the item and investigating the concordance
lines will soon tell us that s isn’t only used to mark a particular speaker, but of
course also represents the clitic (contraction) forms of is (as in that’s) and us (as in
let’s), although there are no possessive markers in the corpus. It also occasionally
represents the first letter of interrupted words, where it’s followed by a hyphen to
indicate the ellipsis.

Apart from the high incidence of discourse markers and fillers referred to above,
as well as certain contracted forms like gonna or wanna (cf. Section 4.3), that are
such typical indicators of spoken interaction, the number of function word tokens
is also fairly high.

There are also a number of indicators that, taken together, may help us in identi-
fying the topic/domain of the dialogues: frequent reference is, for example, made
to place names (Corning, Elmira, Bath, Dansville, Avon); the preposition from
occurs 136 times, while to occurs even more frequently (699 times; of course,
probably at least partly due to its function as infinitive marker); the verbs take
and go occur 162 and 118 times, respectively. There are also a number of general
nouns that might help us to identify the domain more precisely, but this is some-
thing we’ll hopefully be able to make clearer soon, once we filter the list succes-
sively. For the moment, we can at least say that the dialogues involve some form
of movement between different locations, and that certain things, such as oranges
or bananas, are being transported.

Exercise 54
The first thing you can observe here is that the number of word types has
increased to 644 (from previously 567), but the number of tokens in fact
decreased to 16,582 (from previously 17,081). If this hasn’t happened for you,
you’ve probably not applied the settings properly before re-creating the list So,
how do we explain this when it would appear that, by allowing words to be joined
together, we should in fact end up with both fewer types and fewer tokens? The
explanation lies in the fact that, by allowing word forms to be joined, we make it
possible for word forms that previously may have only existed independently, such
as, for example, it, that and ll in it’ll or that’ll, or he and s in he’s to now occur
as parts of combinations that may exist as independent types, whereas previously
they would have been subsumed as tokens under the individual types of their
parts.

Another reason for why the number of tokens has risen here is that the hyphen
in fact appears to be ill-defined; as in most instances in this particular type of
data, it isn’t actually a true hyphen as it would appear in hyphenated words or at
the end of a line that has been hyphenated, which would not occur in this type of
data, anyway. In terms of regexes, a true hyphen would be defined as \w-(\w|$),

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 181

that is, a ‘dash’ that has to be preceded by a word character and either followed
by another word character or the end of a line (and one on the next as well), while
our definition here essentially only covers the former and a ‘dash’ that appears to
occurs independently, which is how it appears in the list. However, upon closer
inspection of the data, it turns out that the hyphens that are supposed to signal
incomplete words in the Trains data may also be preceded by what the transcriber
assumed to be the completion of the incomplete word, but surrounded by
round brackets, which do not form part of our definition of what a word may
contain.

Furthermore, if you scroll down the list until you reach rank position 78 (can)
and 79 (can’t), you’ll now be able to observe what I referred to earlier, i.e. that,
generally, contractions in alphabetically sorted lists tend to be sorted together with
their un-contracted, or positive, counterparts. A perhaps even more interesting
example of this can be found at positions 116–118, where, apart from the negated
contraction form of could, couldn’t, we also find the unusual form could’ve, which
serves as a perfect example of a transfer from phonological to orthographic form
gone wrong, as it’s actually incorrect in missing an indication of the vowel (shwa),
since phonetically/phonologically, this would be [kUd´v] and not [kUdv], as the
(conventionalised) spelling suggests.

Through being able to observe the above, it should now definitely have become
even easier to recognise the spoken nature of the dialogues, both in the high num-
ber of contractions and false starts, where the latter signal the kinds of disfluencies
that are an integral part of normal, unplanned language, as speakers have to some-
times modify their utterances when they realise that they may have said something
wrong, or maybe need to formulate what they want to say in a different way to
make it more explicit.

Exercise 55
The first thing you should note when looking through the alphabetically sorted
list is that now the hyphen (due to our current word definition) appears at the
top of the list, followed by the lowercase letter a and its uppercase equivalent A
and the lowercase a plus hyphen (a-). Now, whereas before the ‘Rank’ field corre-
lated with higher frequencies, here this is no longer the case. Interestingly enough,
though, AntConc does appear to have a secondary sort order based on the fre-
quency because otherwise uppercase A would have to appear before lowercase a,
and the latter is only ranked higher because it has a frequency of 161 as opposed to
a single token of the former. And, just in case you’re curious to find a single letter
A in the data (as you should be), you can investigate this through the concordance
by clicking on it. If you do this without first checking the option for ‘Case’ next to
the ‘Search Term’ box, you may be in for a surprise because you’ll suddenly end
up finding all 162 tokens for both upper- and lowercase forms, which is of course
not very useful. This is because the default option for the concordance module is
to ignore case.

182 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Scrolling further through the list, you’ll probably notice many incomplete
words, all indicated via a hyphen at the end, as well as a few combinations
of ‘stranded’ characters that, upon closer inspection, will again turn out to be
instances of words where the transcribers have tried to complete originally incom-
plete words to the best of their understanding. This goes to show that, by observ-
ing items in a frequency list, we may often be able to see things we might have
overlooked or ignored while concordancing, simply because the results would
have been easier to understand. Something similar goes for observing instances of
information that describe non-verbal, vocal events in the dialogue, such as clear-
throat or laughter, which appear out of place in comparison with the rest of the
vocabulary.

Exercise 56
Of course, ultimately, the list that you’ll have constructed will reflect your own
choices. However, as a general rule, some of the words that you might have chosen
to exclude apart from the ones I mentioned earlier will probably have been dis-
course markers, such as so or right, fillers, such as uh and um, response markers like
yes or mm-hm, conjunctions like and, indications of non-verbal behaviour, such as,
for example, brth, that signals audible breathing, references to meta-information
regarding the dialogues themselves (e.g. Dialogue, Estimated, files, Length, Num-
ber), etc. Many of these may not be considered stop words in a general sense, and
would therefore not be applicable to other types of files/domain, but are highly
particular to this specific type of dialogue.

Exercise 57
I’ve deliberately left the choices for this exercise open to encourage you to explore
the different options, but just in case you run out of ideas, here are a few
options/combinations you could investigate. For instance, it might be interest-
ing to investigate nouns first. As the default option for the sorting is ‘descending’,
this will automatically show you the most frequent ones first. If you use the same
option I’d set, that is, for only spoken parts of the BNC, you may be in for a bit
of a surprise, as you may not just be getting an indication of the most popular
‘topics’ (people, references to times, money, thing(s), etc.) through this, but also
find a number of unusual little words there, such as way, bit, sort, and lot. Under
normal circumstances, we’d probably not expect to find these nouns to be among
the most frequent ones talked about in conversations. Upon closer inspection,
though, it turns out that they simply form parts of longer multi-word expressions
that tend to characterise spoken language, such as in a way, this way, no way, for
way, bit mainly occurring in a bit, sort as part of the hedging device sort of, and
lot in a lot, all of which don’t signal any specific topic information. Switching to
written language, we do get some of the items, namely people, way, as well as

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 183

references to times/dates, recurring, but most other nouns are already far more
indicative of content, referring to such topics as family life, politics, locations like
London, business, etc. I’ll leave it up to you to investigate this in more detail. If
you do so, though, and want to draw conclusions about written language only
from this, please also bear in mind that the written part of the BNC also includes
fiction, where at least some parts ‘model’ spoken language, as in the direct speech
of characters in novels or plays, etc., so that we should perhaps not see everything
here as exclusively written.

Of course, you could also attempt to investigate the nouns in the BNC from
a different angle, which would be to look at the rarest ones first. In order to do
so, we could simply switch the ‘Type of ordering’ option to ‘ascending’ and then
see which rare, or perhaps exotic, nouns we may find. Unfortunately, though, this
won’t have the desired effect, as the first 3,900 word forms will represent num-
bers (with or without a dollar prefix), foreign words (apparently mainly Czech),
etc., which may in many instances – at least as far as the numbers are concerned –
well act as NPs, but not actually constitute nouns themselves. Later, predomi-
nantly mis-tagged forms contain leading quotation marks or hyphens, or further
numerical/measurement units that are at best pre-modifiers, rather than nouns,
where in many cases a number has not been split off from its following unit
of measurement. Other similar errors continue up until we reach approximately
12,000 word forms or so, as, up to this point and a little further on, most of the
types constitute hapax legomena, that is, word unique forms. From roughly this
point onwards, at least some of the following hapax legomena appear to be proper
names, so this is perhaps where the tagging errors gradually begin to peter out.
And even if this number represents only 0.01% of all the words in the written parts
of the BNC, the number of potential errors, which appear mainly due to tokenisa-
tion errors, is staggering, particularly when considering that this affects only one
of the parts of speech represented in the corpus. You may then think that perhaps
if hapax legomena are such a problem, you could start investigating instances of
types that occur at least twice. However, sadly, these are beset by similar prob-
lems, again mostly related to mis-categorised numbers, such as recurring years
or even apparently numbers indicating section hierarchies in documents (such as
4.2.3, etc.), where approximately the first 7,700 types are concerned before we
end up with more likely noun-candidates. Increasing the minimum frequency to
3 improves the situation somewhat, as the cut-off point for what may be gen-
uine nouns is now ‘already’ at around 3,180, but what this clearly shows is that,
due to too many tokenisation or tagging errors, perhaps the BNC is unfortu-
nately not the best resource for investigating rare vocabulary! One thing we can
already conclude from this, though, is that CLAWS seems to have some clear
issues when it comes to tagging nouns, especially where numbers are concerned,
but also in cases of pre-modification, where frequently pre-modifying adjectives
are ‘mistaken’ for nouns, possibly because the probabilistic component of the tag-
ger may over-rate the potential of noun–noun combinations in compounds or a
similar, non-probabilistic, rule may be causing the issue.

184 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

For verbs, perhaps the most obvious thing to investigate would again be the
most or least frequent types, but, as these still exhibit far more inflectional options
than other parts of speech, it may also be interesting to investigate inflectional
suffix patterns by selecting the ‘ending in’ option for ‘Word pattern’, or possibly
verbs that have potential negative prefixes by choosing the ‘starting with’ option.
The final option of this set, ‘containing’, is probably not exclusively relevant for
verbs, but could be used to investigate derived forms of nouns, verbs, adjectives,
or adverbs based on restrictions for particular stems.

Most other PoS categories can be investigated in similar ways, either looking
for pre- or suffixes, most/least frequently occurring types, etc.

Exercise 58
You should already be somewhat familiar with the composition and features of the
BNC from Exercise 4 in Chapter 2, as well as some other discussions in Chapter 3.
Just as a reminder, though, under the ‘Overall’ group, ‘Demographically sampled’
refers to materials collected from tape recordings made by individuals in private
settings, and ‘Context-governed’ to data transcribed from public speeches or other
events, news or sports commentaries, lectures, classroom interaction, etc.

Both of these have their individual sections for restrictions further down the
page, to allow you to narrow down your choices, based on domain information
for the context-governed type, and age, social class, and sex of respondents – not
the speakers, whose characteristics can be selected separately – for the demographi-
cally sampled data. For instance, for the former category, you could here choose
to only select educational or business materials, depending on whether you may
be investigating issues in EAP or business-oriented ESP. For the latter, you could
opt for only investigating the speech of men or women, or speakers from the same
or different social classes, or create subcorpora for both, and then compare the
language in some way, which makes it possible to carry out corpus-based sociolin-
guistic analyses on the data, as do the options for restricting speakers to particular
education levels, etc.

To carry out genre-based analysis, you’ll probably want to focus on making
particular selections from the ‘Genre’ section, which, to some extent, overlaps
with the restrictions for context-governed materials.

Provided that you don’t forget to change the option for creating a new cor-
pus, there should be no issues in completing this exercise and creating a suitable
frequency list.

Exercise 59
This exercise may have seemed rather complicated to you, as it involves working
with yet another program and also many, perhaps complicated-seeming, steps.
However, as we’ve already seen above, in order to get the full picture, we cannot

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 185

always only rely on one single program or interface, and frequently need to process
our data further in various ways.

The first thing we can see when looking at the top few items in the list is that,
apparently, BNCweb treats all punctuation characters as word types, and hence
also tokens. This is odd because, although punctuation may well convey linguistic
meaning in some sense, it still doesn’t carry any truly semantic meaning, but
its function is more pragmatic in nature. We’d thus probably want to ‘throw
away’ all types that constitute punctuation marks or mathematical operators,
which also includes some character reference entities like ‘ (left single
quotation mark), — (m-dash; dash that has the length of the character m),
and ’ (right single quotation mark). The latter, strangely, are still part of
the text representation of the XML version of BNCweb, despite the fact that they
can easily be encoded in UTF-8, which is, after all, the assumed default encoding
for XML.

Likewise, when scrolling through the list, you may notice that there are some
forms preceded by apostrophes, which either represent true clitics or sometimes
just indicate non-standard pronunciation forms, such as h-dropping. The question
here is whether we’d really want to keep them in this form or possibly associate
them with their full, non-contracted equivalents by increasing their counts and
deleting the contracted forms, or keep on treating them separately. A little further
down, we also find a series of numbers, some of which represent years. However,
in many contexts, number tokens are really not terribly meaningful, either, so we
could opt for removing them to prune the word list, especially because most of
them represent singletons, anyway.

At the end of the list, you’ll also find some entries related to anonymisation in
the data, where names, addresses, or telephone numbers were marked as having
been elided in order to protect the anonymity of people or institutions. In many
cases, these may well represent nouns, but as we have no way of identifying how
many tokens they genuinely represent and which types they belong to, it may
sometimes be safer to ignore and delete them. The same goes for instances of
[unclear], which we again cannot interpret in any meaningful way.

Of course, any operations where we modify the data or remove items may also
have an effect on further processing, as they’ll affect the overall type and token
counts that may, for instance, be relevant in comparing our list to lists from other
domains, something we’ll explore soon. Issues like this may affect both manual
and automated processing, but can have more of a negative effect on automated
and unsupervised analysis procedures because, there, possible issues will never be
spotted, and the potential relationships identified between words may become
skewed. Now, if you’re worried about deleting data from the list, you can of course
take advantage of the spreadsheet application in a different manner. As spreadsheet
files normally consist of multiple worksheets, rather than completely deleting items
you want to remove from the list for various reasons, you can copy/cut and paste
them to an extra spreadsheet and preserve them there, just in case you may decide
later on that you want to insert them again. That way, you also won’t have to

186 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

go through the same routine to re-create the list in the online interface, should
you notice that you’ve accidentally removed data you’ll later need. And, if you’re
worried about not being able to get an exact token count of all the data after
making modifications, the spreadsheet will also help you there because all you
need to do in order to obtain this is to place the cursor in the field immediately
below the count for the final token in the list and use the AutoSum function
(symbolised by) to automatically count the total for you.

One other thing you’ll hopefully be able to see easily when looking at the list
is that BNCweb has downcased all words, and that there was also no option to
preserve the original distinctions between capitalised and non-capitalised forms,
which now makes it difficult to distinguish between common nouns and proper
names. Of course, you could fix this manually, but, since we’ve now separated the
data from our ability to concordance on it, we’d have to go back into BNCweb
to look at the original frequency list. One way in which we could have avoided
this particular issue would of course have been to create the list including tags.
This way, the different PoS categories, insofar as they were correctly tagged in the
first place, would have automatically been counted separately. I’ll leave it up to
you to create such a revised list, and see how this may affect your interpretation
of the data.

Exercise 60
The only two things you could possibly get wrong in this exercise are that, per-
haps, you don’t select all the data and get an incomplete sort, or that you don’t use
the right (custom) sort button and instead sort only according to one field. How-
ever, as you can hopefully see, the options we want to use here may be labelled
somewhat differently in Excel/Calc, but are otherwise exactly like what we’d get if
we sorted according to descending frequency in AntConc, as our secondary sort
also takes the alphabetical order into account.

When you look at the results, you should also be able to notice that, similar
to the results we had for the Trains corpus, most of the high-frequency function
words get sorted to the top, as well as first and second person pronouns, and fillers
like erm, etc. If you didn’t delete the contraction forms in the previous exercise,
these will also appear near the top. Otherwise, of course, we don’t get such a clear
indication of the topics as in the relatively small Trains data, which was restricted
to a very narrow domain, along with a very specific task.

Exercise 61
This exercise should be relatively straightforward, provided that you pick the
option ‘W:essay:univ’ from the dropdown list. And, of course, you need to make
a decision about whether to include tags again or not, but, other than that,
the steps required are just the same as before and should require no further
comment.

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 187

Exercise 62
As before, there should be nothing special about this exercise.

Exercise 63
Provided that you’ve swapped the second and third columns correctly inside the
spreadsheet application, as well as loaded the data file for the reference corpus
properly in the preferences, the only real difficulty in this exercise is to remove all
the items that don’t look like proper words successfully, so that AntConc can load
your frequency list. If you’ve followed the guidelines I gave above for Exercise
60, you’ll already have eliminated most of the likely candidates for errors. Other
things you’ll need to delete are single letters followed by dots, as well as abbrevi-
ations, such as i.e. or e.g., and any genuine words that are followed by dots, as the
dots don’t form part of the general token definition we’re using, and most of these
forms (apart from the abbreviations) are probably the results of tokenisation errors
in the BNC, anyway. You should definitely also delete all numbers, unless you want
to change the token definition to include those, but, as I pointed out before, num-
bers may take many different forms and their meaning may be difficult to identify.

Once you’ve created the keyword list, you should immediately be able to see
that some of the words we’d previously only been able to identify through the
basic frequency list after repeatedly manipulating the stop word list should now
more or less automatically have ‘jumped’ to the top. If there are still some words
in the list that seem odd, perhaps because they are part of the meta-information of
the dialogues or indicate paralinguistic features, such as breathing, etc., you can
easily eliminate them from the list in order to clean it up further by manipulating
the stopword list, then re-creating the Trains frequency list, and re-running the
keyword analysis.

Exercise 64
Even just a cursory glance at the positive keywords in the top 31 types of the key-
word list already demonstrates the academic nature of the vocabulary quite clearly,
containing vocabulary roughly related to scientific/psychological experiments,
politics, as well as linguistics. The terms themselves may also be polysemous or
refer to different domains, so it’s useful to be able to use the hyperlinks behind the
frequencies to generate concordances for disambiguation. For example, subjects
predominantly refers to ‘people involved in experiments’, rather than the plural
form of the ‘syntactic role’ category, while memory may refer to either ‘brain capa-
city’ in psychological experiments or to ‘(random-access) computer storage’, etc.

In terms of function words, the high keyness of the and this points to the highly
packed nature of written academic language, which contains many (definite) noun
phrases and other types of deixis.

Looking at the negative keywords, we can easily notice that personal pronouns
are much less frequent, partly due to the impersonal, non-interactive, ‘objective’

188 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

nature of most types of academic writing. This becomes especially clear if we inves-
tigate the low frequency of i (lowercased, as all examples are automatically), which
indicates a strong dispreference for authors to refer to themselves, in particular also
because not even all instances of I always constitute tokens of the personal pro-
noun. Sadly, in very few cases here do we actually get a strong expression of an
author’s voice.

Exercise 65
Essentially, the option we just explored has relatively little to do with keywords as
calculated through the options from the top part of the same page, as all it really
does is eliminate all word types both corpora share, and then display whatever
remains as a frequency list. Therefore, the list produced by BNCweb actually also
contains one redundant column, depending on whichever list wasn’t selected, and
where all the type frequencies are set to 0. The idea behind seeing such words types
as key is of course based on the notion that non-shared items are always key for
a particular corpus, which may not necessarily be the case, even though they do
help us narrow down the options for identifying true keywords without the use of
statistics. The smaller the corpora compared are, the easier it’ll of course become
to narrow down such selections, but essentially, the technique itself is similar to
creating basic stopword lists, only that, in this case, a word list from a whole corpus
is used as a stopword list.

Although the comparison of such wildly different subcorpora in terms of size
is, admittedly, not very useful in general, the list of unique items in the writ-
ten component immediately reveals a number of interesting features of the BNC
tagging and composition, or rather, the way BNCweb allows you to work with
them. An extraordinarily large part of the unique types revealed as ‘keywords’
here constitutes items of punctuation, proper names (genuine names, abbreviated
letters), cardinal numbers, dates, and measurements, many of these features that
we’ve already previously identified as having the potential to skew our frequency
analyses, and thus being able to filter these out in some way would be nice. Unfor-
tunately, though, BNCweb doesn’t offer us any direct way to do so, so we’d need
to export a tagged list and then filter it ourselves in some way, for instance by
excluding specific tag patterns in Excel or by writing a small program to remove
words tagged with unwanted tags.

Exercise 66
As before, there are many steps in this exercise, and you need to be very diligent
in moving around some of the data once it’s been pasted into the spreadsheet.
However, you’ll hopefully soon realise how programs such as Excel or Calc make
it much easier for you to calculate the values you want automatically, which saves
a lot of time and is much less error prone (if done carefully) than calculating
everything by hand. But of course, if you get some of the steps wrong, there’s also

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 189

great potential for producing erroneous output, so we’ll go through the individual
steps here again and I’ll try to point out potential issues or traps you might fall into,
along with further opportunities the spreadsheet offers to visualise and investigate
the data better.

The first part, creating the subcorpora, should be relatively straightforward, as
we’ve practised this before. Creating the header row in the spreadsheet and saving
it should also not present any problems.

The first issue could in fact arise when you paste the data from BNCweb into the
spreadsheet. If you don’t use the ‘Paste Special…’ option, which in Calc even trig-
gers the text import wizard, you’ll end up with frequency values that the spread-
sheet cannot interpret as numbers because they still contain some (hidden) HTML
formatting. In this case, there’s simply nothing I’ve been able to identify that will
make it easy for you to convert all the data short of editing all the cells manually

.
Sorting the lists (individually) should again be easy, as this time we don’t

even need to specify any additional sort key. Pasting the token counts from the
‘Make/edit subcorpora’ page also presents no problem because, this time, we only
have one single piece of ‘text’ without HTML codes, so there’s nothing to mis-
interpret for the spreadsheet program.

Naming the totals should not be particularly difficult, but if you should have
a problem using the ‘name box’ above cell A1, you can right-click on the cell in
Excel and choose ‘Define Name…’ or use ‘Insert→Names→Define…’ in Calc.

To transfer and align the data is probably the most difficult and time-consuming
part of the exercise because it’s easy enough to make mistakes when creating new
rows and moving the data around, as well as adding the noughts to the relevant
cells where a type doesn’t exist in one of the corpora. Incidentally, the reason for
why we added noughts for the ranks in the first place is that we’ll later be able
to sort the result table according to the rankings in either of the corpora and
compare them, too, in which case all non-ranked, that is, non-occurring types will
be sorted together. The same applies to sorting the data by frequency if we wanted
to compare raw frequencies for whatever reason, or simply identify non-occurring
types in either corpus.

Provided that you type the formulae into the formula bar correctly and select the
right cells, calculating all the relative frequencies accurately and efficiently should
also not present any problems, although, if you haven’t used spreadsheets exten-
sively, filling cells by dragging may take some getting used to. If you feel uncom-
fortable using the mouse for this, there’s also an alternative way of filling the cells
down, which is to click in the first cell that already contains a formula, then hold-
ing down the shift key, and using the down arrow to highlight all cells you want
to fill. Once you’ve selected all the cells, you can press ‘Ctrl + d’ in Excel or use
‘Edit→Fill→Down’ in Calc.

What perhaps remains to be explained in order to provide you with a full under-
standing is how what we’ve just done actually works. By default, programs like
Excel and Calc try to calculate formulae in adjacent cells using relative references.

190 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

For example, if you have a formula that sums two adjacent cells A1 and B1 using
the syntax =A1+B1, and then drag down, the spreadsheet will ‘assume’ that you’ll
next want to add A2 and B2 automatically, and adjust the formula accordingly.
However, by naming the totals, and using the names inside the calculations for
relative frequencies, we’ve effectively mixed relative references and absolute ones
in one and the same formula, as a named cell always refers to a constant value
contained in that cell. Thus, by dragging down the formula we created to calcu-
late the relative frequency for about in cell E2 (=C2/n_general), we effectively
changed it to =C3/n_general for the next cell below, etc. In determining the
ratio, however, we used relative references for both parts of the equation.

Once you’ve finished all the calculations, you can analyse and evaluate the
results. As I said before, there are now a number of options for sorting according
to different fields, for instance comparing the ranks in one corpus against another
or, perhaps more importantly, seeing whether certain words dominate to some
extent in one corpus in comparison. To do the latter, all you have to do is to sort
according to the ratio. If you sort our data in descending order, all the types that
only occur in the first corpus will automatically appear at the top, due to the divi-
sion by 0 error I referred to in the instructions. This will then be followed by all
instances where the relative frequency is higher in the first (general) corpus, and
you can easily identify these ‘dominant’ words due to the fact that they’ll have a
ratio above 1. However, even without sorting in this way, or sorting according to
another column, the spreadsheet application would still allow you to visualise this
easily by applying conditional formatting to the ratio column, where you could,
for instance, highlight cells with values above zero with a green background and
those below with an orange one, or any other colours you prefer. This is similar to
the + and - symbols display in the keyword analysis in BNCweb, and represents
just one of the ways in which we can visualise differences in the data easily for a
quick overview. I’ll leave it up to you to find out how exactly this can be achieved
in whichever application you’re using.

The analysis of the data, sorted according to the ratio, reveals a few interesting
features, although overall it may not provide us with any deep insights. Looking
at the words that exclusively occur in the general corpus, we can see some
interesting types, namely concerning and regarding, that have been classified as
prepositions despite the fact that they don’t look like typical prepositions because
they are in fact ing-forms, that is, they clearly still retain some verbal character.
Closer inspection of the original data in BNCweb further reveals that at least some
of their tokens, especially for concerning, would perhaps better be classified as
conjunctions, especially when occurring in clause-initial position. The occurrence
of v. demonstrates that parts of the general subcorpus contain references to legal
matters, where the type is one of the two possible abbreviations for versus (the
other being vs.). Interestingly enough, the second form, which in fact occurs
twice in the same subcorpus, is not used in a legal context, so the first form
may (tentatively) be seen as a potential identifying factor for texts from the legal
domain. The most striking difference in type frequency for types occurring in

BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS? 191

both subcorpora is that for upon, which occurs more than 10 times as frequently
in the general corpus (ratio 10.604). This can be interpreted as a difference
in the levels of formality in the two subcorpora, as well as again partly to the
occurrence of legal texts, which tend to be more formal (or formulaic) in nature,
anyway. This would seem to be corroborated by the fact that among is somewhat
underrepresented in the general corpus (ratio 0.712), which, however, exclusively
has the alternative, and more formal form, amongst instead, as well as the relatively
high level of occurrences of within (ratio 2.727) as an alternative to the less formal
in. Of course, as with all analyses of word lists, even though the above results
may lead us to assume that economics-related newspaper reportage may be less
formal in style than other types of writing in economics, this assumption would
still need to be substantiated further by more careful qualitative analyses based on
concordances.

Exercise 68
This exercise is much easier to do than the previous one, so there’s relatively little
potential for getting anything wrong. Perhaps the only things that could hap-
pen here are that you either inadvertently select the wrong display option, or the
wrong sub-genre from one of the list boxes. In the latter case, the interface will
unfortunately not allow you to spot that error easily because it’ll only refer to the
two selections you’ve made as SEC 1 and SEC 2 in the comparison frame.

Looking at the results, we can first notice that there are specific tokenisation
and tagging issues that result in inappropriate ‘compound’ forms. These, we can
perhaps safely ignore, bearing in mind that the modals contained in them would
normally contribute relatively little to the overall token counts of the genuine
types.

The remaining examples can be investigated by clicking on the links referred to
in the instructions, which I’d strongly advise you to do before making any con-
clusions about the comparison results, as at least the results for ‘s mainly yielded
results that contained the contraction Let’s, where the clitic isn’t even a verb, but
the reduced form of the pronoun us, apart from the fact that it’s clearly debat-
able whether the reduced form of the auxiliary BE should ever be considered a
modal. The latter also applies to used as part of the combination used to, where
the sequence represents an alternative way of expressing past tense, rather than
any form of modality. These two cases clearly represent issues related to automatic
PoS tagging and the theoretical assumptions and rules behind it.

The next thing to observe in the lists is that we have what appear to be non-
words, namely ca, wo, sha. However, if you call up the concordances for these,
you’ll soon find out that they represent the initial parts of the negative contractions
can’t, won’t, and shan’t, which have been separated from the negation ‘clitics’ in
the tagging process and are being treated as individual tokens. Incidentally, the
same thing also applies to BNCweb, due to the use of CLAWS in the tagging of
both corpora.

192 BASIC FREQUENCY ANALYSIS – OR WHAT CAN (SINGLE) WORDS TELL US ABOUT TEXTS?

Having identified these potential issues, we can now focus more on the actual
genre similarities and differences. Here the most common ‘general’ modals like
can, will, would, may, must, might, which tend to be more epistemic in nature, that
is, frequently reflect instances of hedging or stance, are almost equally frequent in
both sections. In contrast, though, the light-green highlighting in the table on the
left-hand side clearly (along with its mauve counterpart on the right) indicates that
the humanities writing contains more instances of deontic modals, that is, those
that express permission or obligation, such as shall, ought, and need. The latter,
which are sometimes also slightly more old-fashioned, for example, shalt, shall,
or also to some extent dare, are apparently due to the fact that the humanities
section contains religious texts that are highly formulaic in nature, as they contain
biblical quotes of deontic nature, such as thou shalt…, etc., which are not present
in the science/technology writing, which tends to be less ‘prescriptive’ in general.
One particularly interesting type in the table in this context is wilt, which, on the
surface, would appear to be an archaic form of WILL, so we’d expect to find more
occurrences of it in the humanities texts. Upon closer inspection, however, it turns
out that this type in most instances in both corpora in fact represents a typo, that
is, the misspelt form of will, or in the science writing a mis-categorisation of the
nominalised form of the verb wilt in two cases.

Sources and Further Reading

Bondi, Marina & Scott, Mike. (Eds.). (2010). Keyness in Texts. Amsterdam: Benjamins.
Hoffmann, Sebastian, Evert, Stefan, Smith, Nicholas, Lee, David, & Berglund Prytz, Ylva.

(2008). Corpus Linguistics with BNCweb – A Practical Guide. Frankfurt: Peter Lang.
Lee, David. (2002). Genres, Registers, Text Types, Domains and Styles: Clarifying the

Concepts and Navigating a Path through the BNC Jungle. In Kettemann & Marko.
(Eds). (2002). Teaching and Learning by Doing Corpus Analysis. Proceedings of the
Fourth International Conference on Teaching and Language Corpora, Graz 19–24
July, 2000. Amsterdam: Rodopi.

Leech, Geoffrey, Rayson, Paul, & Wilson, Andrew. (2001). Word Frequencies in Written
and Spoken English. London: Longman.

Scott, Mike. (2010). Problems in Investigating Keyness, or Clearing the Undergrowth and
Marking Out Trails… In Bondi & Scott. (Eds.). (2010). Keyness in Texts. Amsterdam:
John Benjamins.

10
Exploring Words in Context

Although it’s of course somewhat easier to confine our corpus-based investigation
to single lexical items, single words and their frequencies aren’t the only interesting
things we may want to analyse with the help of corpora. This would be restricting
ourselves to more or less a kind of lexical/semantic analysis that largely ignores the
fact that words really only gain their ‘true meanings’ in context. Even if (sorted)
concordance lines can already represent an extremely valuable asset in a teaching
context because learners – as well as teachers – can investigate words as they’re
really used in authentic materials, such an analysis may be rather time-consuming.
Furthermore, the fact that we may be able to find some patterns easily – and then
perhaps focus on only those – may make us overlook the true flexibility inherent in
language in ‘playing’ with these patterns to change their meaning in an appropriate
and sometimes fairly subtle manner. These choices we have when using language
can really only be investigated through finding ways of expressing this flexibility
on the paradigmatic and syntagmatic axes in our corpus searches. On the other
hand, if we move away from the analysis aspect for a moment and think about
the teaching/learning side, we’ll soon realise that finding out about groups of
words that co-occur is of great importance in developing the learner’s sense of
idiomaticity.

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

194 EXPLORING WORDS IN CONTEXT

10.1 Understanding Extended Units of Text

People who tend to ‘stray’ on the theoretical side of linguistics often appear
inclined to assume that the unit of text we should deal with is the sentence, without
necessarily being able to define what exactly this is. Is it simply everything from a
capital letter to the next full stop, exclamation or question mark, provided that we
even follow Western writing conventions? And how do we deal with embedded
sentences, or co- and sub-ordination, reported speech, or parenthetical structures
separated by hyphens or commas from the main proposition?

From these questions, it may be clear that it’s by no means obvious – or at least
should not lightly be considered obvious – what the real unit in text could be.
Certainly the ‘utterance’ A cup of coffee(, please)., given in response to the question
What would you like to drink?, though definitely not grammatical in the traditional
sense, should be considered a valid unit of information, even if it doesn’t contain a
verb or a subject. So if it isn’t the sentence, then what should our ideal units in text
be? Moving down to the level of clauses /phrases surely seems somewhat restrictive,
even if the concept of phrase may sometimes be taken rather loosely simply as
a (functional) combination of co-occurring words (cf. Nattinger & DeCarrico
1992). However, as we’ve seen in the preceding example, even a single noun
phrase without the ‘politeness marker’ please may constitute a complete answer to
a question, only that not all noun phrases actually do fulfil this function and can
thus simply occur on their own and out of context.

The most likely candidate for a textual unit seems to be the c-unit, defined by
Biber et al. (1999: p. 1070) as consisting of “clausal and non-clausal units […] that
[…] cannot be syntactically integrated with the elements that precede or follow
them”. To develop a better sense of what this definition may in fact encompass,
let’s do an exercise.

Exercise 68

Try to identify the c-units inside the following piece of dialogue by insert-
ing whatever you think may be an appropriate punctuation mark between
them in pencil. Pauses in this excerpt are indicated by #, and beginnings and
ends of overlapping speech by opening ([) and closing (]) square brackets,
respectively. A & B represent different speakers, where each speaker indi-
cation in the text is followed by a dot and the turn number.

Justify your choice each time, thinking about why you’ve chosen to break
the unit at this point, and also why you’ve decided to use this particular
punctuation mark. Was your decision based on your knowledge of writing
conventions, syntactic, semantic, or pragmatic criteria, or maybe a mix of
the former?

EXPLORING WORDS IN CONTEXT 195

A.1: good afternoon Virgin train line Sandra speaking for which journey do
you wish to purchase a ticket B.2: er Euston to Manchester please A.3: # now
do you hold a current debit or credit card B.4: aha A.5: do you have a railcard
at all B.6: no A.7: and how many people’s travelling B.8: just one please A.9:
and what date is it you’re travelling B.10: the Saturday which is the third i think
A.11: third of Oc… B.12: [October A.13: October] departing at what time
from London Euston B.14: i’m not sure what time the trains are do you know
A.15: well the trains run at 10 to the hour every hour B.16: every hour # and
that’ll be the 14 50 i think then A.17: arriving at 17 30 B.18: that’s right yeah
A.19: when are you returning B.20: er Monday A.21: departing at what time

As the above exercise will hopefully have shown you, while we may have rel-
atively clear-cut syntactic categories/units in written language, spoken language,
which is, after all, more dominant in our daily lives, is not as easily segmentable.
Therefore, analysing and understanding it may require a rather different approach,
as well as a need to re-think many things we may have learnt about the analysis
of language in the past. What therefore seems to be even more important than
recognising the c-unit as the correct unit is the fact that one should always be
aware that there are certain boundaries in text that form natural borders between
the units of text we may want to see as belonging together, an issue that gains in
importance once we move away from looking at single words only.

10.2 Text Segmentation

As the previous exercise has shown, finding individual larger units of/in text is quite
difficult to achieve. One might assume that punctuation, something we use all the
time in order to delimit ‘sentences’ from one another, is fairly unambiguous, but,
as you may also have noticed, once we start exploring all the varied functions the
different punctuation marks may perform in a text, we may be quite surprised
by their capacity for creating ambiguity. To illustrate this further, let’s take a brief
look at some of the general and special potential functions of different punctuation
marks:

� full stops may indicate (declarative) ‘sentences’, enumerations (as in ordered
lists, e.g. 1., 2., 3., or i., ii., iii., …), abbreviations (etc.), act as decimal sepa-
rators for numbers (e.g. 2.5; in English), or indicate dates or ordinal numbers
(in German)

� commas in English may be used as thousand separators (e.g. 1,250) in num-
bers, whereas in continental European formats, they act as decimal separators
(e.g. 3,5 signifying the same 3.5 in English)

196 EXPLORING WORDS IN CONTEXT

� a colon may indicate either the beginning of some form of listing inside a
sentence, the beginning of direct speech, or separate two numbers, such as a
score/ratio (2:1) or time (6:45)

� even exclamation marks don’t always indicate imperatives, but may occur in
unusual contexts, e.g. as indicators for faculty in mathematics, as in 5!

� some single quotation marks serve as apostrophes and may indicate differ-
ent types of genuine contractions, abbreviations/shortenings involving dele-
tions (e.g. ‘cos, ‘coz, o’clock), often to indicate non-standard features, such as
h-dropping (e.g. ‘ere for here), or be used in scare quotes.

We already encountered some of these issues in Exercise 35, where, for instance,
most of the Roman numerals in capitals were tagged incorrectly, due to not hav-
ing been identified as numerals followed by a dot indicating their ordinal nature.
Despite the potentially problematic practical issue of how to deal with the above
options, it’s important for us to try and interpret all the different uses of punctu-
ation marks as accurately as possible if we do want to determine the correct unit
for analysis, since straying too far may result in odd results when we want to han-
dle the larger units of texts we’re now going to discuss. Luckily for us, many of
the potential difficulties shown above can be avoided if tokenisation is performed
using appropriate regexes in most cases. We’ll discuss options of how to actually
mark (up) and distinguish larger units of text in Chapter 11, when we talk about
annotation.

10.3 N-Grams, Word Clusters and Lexical Bundles

Moving beyond the level of single words, we usually start by looking at two-word-
units (bi-grams), next three-word-units (tri-grams), and so on (see Section 10.7).
When we talk of units larger than a single word, we can also refer to them collec-
tively as n-grams, word clusters, lexical phrases, or lexical bundles, although these
expressions carry slightly different connotations, depending on the context they’re
used in or the research conducted on them. The main thing that unifies them is
that they all represent sequences of words that tend to occur directly in a row, that
is, without any intervening elements between them.

N-grams may already constitute basic level collocations, such as strong/black
coffee, etc., but certainly don’t need to, as for example in the determiner–noun
sequence the green as part of the noun phrase the green house. When dealing with
semantically and syntactically meaningful n-grams, we need to be especially careful
not to move across any c-unit boundaries because otherwise our combinations of
words no longer make any sense. For example, if we have two consecutive units
like There was a green house. The house was in a terrible state., and we ignore the full
stop at the end of the first unit, we may either produce a bigram house the or a tri-
gram house the house, neither of which will really be a sensible combination, and
both are therefore not worth interpreting in terms of their linguistic functions.

EXPLORING WORDS IN CONTEXT 197

Incidentally, you may have noticed that the words in the n-grams shown above
are all in lowercase, so that they don’t really always represent the original forms.
This is generally done in order to be able to group words with or without initial
capitals together, just as we’ve seen for sorting above, and represents one of the
‘shortcuts’ in language processing that could potentially lead to errors of analysis
if not borne in mind.

One further pitfall in analysing n-grams may also be to forget that there could
actually be n-grams within n-grams. In other words, it often makes sense to look
for the longest (sensible) string, which could always contain one that’s one word
shorter. Coming back to our example from above, the tri-gram definite noun
phrase the green house also contains the bi-gram green house, which we may want to
distinguish from the indefinite noun phrase a green house. Here, we can also begin
to see the importance of retaining function words in our n-gram counts because
otherwise we run the risk of losing potentially valuable distinctions, a feature that
becomes even more important when we start looking at collocations or idioms,
where, for example, we say that somebody hit the roof because they were angry, but
not they hit a roof.

The term cluster can be seen as a kind of neutral ‘umbrella term’ for both n-
gram collocations, that is, meaningful sequences, and those sequences of words
that are less meaningful in terms of their syntactic or semantic functions, which are
generally referred to as ‘lexical bundles’ (c.f. Biber et al. 1999: 990ff.) or ‘lexical
phrases’. Lexical bundles are prefabricated, often more formulaic, constructions
that may in fact span across separate syntactic phrases, such as for example the
beginnings of some questions like would you like X, do you want X, can I have
X, certain types of hedging expressions, such as I think that X, I believe that X,
to name but a few. Each time, the first part always represents a fixed, formulaic,
construction, while the semantic flexibility of the overall clause is provided by
the different types of objects required (represented as X in the examples). While
the former examples of lexical bundles are relatively clearly structured, at other
times, some bundles may appear less so, as in such combinations as is based on or
are likely to be (Biber et al. 1999: 996), where, syntactically, we need to provide
both a subject and a(n) object/complement, that is, two elements surrounding the
bundle. To develop a better sense of what n-grams look like, and to what extent
they may be meaningful, let’s do another short exercise.

Exercise 69

To do this exercise, go to http://martinweisser.org/pract_cl/online_
materials.html and select the link to ‘Understanding Units in Text’. You
should see the following text:

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}pract_clhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}online_materials.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}pract_clhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}online_materials.html
http://martinweisser.org/pract_cl/online_materials.html
http://martinweisser.org/pract_cl/online_materials.html

198 EXPLORING WORDS IN CONTEXT

To develop a better understanding of what clusters may look like and
how they’re built up, let’s take a look at an example of how n-gram lists
are generated, based on the contents of this paragraph.

Click on the button that reads ‘Click to generate n-gram list’ and look
through the results.

Next, change the number in the dropdown list to 3, 4, and 5, respectively,
each time observing the output. Every time you do this, think about how
meaningful/useful the resulting combinations may end up being.

The frequency of occurrence of the n-grams you’ll have observed doing the
above exercise can also be counted, just as in basic frequency lists. In this way, we
can identify the most common clusters, and, for example, evaluate whether they
may be semantically or pragmatically meaningful or useful to learn for L2 learners,
or be indicative of a given textual domain, etc.

10.4 Exploring (Relatively) Fixed Sequences in BNCweb

BNCweb provides us with many different options for investigating words in
context, involving a mix of the various options we’ve explored before, such as
looking for only the (fixed) word forms themselves, this time in combination,
enhancing this by restricting/expanding word forms in context by using wildcards
or headword/lemma searches, as well as using regex quantification in conjunc-
tion with grouping. These queries are generally referred to as phrase queries in
BNCweb. Additionally, we can also do contextual or so-called proximity searches,
where it’s possible to search for words that occur within certain textual units or
within a certain number of words of one another, etc. The range of potential
options is so great that we’ll only be able to explore a small part of this to give
you a ‘taste’ of what you can achieve if you explore them in more detail.

10.5 Simple, Sequential Collocations and Colligations

10.5.1 ‘Simple’ collocations

We’ll begin our exploration by looking at what I’ve termed ‘simple’ collocations,
to contrast them with what would appear to be more complex phenomena we
can only identify easily via statistical measures of co-occurrence. We’ll discuss the
other ‘type’ in more detail in Section 10.8. In general, as the name collocation
implies, we’re here dealing with a phenomenon that describes which words tend
to occur in proximity (co + location) to one another because they have some kind
of ‘affinity’ to, or ‘affiliation’ with, one another. To identify such affinities at the

EXPLORING WORDS IN CONTEXT 199

most basic level, one can start by looking at the sequential co-occurrence of words
in context. The differences in meaning lie in the ‘combinatorial options’ on the
paradigmatic axes of the different words that co-occur with one another, either
in relatively loose combinations, such as those involving nouns and their pre- or
post-modifying adjective phrases, or in terms of relatively fixed combinations, like
idioms or proverbs. In other words, the question here is to what extent the words
in a particular context are actually (freely) exchangeable with other words.

In order to investigate the different options available for specifying variable
sequence patterns, we’ll now do a series of exercises, beginning with an analysis
of expressions of ‘voice quality’ in literary texts.

Exercise 70

Select ‘Written restrictions’ under ‘Query options’ on the main page.
To practise narrowing down your searches some more, restrict the query

options for ‘Medium of Text’ to ‘Book’, the ‘Derived text type’ to ‘Fiction
and verse’, and ‘Publication Date’ to between ‘1960-1974’.

Using your knowledge of wildcards in BNCweb, try to formulate a phrase
query that captures the sequence in a + any intervening word + voice,
starting with the most general option you can think of. Think of how to
express ‘anything’.

Gradually refine the query to limit it to particular parts of speech occur-
ring between the fixed parts. You can also use the simplified PoS tags after
the underscore, and don’t even need to add any word or wildcard before it.

Extend the query to include two different intervening pre-modifiers co-
ordinated by and.

As you’ll have seen, this approach already works quite nicely with relatively fixed
phrase query patterns, such as the ones we tried above. However, sometimes you
may also want to be able to restrict certain options for words, rather than using
wildcards or PoS tags, or to make certain parts optional, so let’s just try a few
relatively simple options for grouping, alternation and quantification:

Exercise 71

Try to re-write the last example to make the co-ordinated second modifier
optional.

Extend the previous query to alternately look for in or with as the initial
preposition. Can you observe any differences?

Next, try the somewhat more complex string (in|for) (a|the)
(long|short) (time|period).

200 EXPLORING WORDS IN CONTEXT

Finally, try to create a pattern that will find one of the three prepositions
in, on, and at, followed by up to three intervening words, and then a noun.
Hint: You need to use exact regex quantification here. What do you think
you can find with this and what could the results of this query be used for?

In addition to exploring the various phrasal constellations we’ve just investi-
gated above, this type of flexibility also makes it possible for us to research idioms
to some extent. When doing this, one important feature to verify is to see whether
there are any words in such expressions that may potentially be replaceable by
other words with similar meanings, for instance definite articles by indefinite ones,
etc. If such variability is found, then the most interesting feature to explore is
whether it’s relatively free – something that is quite rare in idioms – or whether
the idiom has deliberately been ‘manipulated’ by the speaker/writer in order to
achieve a particular (pragmatic) effect.

10.5.2 Colligations

To illustrate colligation, that is, the co-occurrence (‘linking’) of specific word
classes or lexical items with particular parts of speech, we can look at a special
feature of BNCweb, which is the way the clitics in contractions are handled. As
discussed before, contracted forms in English still tend to occur mainly in the spo-
ken medium because the conventions of what is often deemed to be ‘good writing
style’ continue largely to forbid their use in the written medium, despite the fact
that this really doesn’t make sense because contractions do in fact aid the natural
reading flow. Because of this conventional restriction, we’ll confine our searches
to spoken parts of the BNC later.

The option to produce contractions in the strict grammatical sense, which is
what we want to investigate here, rather than just any abbreviated word form, is
limited to a closed set of words, belonging to few word classes, and co-occurring
with an equally limited set of word classes. To be able to investigate this, we can
divide our task into two separate stages. In the first, we’ll use BNCweb to identify
all possible forms of contractions in order not to miss any if we simply ‘query our
intuition’. In the second, we can then construct one or more appropriate search
patterns that’ll allow us to create concordances that illustrate which word classes
co-occur with which type of construction.

Exercise 72

Open BNCweb and set the ‘Restriction’ option for a new query to ‘Spoken
restrictions’.

EXPLORING WORDS IN CONTEXT 201

Think of possible options for contractions you know and define a wild-
card pattern that’ll find them. BNCweb defines certain clitics in contrac-
tions as separate words, so you need to bear that in mind.

Test your pattern and use the ‘Frequency breakdown’ option to identify
unique ‘types’. If you’re not happy with the results, refine your pattern
iteratively.

Investigate the individual clitics by accessing the concordances from the
breakdown page and hovering over the hit to get the pop-up display of the
PoS-tagged context. Opening the concordances in a new tab each time
would definitely make sense here, as you then only need to close the tab
again to return to the list of clitics. In addition to straightforward concor-
dancing, though, also explore other ways of investigating the results, such
as those that the sorting options/restrictions for the concordance lines
offer.

The above exercise should have given you an insight into how particular cli-
tics in contractions can combine with other word classes on the syntagmatic axis,
although the options for each one of the parts of speech that can occur to the left
of the clitic obviously represent items that are exchangeable on the paradigmatic
axis.

10.5.3 Contextually constrained and proximity searches

Apart from the various options for using wildcards to specify optional or non-
optional slots in a query, BNCweb also allows us to look for words/expressions in
certain contexts or within a specific number of words of a search term. This, for
example, enables us to look for search terms in specified environments, such as
at the beginning or end of a paragraph, a sentence-like unit (s-unit), or a speaker
turn in the spoken part. Furthermore, it also makes it possible to construct patterns
where we’re not exactly sure about the potential position of one term in relation
to another, and want to be able to roughly investigate a range of possible options.
What exactly this means will hopefully become clear soon.

The context options we have are indicated via XML tags (explained in more
detail in Chapter 11), e.g. <p> for paragraph, <s> for s-units, and <u> for turns,
etc., where ‘u’ apparently means ‘utterance’, although it may, strictly speaking,
possibly consists of a number of these. Searches can either be defined to occur
within paired tags, e.g. <u>(+)+</u> to (theoretically) retrieve all individual
turns from the spoken part, or as occurring at the beginning or end <u> + search
term to retrieve items that occur in turn-initial position. Let’s try this in a brief
exercise.

202 EXPLORING WORDS IN CONTEXT

Exercise 73

Using the pattern shown above, try to retrieve all individual speaker turns
and get an overall impression of their length.

Look for the word well, first in turn-initial, then in turn-final, position
and compare their meanings.

Proximity queries, in contrast, allow us to search for words within a certain
span, left or right context, of one another, where the context may also go beyond a
syntactic boundary. There are essentially two different options for doing proximity
queries, one where we only say that a second term is allowed to occur within a
certain number of words on either side of the search term, and the other where we
specify clearly which side it’s supposed to occur on. The first type is indicated by
a number indicating the range surrounded by two angle brackets pointing away
from the number on either side, e.g. <<3>>, and the other by indicating the
position where the other term should occur through the direction in which the
brackets are pointing, e.g. <<3<< for items that should occur to the left and
>>3>> for items that follow on the right.

The results of proximity queries are a little more ‘vague’ than those of the other
searches we’ve conducted before, especially because BNCweb only highlights the
first term specified in the search. In order to interpret the results more easily,
we may therefore need to sort the results according to the individual possible
positions where the other term(s) may occur. Let’s see what this might look like
by trying to find phrasal or prepositional verbs by looking at all words that have
prepositions – or rather, particles – occurring up to 3 words to their right.

Exercise 74

Based on the information given above, and your knowledge of how to look
for simplified PoS categories, try to define a suitable pattern.

Once you get some results, try to explore them by sorting the results
according to the three possible positions in turn and see whether you can
identify some suitable candidates for phrasal or prepositional verbs.

10.6 Exploring Colligations in COCA

As we’ve just seen in our investigation of prepositions/particles, this PoS cate-
gory may also enter into combinations with other prepositions/particles. In other

EXPLORING WORDS IN CONTEXT 203

words, if we take colligation to be the co-occurrence of PoS categories, this partic-
ular class would colligate with itself in these cases. In the examples we saw earlier,
though, the types we encountered usually contained one element that was part
of a phrasal/prepositional verb construction. In another type, such combinations
generally create a complex meaning, as in, for example, up until or down below,
where the resulting meaning is a mix of the semantic properties of both ele-
ments. In some cases, though, especially in American English, we may encounter
sequences of prepositions/particles that actually contain redundancy because one
of the parts alone would already express the same meaning, such as in off of.

To investigate this feature, and to see whether such redundancy also exists
in other combinations, we could now try to create lists of all multi-preposition
sequences. Unfortunately, though, the BYU interface won’t allow us to search for
these, throwing the following error message “All of the "slots" in your multi-word
search string occur more than 10,000,000 times in the corpus (e.g. [n∗] [be], or
[j∗] [nn∗]). Please re-do the query so that at least one of the slots has a frequency
lower than 10,000,000”. Thus, unlike in BNCweb, where we were able to run
the query and then thin it down, there’s in fact no way to run this query at all if
we don’t know how to restrict at least one element. The alternative presented for
the COCA is to download n-gram frequency files by following a link presented
further on in the error message. This obviously isn’t as useful because there’s no
way to directly investigate the context by clicking a link whenever you find an
interesting example, but of course better than nothing – or looking through hun-
dreds of concordance lines generated for single prepositions in the hope of finding
suitable combinations, which you could still do by using the KWIC display option
and sorting according to first word on the right of the node.

Once you’ve downloaded the relevant offline file(s), you may now think that
you can just load an n-gram file into AntConc and specify a suitable regex pat-
tern to extract all multi-preposition sequences. Unfortunately, though, as useful
as AntConc is for most purposes, since it’s a stream-based concordancer it’ll ignore
all line breaks and match more than we want to see in our concordance, so using
it here is not an option.

Theoretically, you could also import the data into a spreadsheet program and
filter it according to the last two rows, but, in practice, this failed for me in both
Excel and Calc as the number of rows (1,048,720 for bi-grams) unfortunately
exceeds the rather high limit of 1,048,576 rows the spreadsheet can handle for
each individual worksheet in it. In our particular case, filtering may still work if you
cut and paste the final row into another worksheet (or delete it altogether) and
insert a header row at the top of the data and then use the ‘AutoFilter’ function in
both programs, because, essentially, all the rows that didn’t get imported into the
worksheet will contain combinations that start with the letter z and English has
no preposition starting with z. To automatically filter here, you’d have to specify
patterns where the PoS columns ‘begin with’ i.

However, the above clearly isn’t a very ‘clean’ way of doing this, and also rela-
tively complex. The only really ‘clean’ way to solve this using filtering would be to

204 EXPLORING WORDS IN CONTEXT

import the data into a database, which is too advanced a topic here. A much sim-
pler way to search the data, though, is to use a line-based concordancer, such as
my own Simple Corpus Tool, where you can both look at the whole file easily once
it’s been loaded and also devise a suitable regex that will match two occurrences
of the tag used for prepositions occurring in a row at the end of the line.

Exercise 75

Download at least the bigrams frequency list (case sensitive, with part
of speech) from the BYU website at http://www.ngrams.info/download_
coca.asp. Unzip it.

Download the Simple Corpus Tool from http://martinweisser.org/ling_
soft.html#viewer and install or unzip the archive. On Linux or Mac OS,
you can again use Wine to run the program.

Run the tool, press ‘Ctrl + f ’ to open a single file, then select ‘text files
(∗.txt) from the file types list in the bottom right-hand corner, navigate to
where you saved the frequency list, and open it. A hyperlink with the file
path will appear in the left-hand frame.

Click on the hyperlink to open the file in the built-in editor. As it’s a
rather large file, it may unfortunately take a considerable time to load.

Look at the way the file is structured, think of a suitable regex that would
help you match two prepositions in a row, and close the editor.

Change the ‘Lines after’ context to 0 on the tool bar.
Type the expression into the box next to the label ‘Term 1’ and press the

enter key or click on .
Once the results have been loaded into the frame on the right-hand side,

investigate them, always adjusting your regex, if necessary.

The previous exercise was mainly designed to show you that line-based concor-
dancers can give you an alternative view of some types of corpus data, as well as
obviously to help you get sensitised to the issue of multi-sequence prepositions a
little further. However, to get some more experience in investigating some limited
options for these in COCA, let’s do another exercise there revolving around off as
the first element in such a sequence. This will also allow us to see whether it may
be involved in other redundant structures or belong to any of the other categories
we explored before.

Exercise 76

Open the COCA interface again.
Run a search for off followed by any preposition.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.ngrams.infohbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}download_coca.asp
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.ngrams.infohbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}download_coca.asp
http://www.ngrams.info/download_coca.asp.
http://www.ngrams.info/download_coca.asp.
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}ling_soft.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}ling_soft.html
http://martinweisser.org/ling_soft.html#viewer
http://martinweisser.org/ling_soft.html#viewer

EXPLORING WORDS IN CONTEXT 205

Investigate the individual results in the KWIC view frame to see whether
they may contain any redundancies, are part of phrasal/prepositional verbs,
or form genuine multi-word prepositions.

To potentially distinguish between the three options if they should co-
occur in the same KWIC window, you can also make use of the columns
labelled A, B, or C for each concordance line. Clicking on each of these
will highlight the particular row in a different colour and therefore allow
you to visually distinguish between the samples at a glance.

In cases where the frequency of the colligates isn’t too high, we can obviously
also investigate colligations in a similar way as in BNCweb.

10.7 N-grams and Clusters in AntConc

We’ve already seen how relatively fixed, largely pre-defined sequences of words
can be investigated using BNCweb, and to some extent COCA, but of course this
only works if we want to explore interesting sequences that we’re already aware of
in more detail. In order to find new sequences of interest, such as lexical bundles or
collocations that involve words occurring next to each other that we were unaware
of before, we need to learn about some other features that are (currently) only
available in AntConc.

In what follows, we’ll initially experiment with features that help us to explore
collocation (in a very loose sense) by working on a limited number of files in
AntConc. You should, however, try to verify some of the results in BNCweb as
well once we’ve identified particular patterns because the data you’ll find there
will potentially be much more representative.

The simplest way of investigating collocation in unknown sequences is to
use a computer program to produce a series of n-grams or word clusters, as
described in Exercise 69. The ‘n’ here theoretically means ‘any number of’,
but usually n-grams are restricted to relatively short sequences, such as bi- or
tri-grams, because finding n-grams can be very expensive computationally as long
lists have to be kept in memory, and their size grows with increasing length of
a text/corpus, and each increment of n. Thus, if you’re working on a relatively
sizable corpus, be prepared to wait for a few minutes for n-gram calculations to
finish.

We can create two basic forms of n-grams/clusters in AntConc, one where we
produce lists of sequences of all words in the text indiscriminately, which takes
the longest, and another where we create clusters around a given search term.
Obviously, the lists for the latter are much shorter and much more concise because
they ‘centre around’ the search term. Let’s try out both variants.

206 EXPLORING WORDS IN CONTEXT

Exercise 77

Download the following texts from the Project Gutenberg website and put
them in a folder called ‘lit_selection’: The complete poems by Emily Dickin-
son, Frankenstein, Much Ado About Nothing, The Taming of the Shrew, The
Tempest, Twelfth Night.

Clean up the files as we practised before.
Start AntConc and open the folder containing these samples. Also move

the full copy of the Sherlock Holmes text here. Please note that the selec-
tion we’ve now created is deliberately mixed, and in no way represents any
balanced sample!

Make sure you set the ‘Token (Word) Definition’ in the ‘Global Settings’
to include hyphens and apostrophes.

Click on ‘Clusters/N-Grams’ or press to jump to the appropriate
tab.

Select ‘N-Grams’ and note how the label next to this turns to ‘N-Gram
Size’, too.

Set both the ‘Min. Size’ and ‘Max. Size’ under ‘N-Gram Size’ to 3 to
produce only tri-grams.

Click and wait for AntConc to produce the list.
Select ‘Sort by Range’ from the ‘Sort by’ options and click . This

will sort the results based on how many of the documents in the corpus the
n-gram occurs in, that is, the dispersion, in descending order.

Scroll through the list briefly and try to identify some interesting con-
structions. Also, pay attention to the overall number of n-gram types and
tokens AntConc has identified.

So far, the composition of our small ‘corpus’ has been fairly heterogeneous,
which has had a clear effect on our results in making it difficult to identify any
interesting recurring ‘themes’. However, if we change the composition of the
corpus to make it more homogeneous, this ought to change very quickly.

Exercise 78

Select all non-Shakespeare texts in the ‘Corpus Files’ window and close
them via the ‘File’ menu.

Create a new n-gram list and explore the results.

As you’ll have seen from the first two exercises, n-gram analysis will often high-
light typical grammatical or interactional structures, but possibly also some author-
or period-specific language or recurrent semantic themes. The more limited the

EXPLORING WORDS IN CONTEXT 207

topic contained in the corpus, the easier it’ll become to identify the latter. So, for
instance, if you’d run this same n-gram analysis on our Trains data that contains
task-oriented dialogues of a highly limited nature, you’d have been able to iden-
tify some of the key terms and expressions used there much more easily through
n-grams than through the single-word lists we analysed above.

If you’re interested in identifying the ‘neighbours’ of individual specific words,
that is, potential collocations or colligations, it’s far more useful to be able to
specify the search term and investigate its behaviour with regard to other words
that may surround it. Let’s try this, using the ‘all-time favourite’ fair.

Exercise 79

Add the remaining literary files again. It’s probably easiest to close all files
first and then open the directory containing all the literary samples again.

Uncheck the box for ‘N-Grams’, and type in fair as your search term.
Change the ‘Cluster Size’ option to 2 for the minimum and 3 for the

maximum. Also ensure that the option to ‘Treat all data as lowercase’ in
the relevant ‘Tool Preferences’ is unchecked and that the ‘Sort by Freq’
option is selected.

Click .
Scroll through the results, at least some of which should immediately

make some sense to you.
Pay particular attention to the length of the clusters and their frequency.

Can you identify a correlation?
Experiment with the two additional options for ‘Search Term Position’,

‘On Left’ and ‘On Right’.
Try to identify in which way the different files making up the selection

influence the meaning of the word fair in our results.

Having just covered the ways in which we can identify collocations ‘manu-
ally’, we can now turn towards exploring methods that involve statistics to try
and ‘predict’ which words collocate more frequently and/or more strongly with
one another.

10.8 Investigating Collocations Based on Statistical
Measures in AntConc, BNCweb and COCA

10.8.1 Calculating collocations

As you’ll have seen from our two previous exercises, n-grams/clusters may some-
times already provide us with a fairly good measure of collocation. However, they

208 EXPLORING WORDS IN CONTEXT

most easily show us only words that co-occur in a relatively fixed and linear order,
and frequently also include purely grammatical elements that may form a part of
lexical bundles, but which may tell us rather little about the actual content of
texts or the specific semantic content of the search terms we want to find collo-
cations for. Another approach, which usually looks at a larger span of potentially
discontinuous words, is that of calculating the degree of relatedness of words that
occur near a particular node word. The following illustration shows how this rela-
tionship may be represented by referring to the negative (left-hand) or positive
(right-hand) positions relative to the node.

It is only fair to them to
-3 -2 -1 node +1 +2 +3

Figure 10.1 Illustration of a collocation span

Figure 10.1 only illustrates a span of 3 words to the left or right, but the calcula-
tions can be, and are commonly, also carried out taking larger spans into account.
Due to the increasing number of calculations, though, this will usually also pro-
long calculation time. Calculating the degree of relatedness may be carried out
using a variety of different statistical measures, most of which have advantages and
disadvantages, the latter because they usually assume that words are randomly dis-
tributed, which is rarely the case in language (cf. Zipf 1949; Stubbs 1995). The
basic mechanism is usually to compare the ratio of observed frequency (O), that
is, how often two words have actually co-occurred within the span and relative
to the overall size of the corpus, to their so-called expected frequency (E), that is,
how often the two words have really occurred independently in the corpus, again
relative to the size of the overall corpus. Therefore, the calculations are:

� for observed frequency (O), i.e. relative frequency of joint occurrence:
frequency of joint occurrence/number of words in corpus

� for expected frequency (E), i.e. relative frequency of node ∗ relative frequency
of collocate/square of corpus size:
frequency of node/number of words in corpus ∗ frequency of collocate/number
of words in corpus/square of corpus size.

Here, we’ll only discuss two of the individual measures that are implemented in
both AntConc and BNCweb, MI and the t-score, and briefly evaluate their relative
merits. For a very interesting and much more in-depth discussion of these two
measures, see Hunston (2002: 67ff.).

MI is a measure that tries to compare the ratio of O to E directly using the
formula log2 O/E, and, according to Hunston “is a measure of strength of collo-
cation” (2002: 73) that “tends to give information about its lexical behaviour, but
particularly about the more idiomatic (‘fixed’) co-occurrences” (Hunston 2002:
74). However, one of its weaknesses is that it’s fairly sensitive to corpus size, so
that values/results can be relatively unreliable for small corpora. A general cutoff

EXPLORING WORDS IN CONTEXT 209

point for MI values is 3, that is, any results with a lower value should probably be
ignored.

The t-score, on the other hand, mainly takes into account the frequency of co-
occurrence of node and collocate. It’s therefore less sensitive to corpus size, and
hence probably more reliable for smaller corpora. According to Stubbs (1995), it
“provides confidence that the association between n[ode] and c[ollocate] is gen-
uine”, and Hunston furthermore states that it “tends to give information about
the grammatical behaviour of a word” (2002: 74). The general cut-off point here
is 2.

BNCweb adds further options for calculating collocations. For a list of these,
see the illustration of the dropdown menu in Figure 10.2:

Figure 10.2 Options for statistical collocation measures in BNCweb

The relative merits and demerits of these measures are discussed extensively in
Hoffmann et al. (2008: 149ff). The default for BNCweb is the LL (log-likelihood)
ratio that we’ve previously encountered for keyword calculation.

10.8.2 Computing collocations in AntConc

Let’s now test MI and the t-score in AntConc, using the complete set of literary
data again, to see whether we may be able to observe some of the features discussed
above.

Exercise 80

Open AntConc and select the folder containing the literary data, but
restricting your selection to the Shakespeare plays again to make the selec-
tion more homogeneous.

210 EXPLORING WORDS IN CONTEXT

Select the ‘Collocates’ tab, type in fair as your search term and set the
‘Min. Collocate Frequency’ option to 2, in order to avoid one-off construc-
tions, also known as singletons or hapax legomena.

Set the ‘Window Span’ options to 4L and 4R respectively.
Make sure that you have the collocation measure in the ‘Collocates Pref-

erences’ set to ‘MI’ initially and that the ‘Sort by Stat’ option is selected.
Start the analysis. If you haven’t previously created a word list, AntConc

will inform you that it needs to do so and automatically invoke the corre-
sponding tool.

Since we want to compare the results obtained through both measures,
we first need to store the results of the MI analysis, then produce the list
for using the ‘T-Score’, and save that, too. The best way to do this is to
save both sets of result to text files as we did earlier for our concordan-
cing results. However, just to get a quick impression, you can also use the
quicker, easier and less permanent option produced by the
button, which will create the extra window containing the MI results that
you could then keep open and then re-run the analysis using the ‘T-Score’
statistic to compare the results side by side.

Open the text files in your editor
Next, either simply separate the lines that contain scores above the cut-

off points by spaces or some other marking from the rest of the results, or
even delete all results below the cut-off points.

Finally, compare the results, and try to understand why the items appea-
ring in the list may be considered collocates of fair, and, based on the
information provided above, how they may be influenced by the statistical
measures we used.

As you’ll hopefully have noticed, apart from simply giving us the option to look
at/sort by the statistic or frequency of the collocates, AntConc also allows us to
see or sort by whether the results occur on left- or right-hand side of the node,
and with which frequency. I’ll leave it up to you to explore the usefulness of this
feature.

10.8.3 Computing collocations in BNCweb

As we’ve seen earlier, BNCweb offers a much larger choice of collocation mea-
sures than AntConc, with its default set to log-likelihood. Unfortunately, though,
there’s no facility for creating n-gram lists, probably because these could poten-
tially get very large, working with such a big corpus. All collocational analyses have
to be conducted by running a query on the node word first. Once you have the
results of the query, the dropdown list on that page will then allow you to select

EXPLORING WORDS IN CONTEXT 211

‘Collocations…’ to produce a list of collocates. Let’s try this using the same word
we used above.

Exercise 81

Run a query on fair.
Select ‘Collocations…’ from the dropdown options list and click on .
Investigate the settings on the next page briefly, see whether you might

want to change any of them, and then click .
Look through the list of collocates returned and identify the ones you’re

already familiar with and the ones we haven’t encountered before. To get
a concordance for the collocate, this time you need to follow the hyper-
linked frequency in the column for ‘Observed collocate frequency’, while
the link in the ‘Word’ column provides a breakdown of the statistics for the
word form, including scores for the other statistical measures available and
distribution of collocates within the given span.

Experiment a little with the options for changing the parameters to see
whether you can understand what kind of an effect they have, and how the
results will change/look different based on this.

When you try the option(s) for collocations on ‘POS-tags’, especially
take a look at the results for punctuation to see whether these make sense
to you.

If you want to compare results produced on a corpus analysis in AntConc with
those drawn from a subcorpus of BNCweb, you should definitely select either the
‘Mutual Information’ or ‘T-score’ options there, depending on the size of your
samples. However, Hunston (2002: 73) states that, while MI scores are directly
comparable, this is not possible for raw T-scores and one should compare t-score
ranks instead in this case.

10.8.4 Computing collocations in COCA

Calculating collocations in COCA works in a relatively similar way to that of
BNCweb, so I’ll just introduce this briefly here without any additional exercise.
Perhaps the main positive difference is that you can control some of the options
directly from the display frame of the BYU interface, rather than having to run a
query on the search term first. Thus, in order to investigate the collocates of fair,
you simply type fair in the box next to ‘WORD(S)’, and then click on ‘COL-
LOCATES’. Doing so will add another textbox, as well as two dropdown lists to
the interface, which will allow you to select the left and right span size. If you
enter a specific word in the search box, the interface will allow you to calculate
an MI score for the node and that particular collocate, while selecting from the

212 EXPLORING WORDS IN CONTEXT

‘POS LIST’ options will allow you to look for colligations directly. If you don’t
put anything in the textbox, a ∗ will be added automatically when you run the
query, and you essentially get the same effect as in BNCweb, where the query will
simply find all potential collocates.

As with other queries in the interface, you can also restrict your collocations
search to particular genre categories from here directly, and, of course, once you’ve
calculated the results for the COCA, you’ll immediately be able to compare them
to other corpora again.

Perhaps the only major limitation here, though, is that the BYU interface only
provides a single collocation score measure, which is MI.

Solutions to/Comments on the Exercises

Exercise 68
For convenience sake, I’ve included one possible solution to the exercise below,
where all the units, as I perceive them, are numbered, so that it’ll be easier to
discuss them. As before, we won’t discuss the whole solution though, but I’ll
simply get you started on the most relevant points.

A.1:
1 good afternoon.
2 Virgin train line.
3 Sandra speaking.
4 for which journey do you wish to purchase a ticket?
B.2:
5 er.
6 Euston to Manchester please!
A.3:
7 # now.
8 do you hold a current debit or credit card?
B.4:
9 aha.
A.5:
10 do you have a railcard at all?
B.6:
11 no.
A.7:
12 and how many people's travelling?
B.8:
13 just one please!

EXPLORING WORDS IN CONTEXT 213

A.9:
14 and what date is it you're travelling?
B.10:
15 the Saturday which is the third i think.
A.11:
16 third of Oc…
B.12:
17 [October.
A.13:
18 October].
19 departing at what time from London Euston?
B.14:
20 i'm not sure what time the trains are.
21 do you know?
A.15:
22 well.
23 the trains run at 10 to the hour every hour.
B.16:
24 every hour.
25 # and that'll be the 14 50 i think then?
A.17:
26 arriving at 17 30?
B.18:
27 that's right.
28 yeah
A.19:
29 when are you returning?
B.20:
30 er.
31 Monday.
A.21:
32 departing at what time?

Splitting the text may initially have been hard for you, as the units of text in
the extract don’t conform with the normal rules of syntax in terms of complete
clauses, etc., that you’re probably used to from school, or maybe also badly
written textbooks that represents spoken language as if it were the same as written
language. For instance, the two short, verbless, units in the very beginning, good
afternoon & Virgin train line, are nothing like the sentences we know from written
grammar, although we’re all used to hearing the initial greeting on a regular basis.
Even so, it may be difficult to decide whether the punctuation mark we should

214 EXPLORING WORDS IN CONTEXT

assign to the greeting formula ought to be a full stop or an exclamation mark.
Clearly, it’s formally an expression of well-wishing that is similar to a polite excla-
mation. On the other hand, we normally also associate exclamations with imper-
ative structures, that is, commands, for which it may be more appropriate to use
the exclamation mark to indicate their force, so in this case, I’ve opted for the full
stop.

Finding a suitable punctuation mark may be easier for unit 2, which simply
consists of a single noun phrase, and clearly is a kind of statement that just provides
the name of a company. This, of course, grammatically doesn’t correspond to a
well-formed statement, as it’s elliptical and doesn’t even contain a verb. Its ‘well-
formed version’ would probably be This is Virgin train line, with a subject, finite
verb, and subject complement.

In contrast, unit 3 does at least contain a verb, even if it’s non-finite, and we’d
probably expect a completely well-formed version to look similar to unit 2, only
that the verb in this case consists of a split construction of auxiliary + non-finite
ing-form, that is, This is Sandra speaking.

Unit 4 is obviously a question, so you’ll probably have chosen a question mark
like me. Normative grammarians may frown upon the preposition preceding the
wh-word, though.

My having split off the filled pause/hesitation marker er as unit 5 may come as
a surprise to you, but as it occurs at the beginning of a turn and has the function
of indicating hesitation on the part of the speaker, this is justifiable, although,
admittedly, not everyone involved in transcription may agree with this practice,
and some people might prefer to integrate it with what I’ve numbered unit 6,
which is clearly a directive, as indicated by please, that is, a mild form of command
that justifies the use of an exclamation mark.

In turn 3 by speaker A, unit 7 is a discourse marker that indicates that a new
stage in the dialogue is beginning. As such, it’s prefacing the yes/no question in
unit 8, and clearly has an independent function that justifies treating it as a separate
unit.

Unit 9 is a short acknowledgement, the equivalent of a yes-answer, so clearly a
special form of statement, which warrants the use of the full stop here. The same
goes for the negative response no in unit 11.

As you’ll have seen from the above discussion, throughout the extract we
encounter a number of units that’ll look familiar to us from traditional gram-
mar, but also a considerable quantity of elliptical structures that range from sin-
gle words as signals of acknowledgement, agreement, negation, or hesitation, to
more phrase-like structures that may even contain incomplete words, such as in
unit 16, where speaker A begins to ask for a confirmation of what she assumes to
be the month of travelling. However, before she can actually complete her ques-
tion, speaker B completes this name for her collaboratively. At other times, such
as in unit 24, a speaker may simply repeat part of the information provided by the
previous speaker, possibly in order to confirm that they’ve heard and absorbed the
information correctly.

EXPLORING WORDS IN CONTEXT 215

Exercise 69
As you should be able to see from experimenting on the web page, when genera-
ting n-gram lists, each time a window of n words is selected from the text, then
the position shifted to the right by one, extracting the next n words, and so forth.
This seems to be a relatively straightforward process, involving no particular issues.
However, if you look closely at the example sentence, you’ll realise that it actually
contains a number of clauses, with the main (finite) one being “let’s take a look
at an example of how n-gram lists are generated”. Now, based on the experience
developed in Exercise 68, you’d probably want to assume that this, as well as the
other two, dependent clauses, are also independent c-units, so that, technically,
we’re crossing over a c-unit boundary as soon as we create the bi-grams up let
and generated based. And when crossing over a boundary for a new unit of sense,
we’d probably want to avoid assuming that there’s a close association between
the final word of the first unit and the first one in the second unit, although, of
course, there may be some cohesion between some units, for example, when the
first unit ends in an object NP and the second unit picks this up as an subject in the
form of a pronoun. At any rate, even in the latter case, we’d have an association
between the NP and the pronoun, but not necessarily the final word in the NP
and the beginning of the next unit. Unfortunately, at the moment, most corpora
generally don’t indicate c-unit boundaries, so that, at best, we’ll generally be able
to analyse texts according to the ‘sentences’ marked up for them. An exception in
this respect is the SPAADIA corpus (see Leech & Weisser 2013).

Exercise 70
Selecting the restrictions for this exercise should be quite straightforward again,
so I won’t say anything further about this here.

The most basic form of this query would be in a ∗ voice, where the ∗ stands
for any word or character. However, this wouldn’t catch any intervening words
that start with a vowel letter, so we’d have to re-write this slightly to make it in
a[n,] ∗ voice to include the optional n.

As the whole phrase is a prepositional phrase, in its basic form the intervening
parts of speech could minimally be an adjective or an adjective pre-modified by an
adverb, so we could extend the query by either saying in a[n,] _{A} voice or
in a[n,] (_{ADV})? _{A} voice, where the element for the adverb slot has
been made optional by including it in round brackets and using the ? quantifier.
This should result in 899 hits which, if you consult the frequency breakdown, will
tell you that in a low voice is by far the most frequently used expression, accounting
for 157 hits (17.46%), while the frequency for the next two expressions, both with
36 hits (4%), in a small voice and in a loud voice, is already considerably lower. We
can therefore conclude from this that low collocates with voice most strongly in
descriptions of voice quality.

216 EXPLORING WORDS IN CONTEXT

Extending the query to again include optional adverb results in in a[n,]
(_{ADV})? _{A} and (_{ADV})? _{A} voice. This query, involving a phrase-
ological pattern with more complex and longer pre-modification, now only yields
16 hits, none of which are repeated. This goes to show that, the more specific
we want to be in characterising different features of NPs, the less we can rely on
‘ready-made’ chunks, such as the ones collocations offer us.

Exercise 71
This exercise draws on much of the knowledge you gained in previous sections on
BNCweb, as well as regex quantification, but extends the scope of our queries
to considerably more variable and longer phraseological units. Re-writing the
last example from the previous exercise should be fairly easy, only that now the
optional element contains not just a single word, but an AdjP that is (still) option-
ally pre-modified by an adverb, and which should be written like this: in a[n,]
(_{ADV})? _{A} (and (_{ADV})? _{A})? voice.

The extended query string including with along with in should be (in|with)
a[n,] (_{ADV})? _{A} (and (_{ADV})? _{A})? voice. When you do a fre-
quency breakdown of this, you should be able to notice that there are far fewer
examples starting in with, and that most of those tend to describe fixed vocal
characteristics of people, rather than specific ways in which people are reported to
be saying things.

In investigating expressions related to durations, using the query string
(in|for) (a|the) (long|short) (time|period), close observation should
show you that, while both constructions have relatively similar meaning, those
with for are used much more frequently. This may indicate a slightly stronger
preference for such expressions to collocate with for, even though this would of
course require more in-depth investigation, including potentially further expan-
sion of the nouns expressing durations, such as for example duration itself, which
I leave up to you for additional practice.

The final part of the exercise focusses more on identifying general differences
between the three prepositions at, in, and on regarding their usage. The string
(at|in|on) (∗){1,3} _{N} finds a very large number of mainly prepositional
phrases based on the three prepositions. To be able to do a frequency breakdown
here, you’ll need to reduce the number of examples, which is referred to as
‘thinning’ in BNCweb, as the interface won’t allow you to work with the whole
set of data, due to its size, and the computation time and processing power
involved. You can reduce the number of results by selecting the ‘Thin…’ option
from the dropdown menu after running a query. In most cases, you’ll probably
want to keep the default setting set to ‘random (selection is reproducible)’ and
then go for a percentage of 5%–10% of the data, at least for the above exercises.
Thinning down the results to a manageable amount (randomly) and extracting
suitable items from them can then yield useful samples that may for example
be used to investigate differences in their usage for creating improved teaching

EXPLORING WORDS IN CONTEXT 217

materials, based on real-life data, or directly in the classroom for awareness-raising
activities.

Exercise 72
For this exercise, you may again need to thin the query; 10% should do. As the
thinning is random, of course the results you obtain may look somewhat different
from the ones I’ll describe, as well as from those of your classmates, if you’re doing
this exercise in a classroom.

Your attempts at creating a wildcard query will hopefully have lead you to define
a contraction as anything that contains an apostrophe followed by a one or more
characters, i.e. ∗'+, or possibly also ∗'∗. A more general wildcard pattern that may
only be looking for '+ (or '∗) will fail here because it can only identify word tokens
that actually consist of the apostrophe followed by any number of characters, but
will not include anything preceding the apostrophe, due to restrictions of the
wildcard syntax. It will thus, for instance, find forms like ‘s (representing multiple
PoS) but fail to identify any instances of the negation particle (tagged XX0), as
doing a ‘Frequency breakdown of word and tag combinations’ will easily confirm.
Likewise, if you postulate that something has to occur in front of the apostrophe
by using +'+, you won’t find any of the tokens where the clitic is treated as being
independent.

Once you’ve run the appropriate query, and switched to the word + tag break-
down, you should at least be able to identify the following options for PoS cat-
egories involved in genuine contractions as the right-hand element, discarding
other abbreviated forms or representations of ‘non-standard’ speech:

� be ('s_VBZ,'m_VBB,'re_VBB), have ('s_VHZ,'d_VHD,'ve_VHI), modals
('ll_VM0, 'd_VM0)

� negation (XX0)
� personal pronouns ('em_PNP)
� possessive ('_POS)

Strangely enough, you’ll probably also find occurrences of let’s tagged as modal
verbs, where apparently the tagging routine has failed to tokenise properly into
verb + pronoun clitic.

Now that we’ve identified the right-hand elements, all that remains to be done
is to investigate the left-hand options. Starting with 's_VBZ from the top, and
sorting the concordance according to ‘Position: 1Left’, we can easily see that this
particular clitic, representing the 3rd person singular contraction form of BE, col-
ligates with nouns or other constructs that can constitute NPs, such as pronouns,
where the first occurrences you’ll probably find of the latter will not be the def-
inite singular 3rd person subject pronouns you may have expected (i.e. he, she,
it) but instead the indefinite ones everybody, everyone, and everything. Along with

218 EXPLORING WORDS IN CONTEXT

these genuine colligations, you’ll unfortunately also find a few erroneous posses-
sive markers or even cases where the transcribers erroneously inserted apostrophes
in places where they don’t belong, such as, for example, for gets, which occurred
transcribed as ∗get’s three times in my results. Please note, though, that this tran-
scription error was also not caught by the CLAWS grammar, which should have
rejected the combination of tags VVB + VBZ where the right-hand element is a
clitic, which should only be allowed to occur in very few cases in spoken language.
What exactly those are, I’ll leave up to you to explore again, as you should know
how to do this by now

As going through the rest of this particular list is a bit tedious and time-
consuming once you reach colligations with he, you’ll probably be tempted to
assume that, from now on, you’ll most likely only find pronouns, anyway, so
you might be tempted to stop here, even though you shouldn’t really. However,
because we can assume that pronouns will make up a major part of the colligations,
we can use an alternative way of investigating those colligations other than pro-
nouns. To do so, we can use the ‘Tag restriction:’ feature on the sort page, select
‘any pronoun’ from the dropdown list, and then check the box next to ‘exclude’.
This would then at least have shortened the list by removing everything tagged as
a pronoun, although you’d still have to click your way through lots of occurrences
of noun colligations and other noun-like tags, such as those for cardinal numbers,
which may act like nouns syntactically. The ideal situation would of course be that
we could exclude tags based on regexes, but unfortunately BNCweb currently
doesn’t offer this functionality.

If we start by excluding pronouns, the first word class we find when we start
ignoring everything ‘nouny’ is adverbs (although some of them may have been
mis-tagged). Having realised that some adverbs may in fact be colligates of this
clitic, we can now go the other way and, instead of excluding a particular word
class, restrict our sorting to display only adverbs (using ‘any adverb’) to the left
of the clitic. One of the possible adverbs you’ll probably find here is else (tagged
AV0), although this may be a doubtful classification, as it generally appears to
have a nouny function again before clitics because it normally occurs with indefi-
nite pronouns like someone, and the two elements together constitute an NP. Fur-
thermore, you’ll find deictic adverbs like here, there, today, tomorrow, and tonight
(AV0), the cohesive conjunction so, also labelled as a general adverb (!), and the
question words how, when, where, why (tagged AVQ). Regarding the latter, you
may now, quite rightly, expect to find at least the other two question words what
and who in the same concordance list, as they can certainly be followed by the
same clitic, but, due to the tagging rules of CLAWS, these are in fact classified in
different ways from the other question words. As before, I’ll leave it up to you
to find out how and also reflect on why this was done, using the query string
(what|who) 's…

Going through the rest of the items of clitics that are parts of genuine con-
traction should now be relatively straightforward, as I’ve already pointed out the
various issues you may encounter, and ways of efficiently identifying particular

EXPLORING WORDS IN CONTEXT 219

occurrences of lexical items for a given PoS category. The only interesting thing
to perhaps point out to you here regarding contractions involving n’t is the high
frequency of occurrences of ain’t you’ll encounter, which clearly reflects the non-
standard language occurring in the spoken sections of the BNC. What’s also inte-
resting here, but from a tagging point-of-view, rather than a sociolinguistic one,
is that all left-hand elements of this contraction have been tagged as ‘unclear’
(UNC), probably due to the fact that the CLAWS grammar couldn’t disambiguate
between the different forms it may represent in standard language, such as isn’t,
hasn’t, etc.

As with Exercise 71, the usefulness of this exercise doesn’t only lie in the area of
pure linguistics research, although it may have highlighted a few potential issues
in the realm of grammar-writing for general and tagging purposes or PoS clas-
sification, but may of course again also yield interesting examples for a) raising
language awareness in more advanced students who can use concordancers on
their own, b) producing pre-prepared filtered concordance lines for use in the
classroom with less advanced students, and c), again, providing diverse real-life
materials for textbooks.

Exercise 73
The first part of the exercise shouldn’t prove particularly difficult, at least not as
far as retrieving the units is concerned. However, if you switch the display from
random to corpus order, you’ll notice that, apparently, not all u-units are in fact
retrieved because the KWIC display actually starts with the second unit. Therefore,
the number of hits (699,885) reported in the info bar at the top is most likely
unreliable. However, for the purpose of this part of the exercise, this isn’t really
relevant because you can still get a rough impression of the length of the individual
turns, especially if you switch from ‘KWIC view’ to ‘Sentence View’. Here, what I
specifically wanted you to notice is that, unlike in a paragraph in written language,
the number of units in a speaker turn can be quite low, and turns often consist of
individual c-units, which, again, may only consist of individual words.

Bearing in mind that some occurrences of well may represent both the begin-
ning and end of a term at the same time, that is, in cases where well constitutes
the only c-unit in a turn, you should be able to observe that the word form can
have two rather distinct meanings. In initial position, the meaning and function
is that of a discourse marker (DM), and either tends to indicate the beginning of
a new sequence in the spoken interaction or the beginning of a response on the
part of one speaker, where that particular speaker wants to preface this response
by indicating that they don’t agree fully with what has been said before. In final
position, in contrast, well represents the genuine adverb counterpart of good or
possibly also part of the MWU as well. Unfortunately, the CLAWS tagging simply
‘lumps’ all these meanings together, using a single general adverb tag for all of
them, which again proves the point that taggers like CLAWS are really optimised

220 EXPLORING WORDS IN CONTEXT

for written language, but often still have a number of problems when it comes to
dealing with spoken language appropriately.

Exercise 74
The basic query that allows us to look for the relevant patterns is _{V} >>3>>
_{PREP}. As this’ll produce a rather large amount of hits, though, you’ll need to
thin it down in order to be able to perform any sorting operations. To get a wide
range of examples, I’d suggest that, this time, you thin to the maximum allowed
number of hits, 250,000.

Starting our investigation with particles occurring one position to the right of
the node verb form, we can choose the position ‘1 Right’ and set the restriction to
‘any preposition’. This will immediately return some fixed collocations with verbs
such as think, talk, know, say, or ask in combination with about. Please note that,
essentially, all these verbs are semantically relatively empty, that is, would largely
be considered de-lexicalised verbs, and often only acquire a specific meaning in
conjunction with such a preposition. Of course, you may also encounter atypical
combinations, such as consider about in “PRACTICAL POINTS TO CONSIDER
ABOUT_PRP-AVP A HOME BURIAL” (ACM 711), as is in the nature of cor-
pus data. As you’ll see from the typical examples here, the verbs involved in this
construction are predominantly verbs of saying, perception, and mental reflection.
This would probably be even easier to see if BNCweb allowed us to do a secon-
dary sort, but unfortunately, it doesn’t do so. In rarer cases, we may also find even
more idiomatic collocations that do involve verbs of action, as in the example
“Anne said that she would like to come up with him, potter about_PRP Dundee
while he’s having his medical [pause] then they will come” (KP8 2581), where
of course about has the meaning of ‘around’, rather than specifying an object or
expressing an approximate value via a prepositional phrase. The same also goes for
examples involving look about, etc. As it might get a little tedious again looking at
endless examples of about, you can also skip ahead a few pages by typing in a page
number next to the button in the navigation bar above, and clicking
the button. From about page 24 onwards, I managed to find examples involving
above this way, but remember, as we’ve thinned the examples randomly, your fre-
quency distribution may be somewhat different. For above, one thing that again
becomes immediately clear is that certain verbs of ‘forced’ or independent ‘move-
ment’, such as rise, raise, increase, clearly collocate with this in establishing a sense
of directionality, while others, such as whirl, billow, tower, or perch signal descrip-
tions of positions. I’ll leave the remainder of this sub-part up to you to complete
and learn from, or use as a basis for creating suitable materials for teaching.

While investigating position ‘2 Right’ with the same restriction, you’ll have to
ignore many examples where the node verb form may in fact be an auxiliary, fol-
lowed by a finite verb and then the preposition, as these examples are really only
similar to what we just investigated. At other times, they may illustrate colloca-
tions that are similar again, but allow for intervening objects (e.g. in “that man

EXPLORING WORDS IN CONTEXT 221

in London you told us about_PRP”; HA7 3272), adverbs (e.g. in “It also fol-
lows that one cannot talk specifically about_PRP ‘marked theme’ in FSP theory”;
FRL 1446) or adjective complements (e.g. in “But I have nothing to feel guilty
about_PRP-AVPI”; JXS 1530) to occur in between the verb form and the prepo-
sition. Things do get even more interesting in terms of the collocations when
we start encountering verb + multi-preposition constructions, as in, for exam-
ple, “That is what Robert and my agent are on about_PRP-AVP” (ADA 596), or
“What’re those dogs goin’ on about_PRP?” (J13 1864), “What are you so fed up
about_PRP?” (C8E 655). As before, you’ll probably have to skip ahead quite a
few pages until you find examples of other prepositions, or try to use the ‘Starting
with letter:’ option to isolate a few more interesting examples other than those
where the preposition starts with a. Alternatively, you could of course also thin
the original query down to a manageable size and hope that the random selection
won’t give you too many of the most frequently occurring prepositions.

Investigating the ‘3 Right’ option will be even more time-consuming, due to
the relatively longer span, which leaves even more room for options of syntactic
constructions occurring in between. Nevertheless, in some cases, it may well be
necessary and rewarding to carry out in-depth investigations of this kind as it’s
well known that particles may occur that far apart from the verbs they go with.
However, we’ll soon investigate other ways that may make it easier to check these
co-occurrences. And, of course, you could always also use smaller corpora (or parts
of the BNC itself) and investigate these in a concordancer like AntConc, where
the sorting options make things easier for you.

Exercise 75
Downloading and unzipping the frequency files and the program should hopefully
have presented no problem, as should loading the file in the built-in editor. As you
may have noticed, this editor is really not optimised for handling large files, so to
just view the frequency list without the ability to concordance on it, a dedicated
editor, such as Notepad++, would be far better. On the other hand, using such
an editor would only allow you to search through, but not concordance, on the
file.

The regex that should allow you to extract only occurrences of two prepositions
should be something like \bi.{1,3}\b\si.{1,3}$. If we were sure that we could
exclude ditto tags, we could also have used \bi[ˆ\d]{1,3}\b\si.{1,3}$, but
in our case, this would actually have excluded off of, which happens to be marked
with a ditto tag.

I’ll leave it up to you to find some interesting combinations, but remember,
whenever you identify something here that may be interesting, you need to go
back into the BYU interface and investigate it there. And if you find that it’s too
difficult to spot potential candidates for investigation, due to the limited context,
you can of course also download the files for larger n-gram combinations (up to
5) and adjust your regex accordingly.

222 EXPLORING WORDS IN CONTEXT

Exercise 76
Although this exercise will quickly present you with a wide range of choices rep-
resenting combinations of off followed by another preposition, provided that you
used the right query, off [i∗], very few of these will actually contain any exam-
ples of the kind of redundancy described in the exercise above. Probably the only
real examples are off of, as well as off off, where perhaps some of the examples are
used jokingly. However, not having found many other examples here still doesn’t
invalidate the observation that this feature does occur in American English, as
we’ve shown the redundancy to exist. And, of course, it may not be limited to
instances involving off. On top of that, the exercise has helped us to distinguish
more between the different types of multi-item prepositions, which has hopefully
helped you understand better how they work.

One thing that still remains to be done, though, is to verify the question whether
this may be a typical feature of American English only. Obviously, as one of the
strengths of the BYU interface is that it allows us to compare different corpora,
this is something that can easily be tested by running a comparison with the BNC,
where it turns out that the combination off of is nearly 4.5 times as frequent in the
COCA, while the frequencies for off off are too small for a genuine comparison.

Exercise 77
As you’ll probably notice while doing this exercise, n-gram lists, although they
can produce very interesting results, may take a while to interpret properly. Fur-
thermore, instead of revealing interesting combinations of content words, you’ll
often find more grammatical constructions or combinations of function + content
words, especially if the corpus is not very homogeneous, as in our case. With this
particular selection, what you’ll probably be able to identify at best is some recur-
ring grammatical constructions, such as the beginnings of statements or questions,
as well as some occurrences of ‘archaic’/‘literary’ usages. For instance, there’s a
relative overabundance of constructions with shall, or occurrences of I will not
instead of I won’t, where the latter would be much more common in modern
drama/literature. Other things you can identify are I pray you/thee vs. I prithee,
instances of reported speech (said X, etc.), as well as a few proper names, such as
(Mr.) Sherlock Holmes, etc. The overall number of types (194,570, at least based
on my token definition) is also fairly high, reflecting the variability of expressions.

Exercise 78
The results of the new trigram list should now have become much easier to inter-
pret, and you should be able to identify many more archaic usages in terms of
expressions, such as by your leave or didst thou not, absence of contractions, etc.,
much more easily than before. Other things that will crop up frequently are bits of

EXPLORING WORDS IN CONTEXT 223

information related to the plays that form part of this ‘corpus’, such as references
to the author, to acts and scenes within the plays.

Exercise 79
This exercise, as deceptively simple as it may look, can actually demonstrate a
number of important features of how to identify and analyse collocations to you.
First of all, keeping the ‘Search Term Position’ set to ‘On Left’ will help to mainly
identify noun or NP collocates, while changing this to ‘On Right’ reveals other
types of combinatorial options, such as combinations of determiners, possessive
pronouns, intensifying adverbs, etc. with the node.

In terms of the length of clusters, it should immediately become obvious that,
as soon as we move from bi-grams to tri-grams, the frequency drops, as does the
range, in fact. This is not surprising because the longer a cluster gets, the more
specialised its composition, along with its meaning, also gets.

In terms of the composition of the corpus and its relation to the individual
clusters, you’ll hopefully notice very quickly that, with collocates occurring on the
right, our results contain a relatively high number of proper names. This is due to
the imbalance in the data, where the three Shakespeare texts still clearly illustrate
the Elizabethan concept of ‘fair’ predominantly related to the appearance and
beauty ideal of women, where light-coloured skin was not only one of the most
valued properties, but also associated with good character, honesty, and virtue.
This feature still remains ‘alive’ in modern English, but in a highly limited way,
where fair, related to appearance, still collocates with nouns like hair and skin.
You can see the difference between the texts from the Elizabethan period and the
somewhat more modern other texts more clearly if you remove all the Shakespeare
texts from the selection. Then, even though the ideas of beauty and virtue will
still occur in a number of the examples, the modern meaning of ‘fair’ as ‘just and
equal’, ‘unbiased’, or ‘considerable’ will become more and more apparent, even
despite the fact that much of the language in the remaining texts is still more
old-fashioned and/or poetic.

Exercise 80
In doing this exercise, it’s perhaps even more important to follow all the steps care-
fully than before because relatively minor changes may well influence the results.
As we saw earlier, the original literary selection was (deliberately) very heteroge-
neous, which did allow us to identify features related to language change nicely.
However, this very heterogeneity could skew the results of our general colloca-
tional statistics rather strongly, especially in such a small corpus. Thus, it’s impor-
tant that we try and compare ‘like with like’ in restricting the selection to a single
author/period now to get some more specific information about the collocations
that are more characteristic of the actual texts.

Also, if you forget to set the minimum collocate frequency to 2, you may get
a number of results related to singletons, which we clearly want to avoid, since

224 EXPLORING WORDS IN CONTEXT

generalising from single examples has no genuine predictive or explanatory value.
Yet another potential source of ‘error’, or rather confusion, could be that you
might somehow inadvertently have set the sorting option to ‘Sort by Freq’. This is,
of course, one valid way of looking at the data, but unfortunately doesn’t illustrate
the differences in the use of statistics very clearly. This is because the words then
wouldn’t appear ranked according to their relative importance according to the
statistic used, but we’d have to look very carefully at the values in the ‘Stat’ column
to compare the difference and judge whether it may be significant.

If we trust the cut-off points given in the literature, 3 for MI and 2 for the
t-score, we should in fact prune the lists before comparison, which leaves us with
a list of around 60 collocate candidates for the former, but only 15 for the latter,
although of course the same number of collocates originally gets identified by
AntConc since they all occur within our span. Perhaps the very first thing to notice
here is that, as we saw in the quote from Hunston earlier, the t-score does indeed
seem to provide information about the “grammatical behaviour” because most of
the words in the pruned list are definitely function words. In contrast, the majority
of words MI identifies are content words, such as proper names, common nouns,
adjectives and verbs. Here, especially the high number of proper nouns is, as we
saw earlier, highly characteristic of the Elizabethan English used in plays such as
Shakespeare’s. And, if we try to interpret the MI list further, most of the words
that occur at the top turn out to be words that either refer to or characterise people
or general nouns – in other words, word classes that form parts of noun phrases.
Having identified the potential significance of the MI results for our data, we now
need to think about how the t-score results may relate to these. Starting from the
very top, with and, we can observe that some of the instances are simply due to
issues of cohesion, that is, they are co-ordinating conjunctions that represent the
beginnings of new clauses, in which case it would be nice if we had some way of
preventing collocations from being identified across syntactic unit boundaries to
improve the precision of our analyses (see Exercise 81) because those aren’t really
collocates at all. In a number of instances, though, and co-ordinates adjectives in
predicative structures that, again, help to characterise people, for example in fair
and virtuous, which actually occurs twice in the data, each time characterising a
different woman, Katherina or Bianca, or fair and fresh and sweet, which once
more represents an epithet of the former. The definite and indefinite determiners,
as well as to some extent the possessive pronouns my and thy, again sometimes
form parts of characterising noun phrases, where fair is used attributively in these
cases. Therefore, essentially, all the cases of collocations identified through the t-
score stat that I’ve just discussed, strictly speaking, represent cases of colligation.

Exercise 81
When you look at the ‘Collocation Settings’ page, you’ll notice that the option
to ‘Calculate over sentence boundaries’ is, very sensibly, set to ‘No’ by default. In
BNCweb, even being able to do this is only possible because the whole corpus is

EXPLORING WORDS IN CONTEXT 225

marked up for s-units. As pointed out before, though, in very rare cases where we
want to investigate cohesion, looking across boundaries may be justifiable. Unfor-
tunately, when working with most corpora, and in most concordance programs
so far, the option for handling data involving a measure of the syntactic units they
occur in is still absent, something we just saw in the Exercise 80. In addition,
as Hoffmann et al. (2008: 142) also state, it’s generally advisable to treat word
forms separately in collocation analysis, because the use of a different form gener-
ally involves a specific function, too, so here it’s again best to stick to the default
of ‘No’. And since we ideally want to observe results that are comparable to what
we generated before, setting the ‘Maximum window span’ to 4 would also make
sense here.

Starting from the top collocates, you should be able to see that enough, trading,
share, amount, fair, play, say, trial, etc. all relate to the meaning of ‘just and equal’
we identified before as being perhaps the most common contemporary meaning
associated with the word, whereas the one associated with isle still expresses the
idea of beauty left over from Elizabethan times. The collocate hair is also already
known to us, and related to the older meaning, but antiques, Hannover, trade,
Frankfurt, and CeBIT (some already corrected in capitalisation here) all refer to
a more modern institution, that of the ‘trade fair’, while Vanity of course is part
of the title of the book Vanity Fair by Thackeray, where the meaning of fair
represents a slightly older variant of the modern ‘trade fair’ and probably closer
to the modern meaning of ‘fun fair’.

Experimenting with the options should allow you to find that BNCweb also lets
you list the PoS categories that collocate with the node by selecting ‘collocations
on POS-tags’ next to ‘Information’. In other words, what we’re really looking
into here is a form of colligation, which, however, is probably a little too fine-
grained for most purposes. Changing the minimum frequency options for either
the co-occurrence of node and collocate, or the collocate only, theoretically makes
it possible to thin down the results further, but in practice probably only works
for relatively high values, and may thus impose artificial restrictions. The ‘Filter
results by’ options allow you to either quickly select a word form from the list
of collocates produced, or even calculate a statistic for a form that hasn’t been
identified during the analysis. In addition, you can also restrict the output to a
given PoS tag category to either disambiguate a grammatically polysemous word
form provided on the left, or to filter the list of collocates by PoS.

When changing the options for the statistical measure, you’ll probably have
observed some similarities and differences across the measures. While LL and most
of the other statistics tend to emphasise the content word collocations in our
example, two of the measures, ‘T-Score’ and ‘MI3’ sometimes rank function words
a little higher, while a raw frequency ranking places predominantly function words
at the top of the list, as is to be expected.

The final part of this exercise is designed to raise your awareness of one of the
issues in the handling of types and tokens in the BNCweb interface, as well as the
underlying CQP architecture. Here, sadly, the designers of the architecture have

226 EXPLORING WORDS IN CONTEXT

introduced a serious flaw in the system that may well affect the overall calculations
of the collocation statistics very strongly, which is to treat punctuation tokens (and
their types) as equivalent to words. In doing so, they’ve effectively introduced two
sources of error that affect different parts of the interface, and hence the quality of
the results. At the level of collocations, the very fact that punctuation occurs with a
relatively high frequency in any orthographically transcribed corpus like the BNC
almost guarantees that it’ll be treated as collocating with genuine word types,
something that simply doesn’t make sense because the semantics and pragmatics
of punctuation are very different from, and completely incomparable to, those of
ordinary words. At the same time, the high frequency of punctuation tokens will
affect the calculations of relative and normed reported frequencies throughout the
whole corpus, which will again have an effect on the calculations for collocations,
too. Unfortunately, even pointing out this issue to the designers/developers of
CQP so far hasn’t led to any changes in this respect

Sources and Further Reading

Barnbrook, Geoffrey. (1996). Language and Computers: A Practical Introduction to the
Computer Analysis of Language. Edinburgh: EUP.

Hoffmann, Sebastian, Evert, Stefan, Smith, Nicholas, Lee, David, & Berglund Prytz, Ylva.
(2008). Corpus Linguistics with BNCweb – A Practical Guide. Frankfurt: Peter Lang.

Hunston, Susan. (2002). Corpora in Applied Linguistics. Cambridge: CUP.
Manning, Christopher & Schütze, Hinrich. (1999). Foundations of Statistical Natural

Language Processing. Cambridge, MA: MIT Press.
Stubbs, Michael. Collocations and Semantic Profiles: On the Cause of the Trouble with

Quantitative Studies. Functions of Language, 2(1): 23–55.
Zipf, George. (1949). Human Behavior and the Principle of Least Effort: An Introduction

to Human Ecology. Cambridge, MA: Addison-Wesley Press.

11
Understanding Markup and

Annotation

We’ve already looked at more basic forms of enriching our data in earlier sections,
as well as at PoS tagging as a fairly important and advanced one, but now, in this
chapter, want to turn towards developing both an understanding of, as well as get
some practice in, using relatively sophisticated ways of making linguistic data more
useful than it would be in its raw form. As we’ve seen before, this makes a lot of
sense because it not only allows us to distinguish features on different linguistic
levels more easily, actually making them countable, but also to possibly exclude
some parts of the data from our specific analyses, for instance by ensuring that we
don’t perform n-gram/collocation analyses across syntactic boundaries. Before we
can take any detailed look at the technical aspects of such an advanced enrichment
process and the best type(s) of format for this, though, we still need to deal with a
few terminological distinctions, and try to understand the historical developments
and motivation underlying the different formats.

As in the heading of this chapter, we frequently encounter two different terms
when talking about the process of storing and enriching linguistic data, markup
and annotation. While the term markup is sometimes used to indicate the physical
act of marking specific parts of a text using specific symbols, and, in contrast, anno-
tation may often refer to the interpretative information added, the two may also
be used synonymously. This is also roughly the way in which we’ll use them here.
As such, they can refer to either a particular format for enriching a text, so as to

� categorise parts thereof, or
� make these parts more salient,

or to the actual process of applying this form of annotation.

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

228 UNDERSTANDING MARKUP AND ANNOTATION

We’ll see some examples and different ways for applying markup to text later
on, but for now, we’re more interested in the reasons that exist for applying
markup to our data in the first place, and roughly which different types of lin-
guistic annotation currently exist. Despite a somewhat strong over-emphasis on
morpho-syntactic annotation, Garside et al. 1997 provide a fairly good, though
perhaps now somewhat dated, overview of different types or levels of annotation
and their development over the years. Table 11.1, based very loosely on Leech
(in Garside et al. 1997: 12), summarises the levels of linguistic information they
identify, but also adds some. To make it easier to understand what the base-level
representation formats and the enrichments are, I’ve added the two sub-categories
for representation and annotation.

Table 11.1 Annotation types listed in Garside et al. 1997

Level Sub-category Information Provided

orthographic representation orthographic rendering of written or spoken language,
with or without punctuation

phonetic/phonemic representation phonetic/phonemic rendering of spoken language

prosodic annotation tone/intonation units/breaks, stress, loudness, possibly also
key

morpho-syntactic
tagging

annotation PoS tags, associated with morpho-syntactic units in various
ways

syntactic annotation annotation skeleton parses or treebanks

semantic annotation annotation information about lexical fields, synonymy/antonymy

discourse annotation annotation discourse relations, cohesion

pragmatic annotation annotation speech acts, adjacency pairs, sometimes also co-reference
(see above)

semantico-pragmatic
annotation

annotation information about illocutionary force indicating devices
(IFIDs)

stylistic annotation annotation direct vs. reported speech, narrative vs. thought, etc.

dysfluency annotation annotation information about discourse phenomena, such as false
starts, repetitions, filled pauses, etc.

error coding annotation information about grammatical & stylistic errors produced
by learners in their writing or speech

As Table 11.1 indicates, perhaps the most important distinction here is
whether the physical representation of the data is based on orthographic or pho-
netic/phonemic transcription. All other types add information to these base-level
representations in various forms and to various degrees, also with potential over-
lap between types. As we’re already familiar with some forms of morpho-syntactic

UNDERSTANDING MARKUP AND ANNOTATION 229

tagging, let’s just take a brief look at an example of syntactic annotation in the
form of a skeleton parse from the Lancaster Parsed Corpus.

A01 3
S&[N \0Mr_NPT Michael_NP Foot_NP N][V has_HVZ put_VBN V][R down_RP R]
[Na_AT resolution_NN [P on_IN [N the_ATI subject_NN N]P]N][S+ and_CC
[Na he_PP3A Na][V is_BEZ V][Ti[Vi to_TO be_BE backed_VBN Vi][P by_IN [N
\0Mr_NPT Will_NP Griffiths_NP ,_, [N \0MP_NPT [P for_IN [N Manchester_NP
Exchange_NP N]P]N]N]P]Ti]S+] ._. S&]

As you can see in the above example, the syntactic annotation actually starts
out from PoS information and then adds labelled bracketing for the syntactic cate-
gories. For reasons of space, we won’t look at further examples of other types
of annotation here now, but will later work more extensively on a sample that
combines some of the different levels. Before doing so, though, we’ll first try to
develop an understanding of how the different formats that are mainly used today
have come to exist and developed into their most up-to-date forms.

11.1 From SGML to XML – A Brief Timeline

In the 1960s, first attempts at standardising markup for information exchange
began to be made. This was deemed necessary in order to be able to exchange vari-
ous types of documents efficiently and without the need for extensive reformatting
of the partly idiosyncratic/proprietary coding used by different authors, manu-
facturers, or publishing houses. However, it wasn’t until 1986 that the SGML
(Standard Generalized Markup Language) standard was in fact ratified by the
International Standards Organisation (ISO). This first official type of markup lan-
guage, however, as we’ll see further below, was relatively complex and also had a
number of serious drawbacks.

After Tim Berners-Lee had invented the World Wide Web (WWW) in 1989,
it was necessary to develop a new, and simpler, markup language in order to take
full advantage of the new hypertext medium. Thus, in 1992, HTML (Hypertext
Markup Language) arrived on the scene and became popular very quickly. It’s
since then gone through various stages of development, the most recent versions
being HTML 5 and XHTML. HTML in its more modern variants represents a
simplified version of SGML, where many of the unwieldy features and shortcuts
that made the processing of SGML rather difficult (see further below) were elimi-
nated. In recent years, it’s also further been enhanced by the addition of Cascading
Style Sheet technologies (CSS1, 2 & 3) that make it possible to separate form and
content better.

Because the formatting and linking capabilities offered by HTML were not
always sufficient for all needs in document handling, and SGML proved too
unwieldy and error-prone, a new hypertext format, XML (eXtensible Markup

230 UNDERSTANDING MARKUP AND ANNOTATION

Language) Version 1.0, was eventually created and released by the W3C (World
Wide Web Consortium) in 1998. As can be seen from its name, XML allows users
to create their own extended markup frameworks, and thereby makes it possible
to increase the separation of form from content even further than was already
possible by using HTML and CSS. Furthermore, XML can not only be used in
conjunction with CSS, but also has its own stylesheet language XSL, which far
exceeds the capabilities of CSS in that it also provides mechanisms for transform-
ing documents from XML into other forms of XML, as well as various other types
of formats, for display and processing. It also offers further improved processing
and hyperlinking facilities in the form of XPath and XPointer technologies. Due
to these advantages, we’ll explore the use of XML further in Section 11.2.

11.2 XML for Linguistics

11.2.1 Why bother?

So why should we actually be tempted to ‘mess around’ with our nice and clean
data and possibly go through a lot of trouble in adding markup? Well, for one
thing, markup helps to structure information, for example, in separating docu-
ments into appropriate sections/divisions with headings, sub-headings, para-
graphs, etc. We can also include certain types of meta-information that we talked
about before, such as, for example, information about when and where the mate-
rial has been collected, who has edited it and in which way, etc. The best examples
we’ve seen for this were the meta-textual choices BNCweb allowed us to make for
selecting specific parts of the BNC for different analysis purposes, which were all
made possible by the fact that the BNC (in its most recent version) is marked up in
XML, albeit with somewhat over-elaborate header information, as we’ll soon dis-
cuss. On the other hand, adding annotations also allows the annotator to highlight
interesting or important phenomena by using colour coding or other visualisation
techniques, or simply helps to render a historical document in a relatively faithful
and searchable manner online.

11.2.2 What does markup/annotation look like?

As pointed out in Section 11.1, all the formats we’ll be discussing here are essen-
tially plain text-based, and thus constitute ‘human-readable’ formats where the
text itself contains different types of additional information, sometimes related to
its structure, and sometimes to its linguistic content. Some of these formats are
rather constrained in the types of information that can be added to a document,
while others are more flexible, but sometimes even the less flexible ones can be
‘coerced’ into allowing us to add suitable types of annotation.

Although there are actually many different ways of marking up a document,
one fairly standard method is the use of the kind of tags that we use for writing

UNDERSTANDING MARKUP AND ANNOTATION 231

HTML documents. These are actually more appropriately referred to as elements.
Elements, in their most basic form, are generally represented in markup languages
by pairs of opening and closing angle brackets, i.e. < & >, with the name of the
element appearing in between the two. There are three different forms of such
element tags:

1 opening tags (<element_name>), e.g. <p> for the start of a paragraph;
2 closing tags, where the name of the element is preceded by a slash

(</element_name>), e.g. </p> for the end of a paragraph;
3 and ‘empty’ tags, where the closing bracket is preceded by (a space and) a

slash (<element_name />), e.g. <pause /> to represent a pause of undefined
duration.

The first two are used to ‘bracket’, that is, enclose, elements that contain some
form of textual content, such as the sentences inside a paragraph, the words
inside a sentence, etc. The third type usually either specifies formatting instruc-
tions, such as line breaks, etc., contains links to external resources, such as a
style sheet that specifies the layout and formatting options, or can be used to
include other information that doesn’t require a containing element, such as, for
example, a comment on a specific piece of data. We’ll see more examples of these
later.

Opening and empty tags can also contain attributes, which are typically specified
as attribute–value pairs, joined by an equals sign (=). Usually, these days, the value
also needs to be quoted, using either single or double quotes. Attributes often
specify sub-types, identifiers (commonly labelled id), counters (typically labelled
n), or other features associated with a certain element. Therefore, a paragraph
with the number 5 may be represented as <p n="5">…</p>, where the ellipsis
(…) stands for the text contained inside it, or as <para n="5">…</para> or even
<paragraph n="5">…</paragraph>, if you want to be even more explicit about
it being a paragraph. The following is a brief sample paragraph that illustrates
what a paragraph annotated in XML might look like in terms of elements and
attributes.

<paragraph n="01"><unit n="01"><word n="01" pos="DD1">This
</word> <word n="02" pos="VBZ">is</word> <word n="03"
pos="AT1">a</word> <word n="04" pos="NN1">sample</word>
<word n="05" pos="NN1">paragraph</word> <word n="06" pos="VVG"
>illustrating</word> <word n="07" pos="DDQ">what</word>
<word n="08" pos="NP1">XML</word> <word n="09" pos="NN1">
formatting</word> <word n="10" pos="VM">may</word> <word
n="11" pos="VVI">look</word> <word n="12" pos="II">like</word>
<punc type="stop" /> </unit> </paragraph>

232 UNDERSTANDING MARKUP AND ANNOTATION

Exercise 82

Go through the above sample paragraph and make a list of how many ele-
ments there are and which type they belong to.

Next, also count the attributes and try to explain what they’re used for.

11.2.3 The ‘history’ and development of (linguistic) markup

Although we’ve already talked about the history of markup languages before when
I presented a brief timeline, we now want to return to this briefly and illustrate
the differences, advantages and disadvantages of the different types.

We’ll begin our little survey by presenting a short sample of SGML
(Figure 11.1) and discussing some of its features.

<div2 complete=Y org=SEQ type=paragraph> <head type=MAIN>

<s n=0003> <w NP0>STATES <w CJC>AND <w AJ0>RELIGIOUS <w

NN2>INSTITUTIONS </head> <s n=0004> <w AT0>The <w AJ0>chief

<w NN1>purpose <w PRF>of <w AT0>the <w NN1>chapter <w VBZ>is

<w TO0>to <w VVI>outline <w AVQ>how <w AT0>the <w CRD>two <w

AJ0>opposing

Figure 11.1 A brief SGML sample

As we can see from Figure 11.1, SGML uses a fairly standard notation for open-
ing tags, but isn’t always consistent in indicating the ends of textual elements, so
often the start of a new element simply has to be taken as a signal that the prece-
ding element is now to be considered closed. Thus, although the heading inside
the rather misleadingly labelled <head> element above has both a start and an end
tag, the <s> (sentence) elements don’t. This type of ‘shortcut’ makes processing
SGML much more difficult than it needs be, and also much more error-prone.

In our example, we can also see that all attributes occurring in start tags are
not quoted, but at least those can be handled relatively easily because they occur
inside a tag and are also clearly marked by the equals sign, at least where there’s an
explicit attribute-value pair(ing) present, such as for “complete” in the “<div2”
tag. The lack of any explicit attribute inside the <w> elements, indicating words,
however, fails to clearly label the attribute name for the values specified inside
each tag, which we therefore need to infer to be something like pos because the
morpho-syntactic tags indicate this.

SGML also has two other major disadvantages compared to HTML or
XML, the first being that it absolutely requires a DTD (Document Type Defini-
tion) specifying its structure, in order to allow any type of serious processing,
and – last but not least – that it’s not supported by any ‘standard’ (browser)
software.

UNDERSTANDING MARKUP AND ANNOTATION 233

One big advantage, at least in comparison to HTML, is that a large set of tag
definitions/DTDs for linguistic purposes, such as for the TEI (Text Encoding Ini-
tiative), were originally designed for SGML, although more and more of these
have been or are being ‘ported’ to XML these days, too.

Although HTML is a direct descendant of SGML, it only provides a limited set
of tags, which, on the one hand, makes it less flexible than XML, but, on the other,
also much easier to learn. It’s widely recognised by standard (browser) software
and the DTD(s) are already built into these browsers, although they can also be
explicitly specified.

HTML itself defines a rather limited set of options for specifying structural
properties of documents, such as elements for paragraphs (<p>), different levels
of headings (<h1> – <h6>), larger textual divisions (<div>), smaller – inline –
textual sequences (), different types of lists, certain types of formatting
options (e.g. bold: , italic: <i>, etc.), as well as some processing instructions,
such as for line breaks (
).

HTML itself is largely standardised and also technically extensible via CSS to
some extent, so that it’s already quite useful for the presentation and visualisation
of some linguistic content. The option to include dynamic content via client-side
scripting, which can be achieved with relative ease, can also be seen as an advan-
tage, although cross-platform development for different operating systems and
browsers is somewhat hampered by inconsistent or incompatible implementations
of the DOM (Document Object Model).

XML, however, is much more versatile than HTML because it was designed to
be extensible by the user in providing the ability to completely define one’s own
tags. It’s much easier to process and far less error-prone than SGML because some
of the shortcuts we’ve seen before are no longer allowed.

All XML documents minimally have to be well-formed, that is, no overlap-
ping tags (as in HTML, e.g. …<i>……</i>) are allowed. Furthermore,
end tags are required for all ‘non-empty’ elements, so they no longer need to
be inferred. Empty tags also differ from their SGML/HTML equivalents in that
they have to contain a slash before the closing bracket, i.e. <element_name />.
Unlike in older forms of HTML, where case did not matter, XML is case sen-
sitive, so that linguistic tags like <turn>, <Turn> & <TURN> for representing
individual speaker turns in dialogues are all treated as being different from one
another.

XML has been designed to be Unicode-aware right from the very beginning, so
as to allow for markup using different character sets, also within one and the same
document. If no encoding is specified, it always defaults to UTF-8, so that all basic
ASCII characters occurring in English documents are always displayed correctly,
even without explicitly having to convert existing ASCII encoded documents to
UTF-8, as the basic code points are the same.

XML describes content (like SGML), rather than layout (like HTML), so that
the exact rendering of a document needs to be specified via a style sheet because
otherwise the browser/application displaying it wouldn’t know how to achieve

234 UNDERSTANDING MARKUP AND ANNOTATION

its task. If no style sheet is explicitly provided, most browsers will try to ren-
der the XML content using their own default style sheets, though. At the time
of writing, the only major browser that didn’t do this was Safari, so if this is
your default browser, as for example on Mac OS X, you’ll unfortunately need
to install an additional one to be able to display the results of the exercises fur-
ther down. I’d suggest that you use Firefox in this case, following the instruc-
tions at https://support.mozilla.org/en-US/kb/how-download-and-install-firefox-
mac for installation. XML-aware browsers at least frequently attempt to represent
the hierarchical tree structure, and often allow the user to expand and collapse
nested structures. Other applications, such as editors, can at least display the plain
text, provided they support the given encoding.

Apart from the well-formedness criterion described above, the document struc-
ture of an XML document can also be more rigorously constrained by specifying
either a DTD or a schema that it needs to conform with. If an XML document
conforms with one of these two types of specification, we talk of a valid document.
We won’t go into issues of designing DTDs or schemas here because they’re fairly
complex, but will at least have a look at some of the rendering options for XML
documents using style sheets.

11.2.4 XML and style sheets

Style sheets in general allow the author to present/publish material in a visually
more appropriate and/or appealing format, that is, specifying line spacing, inden-
tation, positioning, etc., very similar to the formatting options you see in the text
you’re currently reading. Style sheet languages come in different flavours for dif-
ferent markup languages, namely DSSSL for SGML, CSS 1, 2 & 3 for HTML,
and both CSS & XSL for XML. In our discussion below, as well as for our exer-
cise(s), we’ll concentrate on the essential aspects of CSS because it is simpler and
easier to learn than XSL.

CSS1 already allowed the user to apply relatively ‘low-level display formatting’
such as layout, colours, positioning, drawing boxes around elements, etc. CSS2 &
3 expanded on these features by adding the ability to specify formatting options
for publishing to different media – i.e. screen vs. printed paper, etc. – and advanced
selection rules/mechanisms.

At the most basic level, CSS works by pairing the name of an element with
different styling properties that the browser is supposed to associate with it. This
is best done inside the style sheet definition, but may also happen inside the XML
file itself. Such a pairing is similar to the attribute–value pairings we’ve seen above,
only that in CSS, each definition starts with the name of the element defined and
this is then followed by a listing of its individual properties inside a set of paired
curly brackets ({…}). These brackets may in turn contain a number of attribute–
value pairings, where the attributes are separated from their value(s) by a colon,
with each property definition ending in a semi-colon. Therefore, for example,
to define a basic paragraph layout, we could write a definition like the following,

https:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}support.mozilla.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}en-{}UShbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}kbhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}how-{}download-{}and-{}install-{}firefox-{}mac
https:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}support.mozilla.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}en-{}UShbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}kbhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}how-{}download-{}and-{}install-{}firefox-{}mac
https://support.mozilla.org/en-{}US/kb/how-{}download-{}and-{}install-{}firefox-{}mac
https://support.mozilla.org/en-{}US/kb/how-{}download-{}and-{}install-{}firefox-{}mac

UNDERSTANDING MARKUP AND ANNOTATION 235

which has already been styled to look like the resulting paragraph it may be applied
to in an XML (or HTML) document:

p {
display: block;
background-color: #80ff00; color: red;
font-weight: bold; font-style: italic;

}

Figure 11.2 CSS sample paragraph styling

In the simple example in Figure 11.2, you can already see a number of important
styling concepts/properties provided by CSS style sheets, such as being able to
apply different background (‘background-color’) and font/foreground (‘color’)
colour definitions. In our case, the hexadecimal value provided for the background
is a rather striking neon-green. The properties that contain the word font in them
are responsible for making the font bold (‘font-weight’) and italic (‘font-style’),
respectively.

While most of these properties used above should be relatively self-explanatory,
the very first one, ‘display: block;’, may require some explanation: essentially, in
defining display properties, we can make a distinction between block(-level) and
inline display, where use of the former causes the element that is rendered to be
separated from the surrounding content by clear spacing, breaking up the flow
of the content, giving the visual appearance of separating it from the surrounding
(con)text, as in the paragraphs in this book, while the latter means that the element
remains embedded in the context, that is, does not interrupt the flow, such as in
this highlighted part in this paragraph.

When it comes to specifying colour-values, there are two options for doing so,
both of which are demonstrated in Figure 11.2, too. The best is to use a hash
mark/pound symbol (#), followed by a hexadecimal code, because this defines an
unambiguous colour value and provides more fine-grained options for specifying
the exact colour. The second is to use a more basic-level colour term, which may
then be interpreted by the browser in different ways, but usually providing some-
thing close to what we wanted. Please note that it may still be safer to use the
American spelling variant(s) when referring to colours in CSS, although by now
most browsers will probably also understand the British one

CSS also provides us with numerous other options to refer to different elements
or attributes in order to style documents in an appropriate and useful manner
for colour-coding/visualising relevant linguistic information. We’ll soon encounter
more of these formatting properties and options when we do our annotation exer-
cises.

XSL (eXtensible Style Sheet Language) provides similar options to CSS for
formatting XML display, but also offers much more complex selection mecha-
nisms, as well as allowing reuse of ‘text objects’, for example, for producing tables
of contents, etc., via so-called XSL Transformations (XSLT). Layout design for

236 UNDERSTANDING MARKUP AND ANNOTATION

other (printed) media is also supposed to be enhanced through XML Formatting
Objects (XSL-FO).

Of course, XML doesn’t need to be viewed inside a browser or transformed in
any way, but can either be viewed, or even – at least to some extent – meaningfully
searched, in one of our basic editors, or manipulated in other ways through pro-
gramming languages, too. Furthermore, concordancers, such as AntConc, gene-
rally also allow us to search for XML tags because they simply represent plain
searchable text, but may also sometimes provide options to hide them when we
don’t want to display them. Thus, it’s not always necessary to use a style sheet,
etc., to generate a specific kind of display format for a browser, but being able to
use a browser for display simply provides one convenient option for exchanging
and viewing our data using a specific formatting.

11.3 ‘Simple XML’ for Linguistic Annotation

In this section, we want to explore how to use a form of XML that I refer to as
‘Simple XML’ in order to do annotation on multiple levels. The following exercise
is designed to provide you with an introduction to this which is broken down into
a series of steps that all successively allow you to deal with a particular XML-related
or linguistic issue in creating a well-formed XML document.

Exercise 83a

Download our practice file from http://martinweisser.org/pract_cl/texts/
practice_dialogue.txt.

Open the file in your plain-text editor.
Add the line <?xml version="1.0" encoding="UTF-8" ?> at the

very beginning of the file.
Save the file as ‘practice.xml’, ensuring that the encoding is ‘UTF-8’, and

without Byte Order Mark (BOM).
Keep the file open.

The line we just inserted identifies the document as being in XML for any appli-
cation that’s capable of displaying it, at the same time specifying its encoding as
UTF-8. The question marks at the beginning and end identify the tag on this line
as a processing instruction, in our case specifically the one referred to as the XML
declaration. Please note that, so far, what we’ve done has not turned the file into
valid XML yet as there are still some parts missing, so we’re really just ‘pretending’
that the file is XML.

The next step is to create a ‘container’ element for our dialogue. This container
element is also known as the root element, and every well-formed XML document

http://martinweisser.org/pract_cl/texts/practice_dialogue.txt
http://martinweisser.org/pract_cl/texts/practice_dialogue.txt

UNDERSTANDING MARKUP AND ANNOTATION 237

needs to have one. We’ll label the root element for this document ‘dialogue’
in order to identify our text as a dialogue, and we’ll also give it two attributes
with the names ‘corpus’ and ‘id’ and corresponding values of ‘test’ and ‘01’
respectively.

Exercise 83b

Wrap the whole text following the XML declaration into the container tag.
Add the attributes specified above and their values.

By wrapping our text in the container element, we’ve effectively created the
first (top) level of a hierarchy or categorisation, as well as a file that is now, at
least technically, valid XML, despite the fact that it hasn’t been sub-divided into
meaningful parts yet.

We can now proceed to subcategorise the elements contained within the dia-
logue. If you look at the text again, you’ll notice that the next level below the
dialogue in our text is the speaker turn, so it would be quite logical to use this
label for a tag surrounding each turn. As our turns have already been transcribed
with a speaker id (A or B), followed by a number for the turn, we can identify
these as suitable attributes characterising the turns.

Exercise 83c

Wrap a ‘turn’ element around each turn, keeping tags and text separate.
If you feel adventurous, you can also try and save a fair amount of time
here, experimenting with using regex replace operations and backreferences
in your editor. Always remember, when something goes wrong, you can
usually undo it, in the worst case simply closing the file without saving,
then reopening it and starting all over again.

Save the file again, and open it in your browser to see what it looks like
there. Keep the text editor open while you do this. That way you can switch
between editing and viewing the results.

Don’t despair if you end up with lots of errors in the beginning, as this
is bound to happen quite frequently. Hopefully, though, you’ll soon learn
from any mistakes you make

So far, we’ve already marked up all the individual speaker turns, that is, made it
clearer who contributes what at which point, so we can now proceed to identifying
the individual c-units within each turn.

238 UNDERSTANDING MARKUP AND ANNOTATION

Exercise 83d

Based on your knowledge of syntax, mark up all stretches of dialogue that
you can identify, using the element names <decl>, <q-wh>, <q-yn>, and
<imp> for the ‘traditional’ syntax types. For simplicity, and to improve read-
ability, always separate each c-unit text from the tags by line breaks again,
so that both container tags and text end up on separate lines.

In addition, mark up areas of text that represent terms of address (e.g.
Sir or Madam), discourse markers (e.g. well, ok, right, aha, etc.) and yes-
and no-like answers, using the tags <address>, <dm>, <yes>, <no>, as well
as syntactically incomplete/ungrammatical units as <frag> for fragment.

Save the file and view it in your browser.

Now that we’ve finished marking up the syntactic level, we can move on to the
pragmatic one. Here, we want to add speech-act attributes (sp-act) to the syntax
elements to try and express what the intentions of the speakers are. The potential
options you could use for speech acts, based on the syntactic categories, are:

� q-wh: reqInfo (request for information), reqDirect (request for direc-
tive/instruction)

� q-yn: reqInfo, reqDirect
� decl: state (stating/informing), agree, reqInfo, reqConfirm (requesting con-

firmation)
� imp: direct (giving a directive/command), suggest (making a suggestion)
� dm: init (initiating/initialising a new (sub-)topic), acknowledge (acknowledg-

ing)
� yes: agree, accept
� no: negate, refuse
� address: refer

frag: greet, intro (introducing oneself or a third party), thank, bye (saying
goodbye), refer (providing deictic information)

Exercise 83e

Add what you think may be the appropriate label for each speech act to
the individual syntactic units. When you do this, please remember that our
interpretations may sometimes be a little subjective, so it’s best to compare
your results with a colleague to see how much consensus you can reach.

As before, check the result in your browser.

UNDERSTANDING MARKUP AND ANNOTATION 239

Also think about whether your tags may warrant the use of attributes to express
varying other features of your categories, such as polarity, semantic information,
etc.

So far, we’ve now dealt with all the information that needs to be placed in
container elements, but in our dialogue, you’ll also find strange types of non-XML
markup, like # and #{9s}. These represent pauses of undefined and defined length,
respectively, and are not really part of our textual hierarchy. It therefore makes
sense to convert them to empty elements. As our tag name, we’ll use <pause>
and as an attribute, we’ll include information about the length of the respective
pause, if any is indicated.

Exercise 83f

Replace all pauses in the dialogue by empty tags, save and review the docu-
ment. In cases where there are two pauses marked in a row, only keep one
of them.

Find the instance in the text that is marked as “unclear” in curly brackets
and also replace this by an appropriate tag, including an attribute.

Delete any remaining comments inside curly brackets.
Next, try to find a good solution for representing overlap, which is indi-

cated by [for the starting position and] for the end position, respectively,
so there are essentially two types.

Finally, also replace any content in round brackets by <backchannel/>
tags with ‘content’ attributes.

Save and test again.

Once you’ve marked up/annotated all the above and tested the result in your
browser, you’ll essentially have annotated your very first dialogue in XML suc-
cessfully. You would now, for example, be able to load this dialogue into AntConc
and search only for all discourse markers, or all requests for information, etc., in
order to investigate them more closely, and possibly to come up with new ideas for
marking up such content further in order to (re-)classify it more precisely. If you
had a number of such dialogues, you could also search for only turns produced by
speaker A in order to investigate the language use of call centre agents. For a real-
life example of how you can work with this type of pragmatically annotated data,
you can download the SPAADIA corpus (see Section 2.4.1.3), from which the
dialogue we just worked with was taken, and which is fully annotated, including
a few further levels of annotation.

Sometimes, however, we may simply want to form a quick impression of cer-
tain features and this is where plain XML, as it is displayed by the browser, isn’t
nearly as useful as being able to identify important features of dialogues visually
via appropriate colour coding, which is something we’ll practise in Section 11.4.

240 UNDERSTANDING MARKUP AND ANNOTATION

11.4 Colour Coding and Visualisation

In this section, we want to explore some of the basic and slightly advanced fea-
tures of CSS, which will enable us to style our XML file in a useful manner,
based on its elements and sometimes even specific properties, such as speech
acts, etc. We’ll begin by defining some display properties for the whole dialogue,
and then gradually move on to define options for the relevant elements and
attributes.

Exercise 84a

Create a new file in your editor.
Type in dialogue, followed by a set of paired curly brackets. The first

properties we want to set here are the background colour (background-
color), the font size (font-size), and the left margin (margin-left), so
you can add each one of these within the curly brackets, each time followed
by a colon, a space, and a semi-colon, as illustrated in our discussion of CSS
earlier on.

Now, set the properties as shown in Table 11.2:

Table 11.2 CSS properties for XML visualisation exercise

Property Value Explanation

background-

color

#ffffdd This hexadecimal value sets the background to
ivory.

font-size 1.25em This sets the font size to 1¼ times the original
font size, which is usually around 10 points
in the browser. As em is a relative value, this
allows you to increase or decrease the display
size in the browser in relative steps by
pressing Ctrl+ or Ctrl-, respectively.

margin-left 2.5% This sets a left margin/indent for the page,
mimicking the margin on a printed page, so
that the text isn’t squashed against the left
side of the display window.

Save the file as ‘dialogue.css’ in the same folder as the dialogue file.

So far, we’ve only created the basic style sheet, but we also need to ‘let the
browser know’ that it’s supposed to use it with our dialogue file, so we need to
create a link between the two.

UNDERSTANDING MARKUP AND ANNOTATION 241

Exercise 84b

Open your XML dialogue file again and insert the line <?xml-stylesheet
type="text/css" href="./dialogue.css"?> between the XML dec-
laration and the dialogue tag, then save it.

Load the XML file in your browser and view the result.

You may now be surprised because, apart from the few general formatting
options we’ve just set for the dialogue itself, all the levels in our hierarchy that
we’ve so painstakingly set before will have disappeared and the text simply runs
on without any indication of where one turn or syntactic unit starts and ends. This
is the case because the browser now assumes that, since you’ve ‘told’ it that you
want to style the XML yourself, it should no longer apply its own built-in style
sheet, but instead leave all the styling up to yours. Therefore, in the next few steps,
we’ll have to learn about some further styling options that’ll allow us to do just
that. We’ll start by (re-)formatting the turns.

Exercise 84c

Go back to the style sheet and create a new definition for turns, setting the
properties for display, color, margin-left, line-height, and text-
indent to block, black, 5.5%, 1.5em, and -3.5em, respectively. What
these mean should hopefully be relatively self-explanatory, based on what
we learnt earlier.

Now, save the style sheet, go back to the browser, and refresh the page
to see the result.

Each turn should now appear in a block of its own, but we still haven’t got any
indication of the speaker id, so we don’t really know who’s talking when. Although
it could potentially be an interesting exercise for students in classroom activities
to identify this, it’s not really what we want to see here, so we need to find a way
to access the speaker attribute information to use it in our style sheet. Luckily for
us, in our style sheet definitions, we can not only refer to elements, but also to
attributes, so we can easily style turns by speaker A (i.e. the agent) differently from
those by speaker B (the caller). In order to do so, we’ll not just make use of the
speaker attribute, but will also exploit another feature of CSS (2/3), which is that
we can generate content before or after each element automatically.

To be able to access information about the speaker attribute, we need to use
an attribute–value pair with an equals sign, similar to the way we define attributes
in XML, but without the quotation marks around the value. This needs to be
enclosed in a pair of square brackets, so writing turn[speaker=A] will allow us

242 UNDERSTANDING MARKUP AND ANNOTATION

to refer to all turns produced by speaker A, which we could already exploit in order
to style these turns differently in terms of background colour, etc., if we wanted
to. However, instead of changing display properties like this, we’ll manipulate the
actual textual content by prefixing each turn with the contents of its ‘n’ attribute,
as well as with information regarding the roles of the speakers. To achieve this, we
need to access the so-called pseudo-class called ‘before’ of the relevant turn, which
is appended to the earlier definition we created using a colon as a connector, thus
yielding turn[speaker=A]:before. Knowing this, we now only need to learn
how to manipulate/refer to the text we want to pre-pend to the turn. This can be
achieved via its ‘content’ property, which, in its most basic form, is simply a string
of text enclosed in double quotes, so we can write turn[speaker=A]:before
{content: "Agent:";} to make the word Agent followed by a colon appear
before each turn produced by speaker A.

Exercise 84d

Try adding the definition for speaker A, the Agent, to your style sheet.
Do the same for speaker B, the Caller.
Test the result in the browser.

The only thing left to do now is to incorporate the information from the ‘n’
attribute, that is, the turn number, into the pre-pended content. To refer to the
value of the n attribute within the content property, we can use the general style
sheet syntax for accessing such attribute information inside property definitions,
which is to use attr, followed by the name of the relevant attribute in round
brackets, i.e. attr(n) in our case. This should be placed outside the quotation
marks in the appropriate place, and thus we’ll write turn[speaker=A]:before
{content: attr(n)" – Agent:";} to complete our definition, where we’ve
also modified the content inside the quotation marks slightly to separate it from
the turn information.

Exercise 84e

Amend your prior definitions for both speakers and test this inside the
browser again.

Having formatted the turns, we can now move on to dealing with the syntactic
elements occurring inside them. Unlike the turns, which we’d styled as block-level
elements, we’ll format these as being inline and with a left margin of .5%, for
which you should already have enough knowledge to write the individual defini-
tions. As this is a kind of formatting that we’ll equally want to apply to all such
units, it would be cumbersome to have to type this out repeatedly, so we can
take advantage of a feature of CSS that allows us to list the different elements a

UNDERSTANDING MARKUP AND ANNOTATION 243

definition applies to by separating them from each other by a comma, just like in
an ordinary written list.

Exercise 84f

Add the style definitions for all the syntactic element classes.
Test the result.

Please note that, so far, we’ve only set two general properties for the syntax
elements, but still need to set their individual display options, so as to be able to
recognise and distinguish them visually from one another. Creating the definitions
that are individual to each syntactic category essentially entails finding suitable
background and foreground colours to make the different types either maximally
distinctive or, in contrast, to possibly emphasise common features, such as the
similarity between the different types of questions, which can be expressed by
using the same background colour for both. For some of the other features, we can
use specific types of colour coding semantics to signal ‘open’ and ‘closed’ options.
For instance, to signal the open-ended nature of wh-questions, we can use green,
while we can use red to indicate the limited options of yes/no-questions. For yes
and no answers, we can employ a similar type of traffic signal analogy and encode
them like one-way street signs. Table 11.3 summarises the colour semantics we
want to use.

Table 11.3 Colour semantics and CSS styles

background font
element(s) colour semantics colour semantics

<q-wh> & <q-yn> #f5f984; shows similarity between
questions

<q-wh> green analogy to a green traffic
light, i.e. ‘go’ to signal
open choices

<q-yn> red analogy to a red traffic
light, i.e. ‘no go’ to
signal closed set of
choices

<yes> blue analogy to traffic sign,
entering a one-way street
the right way, i.e. ‘go
ahead’

<no> red analogy to traffic sign,
entering a one-way street
the wrong way, i.e. ‘no
entry’

244 UNDERSTANDING MARKUP AND ANNOTATION

Exercise 84g

Add the above definitions to the style sheet and test the results.

Another thing we want to do here, apart from applying colour-coding semantics
to our units, is to actually add the punctuation that was missing from the original
transcripts. We can do this by using the counterpart of the before pseudo-class,
after, in order to generate it automatically, based on the syntactic class. This works
in exactly the same way as when we pre-pended content to all turns.

Exercise 84h

Define yes, no, decl, frag, and address, as being followed by a dot, the
questions a question mark, discourse markers a dash, and imperatives by an
exclamation mark in the style sheet.

There are still a few more syntactic elements that we haven’t defined any colour-
coding for. Simply create definitions for these using the following values:

� discourse markers: white font, #ff8000 background
� declaratives: blue font, white background
� imperatives and fragments: background #d9ffff
� imperatives: red font
� fragments: font colour #4b4b4b.

Exercise 84i

Create the remaining colour definitions in the appropriate places inside
your style sheet and check the results again.

One very important feature of the style sheet rules is that the definitions inside
the style sheet are applied by the browser in exactly the order that they were
written in. This effectively means that any later re- or additional definition for
already defined specific elements or attributes will override earlier existing defi-
nitions. We can exploit this feature in order to display requests for information
contained inside fragments in the same font colour as wh-questions.

UNDERSTANDING MARKUP AND ANNOTATION 245

Exercise 84j

Create a definition for the font colour of both wh-questions and any items
that have a speech act reqInfo in the appropriate place, setting them to
#009b00.

In order to refer to the speech act attribute–value combination, you need
to use a similar syntax to the one we used for our definitions of the different
turns, only without an element name in front of the square brackets.

Finally, we also want to override the punctuation mark that occurs after all syn-
tactic units that may contain requests for information, which may also include
declarative questions, apart from the fragments we just handled.

Exercise 84k

Based on your knowledge from the earlier tasks in this exercise, you should
already know how to achieve this, so just write an appropriate definition
and test the results again.

When examining the results so far, you may have noticed that all empty elements
were also removed from the display. Unfortunately, as CSS definitions are generally
designed to help us render the content occurring inside non-empty elements, we
cannot simply write a definition that will display the empty elements because they
technically speaking don’t contain any content. This is why we have to use a little
trick to have them displayed inside our browser, which is that we simply ‘recreate’
them using the after pseudo-class. All we have to do to achieve this is first to
declare them as inline elements and then write the appropriate content definitions,
where we use the same text as in the actual elements, but get their relevant attribute
values using the attr() syntax we used previously for retrieving the turn numbers.
As we also want them to be unobtrusive, we’ll use a grey font colour (#808080)
for all empty elements.

Exercise 84l

First, define all empty elements, pause, unclear, overlap, and
backchannel, as inline elements with the font colour specified above.

Next, write the individual definitions for them, using the after pseudo-
class with an appropriate CSS content attribute that uses the correct
attribute of the XML element to extract and display its value.

246 UNDERSTANDING MARKUP AND ANNOTATION

Test the result in your browser again.

The two lengthier exercises above were essentially designed to provide you with
two different perspectives on the use of annotations. The first one basically gave
you a means of designing your own ways of classifying your data in a sensible
manner, which then enables you to use the corpus-based analysis methods we’ve
discussed throughout the course in order to extract and count relevant informa-
tion. The second one was designed to allow you to develop alternative views of
your data, something that may help you, or any students or colleagues you may
create teaching materials or presentations for, to quickly visualise different features
that might be present in individual texts. This may, for instance, make it possible
for students to notice the number of discourse markers or syntactic fragments that
occur in spoken interaction, or identify other important elements of such types of
interaction. For analysis purposes, both techniques, if used sensibly, will often lead
to a cyclical refinement of the categories identified and their respective annotation
forms, enabling the researcher to ‘fine-tune’ the analysis results and thereby also
the conclusions that can ultimately be drawn from the corpus data.

11.5 More Complex Forms of Annotation

The form of annotation I introduced you to above already contains many diffe-
rent bits of information, so that it may appear fairly complex to you. However,
I still refer to this as ‘Simple XML’ because it remains easily readable due to the
relatively low number of container elements and the separation of text from non-
empty tags. This separation, incidentally, is possible because most XML processors
simply ignore any whitespace they ‘perceive’ as redundant. Because these proces-
sors generally parse the XML and often produce tree structures based on the hie-
rarchy of the elements, they’d thus have rendered our sample in the same way,
even without the additional line breaks I suggested you insert for readability.

Some proponents of ‘pure’ XML technology would even frown upon what
we’ve done here and argue that XML was meant to be processed by the com-
puter, anyway, and could then be rendered in whichever way it would be best
viewed. However, this argument ignores the fact that, before any annotation is
finished, it repeatedly, and often for very long periods of time, needs to be read
and edited by humans, so that readability does indeed represent an issue in annota-
tion. Even the best fully automated annotation still needs to be checked for errors
by human editors, although, as we’ve seen in the many examples of mis-tagging in
the BNC and COCA, this is often not done for reasons of time and cost involved,
especially the larger the amount of data processed becomes. Furthermore, any
process of rendering, combined with editing and saving, involves making modifi-
cations to the data in forms invisible to the user, and may be error-prone because

UNDERSTANDING MARKUP AND ANNOTATION 247

it repeatedly needs to save the changed data and then update the view again. In
addition to this, using such software also ties the average user unnecessarily into
using often complex annotation tools that themselves represent a relatively steep
learning curve, apart from further potential issues regarding platform availability
and setup.

Adding further levels of annotation to corpus data almost always leads to added
complexity in the data, although, for instance, striking the right balance between
using an appropriate number of container elements, empty elements, and suit-
able attributes can already help us to go a long way, as hopefully Exercise 84l has
shown you. Further decisions of course need to be made regarding how much
meta-information each file in the corpus absolutely needs to contain, or whether
there isn’t a choice to relegate some of this information to external header files
(cf. Leech et al. 2000: 13) that can be accessed as and when this information
may be necessary, and can easily be distributed along with the corpus. These have
the distinct advantage that they keep the original data ‘clean’, and supplementary
information can even be added later without having to change the original data.

The BNC data we’ve been working with represent a different way of handling
annotation, in that they, for instance, contain a relatively complex header that
contains a high degree of meta-information, which can be seen in Figure 11.3.

Figure 11.3 TEI header for BNC file KST

Figure 11.3 shows the TEI header for a single file, KST, from the BNC. As
should be obvious from this, apart from linguistically relevant information about
the speakers involved, there’s also a lot of non-linguistic information stored here

248 UNDERSTANDING MARKUP AND ANNOTATION

regarding the recording, the distribution, etc. The Text Encoding Initiative (TEI;
http://www.tei-c.org/index.xml), upon whose recommendations the above header
and general annotation of the BNC is based, is an organisation of researchers
involved in annotating language data, and has made numerous suggestions about
how and what to annotate in samples of both spoken and written language. How-
ever, often their ideas for standards take into consideration far more detail than
may be necessary, so, while it’s well worth looking at these recommendations to
get some initial ideas if you want to prepare a corpus for general distribution,
often working according to their guidelines may be overkill for smaller, personal
projects.

Another popular format, especially in language engineering circles, is the so-
called standoff format (Thompson & McKelvie 1997). This format makes it pos-
sible to link different levels of annotation in separate XML documents to one base
file – usually based on word tokens – in a similar way to the kinds of databases
behind BNCweb and COCA. However, apart from the fact that word tokens are
not always the appropriate base unit in texts, as you’ll hopefully remember from
our discussion in Section 9.1.1, this type of format a) makes it impossible to read
any file without the use of dedicated software, and b) is in fact considerably more
complex than a database approach. As such, it probably only lends itself to research
and corpus building for relatively large research projects, where there is also sup-
port for dedicated software. An example of the use of standoff annotation is the
OASIS corpus (see Section 2.4.1.3).

From the above discussion, you’ll hopefully have seen that, especially for smaller
corpus projects, the motto should always be ‘the simpler, the better’. And one
always ought to remember that, even though one might never know how a corpus
may potentially be used by others, not all types of annotation need to be included
in all corpora, simply because this may be possible or relatively easily achievable.
Therefore, for instance, a very good, and still valid, example of the use of different
versions of one and the same set of corpus data is the SEC (see Section 2.3.1.2),
which actually exists in five different forms.

Solutions to/Comments on the Exercises

Exercise 82
The elements you should be able to identify in the first part of this exercise are
<paragraph>, <unit>, <word>, and <punc />. The first three of these represent
container elements for the different syntactic/textual levels described, while the
last one is an empty one, representing punctuation as a non-word.

In terms of attributes, you should be able to find 27, where ‘n’ represents
numerical identifiers for all the 14 textual elements, ‘pos’ the 12 PoS categories
for the words, and ‘type’ which type of punctuation is present at the end of the
syntactic unit.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.tei-{}c.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}index.xml
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/10.5 {OT1/Galliard/m/n/10.5 }OT1/Galliard/m/nreg/10.5 size@update enc@update char '057}}www.tei-{}c.org/index.xml
http://www.tei-c.org/index.xml

UNDERSTANDING MARKUP AND ANNOTATION 249

Exercise 83
(a) Inserting the XML declaration and saving the file should generally present no
problem, but ensuring the actual encoding for the file in UTF-8 (without BOM)
may present a little bit of an issue, depending on which editor you’re using. If
your editor is encoding-sensitive, like Notepad++, it’ll normally have retained the
original encoding of the text file, which was already the correct one. If you need
to change the encoding, though, where exactly this can be done, and also how
you can see this, may vary. And, unfortunately, there’s no way for me to tell you
how exactly this will work in your editor if you’re using a different one, so I can
only give you some tips as to where such option can possibly be set. In some edi-
tors, the encoding can be set in the ‘Save’ dialogue, together with the file name.
For instance, in Windows Notepad, you can select the option for UTF-8 under
‘Encoding’ in this dialogue, although, unfortunately, there’s no way to specify the
additional option to exclude the BOM we don’t want, and which is in fact unne-
cessary and, if present, may also cause display issues in some browsers. In other
editors, such as Notepad++, there are additional options available via a dedicated
‘Encoding’ menu item, where you can specify what to encode a file in or even to
convert between a limited set of encodings. In Notepad++, you can also specify
the default encoding for any files you create under ‘Settings→Preferences→New
Document’, where I’d recommend you set the option for ‘UTF-8 with-
out BOM’, as well as use the additional setting ‘Apply to opened ANSI
files’.

(b) Hopefully, you remembered that only the start tag can have any attributes in
it, so that our start tag should now read <dialogue corpus="test" id="01">.
Our end tag, which you need to insert after the last line of the dialogue, will then
be </dialogue>.

(c) Wrapping a <turn> element around each turn should be quite straight-
forward. For instance, the tag for the first turn ought to look similar to this:
<turn speaker="A" n="01">. Of course, you can also opt for single quotes,
if you want to, as long as you remember to be consistent with your opening and
closing quotes. If your browser indicates an error, go back to the XML file and
first verify whether you’ve set all start and end tags correctly, as this is generally
the most common error. One of the most common error messages you’ll
probably encounter will be something like “XML Parsing Error: mismatched
tag. Expected: </turn>”. The browser will usually also try to provide a line and
column (i.e. character position) number for where the error was found, but this
will often not be very helpful because XML parsers are unfortunately not very
good at locating such errors, so that, frequently, the error location pointed out is
only towards the end of the file where the browser (finally) ‘notices’ a mismatch
between start and end tags. While trying to fix potential errors, however, some
editors may provide a certain degree of help through syntax highlighting. For
instance, when you click on the start tag in Notepad++, it’ll normally highlight

250 UNDERSTANDING MARKUP AND ANNOTATION

both the start tag and its corresponding end tag, so if you go through the file
from the top, you can perhaps identify the error this way, even if it may be a
rather tedious process, especially if the file is long. Anyway, once you think you’ve
fixed an error, switch back to the browser and refresh the display.

Using regex replacements here, rather than tediously adding all the tags man-
ually, is possible because the turns are basically all represented in our file as single
lines that start with a speaker id, followed by a dot, the turn number, a colon,
a space, and then the rest of the turn. Thus you can construct a regex expres-
sion that captures the speaker id to be reused as \1, the number of the turn as
\2, and everything following the colon and space until the end of the line in \3.
And, to be able to automatically keep the turn tags separated from the text, we
can add new lines in the appropriate places. To do all this, you need to define
one character class enclosed in round brackets to match the speakers, either A
or B, at the beginning of the line, ideally escape the dot that follows, then cap-
ture one or more digits for the turn number, again enclosed in round brackets,
match a colon, one or more spaces (just to be on the safe side), then as many
characters as possible, again in round brackets, until you reach the end of the line.
To avoid any potential unwanted spaces at the beginning or end of the line, you
can also add some optional whitespace. Therefore, the search term, with regex
search option switched on, would be: ˆ\s∗([AB])\.(\d+):\s+(.+)\s∗$. To
achieve the replacement, including line breaks, the code construct would then be
<turn n="\2" speaker="\1">\n\3\n</turn>.

(d) This part of the exercise may initially be more difficult because you’ll have
to think ‘out of the box’ in terms of new and unusual syntactic categories, but
you’ll soon get used to this. The beginning of the file should now look like
this:

<?xml version="1.0" encoding="UTF-8" ?>
<dialogue id="01" corpus="test">
<turn speaker="A" n="01">
<frag>
good afternoon
</frag>
<frag>
Virgin train line Sandra speaking
</frag>
<q-wh>
for which journey do you wish to purchase a ticket
</q-wh>
</turn>
<turn speaker="B" n="02">
<frag>
er Euston to Manchester please
</frag>
</turn>

UNDERSTANDING MARKUP AND ANNOTATION 251

(e) Again, this part may be a little difficult if you’ve never worked with/on speech
acts before, but most of the ones listed should be relatively intuitive. One thing
the list of speech acts I gave you doesn’t include is a complete set for speech
acts signalling responses, although some of them, such as, for example, ‘accept’
or ‘refuse’, already contain such information. Other speech acts, though, may
be responding in a similar way, but this response may be paired with one of the
other options. Thus, a ‘reqInfo’ speech act by one speaker will often trigger an
‘answer’ by the other, but this answer is generally a statement (‘state’) in our above
taxonomy. Thus, to be more explicit, we could in fact also allow more than one
speech act to occur in our annotation, which would result in ‘answer-state’ for this
particular example.

(f) Replacing the pauses so that our empty tag will, for example, either look like
<pause /> or <pause length="9s" />, should be quite easy. The empty ele-
ment for the ‘unclear’ 5 syllables should, logically, become <unclear length="5
syllables" />. Regarding overlap tags, you’d actually be quite right in assum-
ing that, theoretically, these should be container elements because they mark up
specific spans of text. However, as XML forbids the use of overlapping tags, and
overlap passages span across different speaker turns, using <overlap>…</overlap>
elements would break the document’s well-formedness, so it’s best to use the
empty tags <overlap type="start" /> and <overlap type="end" />, pos-
sibly in combination with a number (‘n’) attribute. As backchannels constitute
text where another speaker simply provides feedback to the current speaker who
holds the turn, but doesn’t really interrupt to take over, it also makes sense to
incorporate this via an empty element. As before, when we created the turn ele-
ments, because there are easily recognisable patterns, you can save a lot of time
if you’re able to construct appropriate regex replacement patterns, so you should
definitely try this.

For a complete solution of the annotated dialogue, see Appendix B. As an alter-
native to some of the steps we modelled as regexes above, and for slightly more
convenient manual annotation of the remaining XML structure, you could also
use an annotation tool, such as my Simple Corpus Tool, which actually includes
an editor that’ll allow you to add these tags and attributes through the click of
a button. For a fully automatic large-scale annotation of the syntax, speech acts,
etc., you can also try my Dialogue Annotation and Research Tool (DART), which
not only allows you to annotate hundreds of dialogues in this way within minutes,
but also to post-edit/correct the annotations, as well as to carry out similar analysis
operations to those we learnt how to perform in AntConc, including concordanc-
ing, n-gram analysis, etc.

Exercise 84
(a) The display options for the whole dialogue you set should hopefully look as
follows, where I’ve simply written everything on one single line for compactness:

252 UNDERSTANDING MARKUP AND ANNOTATION

dialogue {background-color: #ffffdd; font-size: 1.25em; margin-left: 2.5%;}.
As with XML, in CSS slight mistakes in the syntax may cause errors, so if the
display you get doesn’t seem to reflect our properties, you need to check your
style sheet for errors.

(b) Adding the style sheet reference should need no further comment.
(c) The definition for the turns should look like this: turn {display:

block; color: black; margin-left: 5.5%; line-height: 1.5em;
text-indent: -3.5em;}.

(d) This part of the exercise is probably a bit more difficult, especially because
there are some fairly complex new CSS terms and concepts involved. However,
with a little bit of effort, you’ll hopefully be able to set the appropriate display
entries for both dialogue participants to:

� turn[speaker=A]:before {content: "Agent:";}
� turn[speaker=B]:before {content: "Caller:";}.

(e) Again, this part may sound a little complex, but with a little experimenting
you’ll hopefully manage to produce the following definitions:

� turn[speaker=A]:before {content: attr(n)" – Agent:";}
� turn[speaker=B]:before {content: attr(n)" – Caller:";}.

(f) Adding the general definition for all syntactic element classes is quite straight-
forward. The line required in the style sheet is: address, decl, dm, frag,
imp, no, yes, q-yn, q-wh {display: inline; margin-left: .5%;}.

(g) This should again be straightforward and not require further comment.
(h) For adding the punctuation marks, you should end up with the following

definitions:

� yes:after, no:after, frag:after, decl:after, address:after
{content: ".";}

� q-wh:after, q-yn:after {content: "?";}
� dm:after {content: " –";}
� imp:after {content: "!";}

(i) As the basic colour options for the remaining syntax elements are quite
straightforward, I won’t provide a separate solution for these here.

(j & k) Changing all wh-questions and any other elements that contain requests
for information as a speech act to a separate font colour can be achieved via: q-wh,
[sp-act=reqInfo] {color: #009b00;}, and adding a question mark after
any request for information by using [sp-act=reqInfo]:after {content:
"?";}.

UNDERSTANDING MARKUP AND ANNOTATION 253

(l) We can set the unobtrusive font colour for all empty elements in one
go, using the following definition: pause, unclear, overlap, backchannel
{display: inline; color: #808080;}.

The individual definitions for displaying content should look as follows:

� pause:after {content: "<pause length='"attr(length)"' />";}
� unclear:after {content: "<unclear length='"attr(length)"'

/>";}
� overlap:after {content: "<overlap type='"attr(type)"' />";}
� backchannel:after {content: "<backchannel

content='"attr(content)"' />";}

For a complete version of the style sheet, see Appendix C.

Sources and Further Reading

Bradley, Neil. (1998). The XML Companion. Harlow: Addison-Wesley.
Garside, Roger, Leech, Geoffrey, & McEnery, Tony. (Eds.) (1997). Corpus Annotation:

Linguistic Information from Computer Text Corpora. London: Longman.
Leech, Geoffrey. (1997). Introducing Corpus Annotation. In Garside, Roger, Leech,

Geoffrey, & McEnery, Tony. (Eds.) (1997). Corpus Annotation: Linguistic Informa-
tion from Computer Text Corpora. London: Longman.

Leech, Geoffrey, Weisser, Martin, Wilson, Andrew, & Grice, Martine. (2000). Survey and
Guidelines for the Representation and Annotation of Dialogue. In Gibbon, Mertins,
& Moore. (Eds.). (2000). Handbook of Multimodal and Spoken Language Systems.
Dordrecht: Kluwer Academic Publishers.

World Wide Web Consortium. Extensible Markup Language. http://www.w3
.org/XML/.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.w3.org/XML/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.w3.org/XML/

12
Conclusion and Further

Perspectives

Throughout this book, I’ve tried to give you many opportunities to develop an
awareness, coupled with some basic experience, of how linguistic data can be used
to solve linguistic puzzles or questions. At the same time, whenever appropriate,
I’ve also tried to point out other potential applications for such data, for example,
in the development of teaching materials/textbooks, grammars, or direct applica-
tion in the classroom, but of course such a list will always be incomplete as there
are too many applications of corpus linguistics to be listed exhaustively. To get a
better overview of other applications, you can – now that you should have more
than at least a basic understanding – turn to the additional literature I’ve listed
for the different sections, especially the many other, generally more theoretically
oriented, textbooks, or the two handbooks I listed in the Introduction, O’Keeffe
& McCarthy (2010) and Lüdeling & Kytö (2008), for more in-depth informa-
tion or further inspiration, and also be able to evaluate their contents carefully.
For now, all that remains for me to do is to summarise what we’ve tried to achieve
here, and to give you some further pointers on where to get information other
than from publications.

In the first two main sections of the book (Chapters 2–4), we started out by
investigating the different forms language data may come in, especially in the shape
of existing corpora, and then moved on to developing an understanding of how
you can complement such data by collecting your own, including which problems
and pitfalls you may encounter in this endeavour, focussing on the nature and
sometimes ‘messiness’ of electronic data. Here, I already tried to give you at least
some sense of how data that hasn’t been prepared well may cause specific issues

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

CONCLUSION AND FURTHER PERSPECTIVES 255

and errors in later analysis stages. Apart from teaching you how to prepare your
data, this was essentially also a plea for showing diligence in preparing corpora,
especially if your intention may be to distribute your data to a wider audience.

In the next major section (Chapters 5–10), we then investigated various tech-
niques for analysing language data using established methods of corpus linguis-
tics. Here, as much as possible, I’ve tried to show you complementary techniques
for working both with your own data and larger, general, corpora through web-
based interfaces, thereby also allowing you to some extent to test findings derived
from your own data against reference corpora, or to compare linguistic pheno-
mena across different corpora. Throughout this section, we encountered various
issues with tools and methods, again partly illustrating the effects of data where
flaws in the basic compilation of the corpus may cause potential errors in the
result, but partly also pointing out potential shortcomings in the particular tools
at our disposal. What you’ll hopefully have come to realise from this in particu-
lar is that no tool, even if it may have been designed with the best of intentions
by the author(s), and to incorporate as many facilities as possible, and even if it
may be highly customisable, such as AntConc, is ever perfect for all our potential
purposes. Thus, we constantly need to be aware of such shortcomings, as well as
try and find new and creative, but nevertheless solid, ways of overcoming these
issues.

One of the major issues we’ve repeatedly encountered, especially concerning
the mega corpora we’ve worked with, is that the creation of large-scale resources
may frequently lead to the compilers taking shortcuts when it comes to ensur-
ing the quality of the data in terms of tokenisation and annotation. Furthermore,
the design of the annotation and interfaces available may sometimes exhibit flaws
from a linguistic perspective, as we’ve, for instance, seen for the CQP architec-
ture behind BNCweb, which treats punctuation tokens in exactly the same way
as genuine words, thereby potentially skewing all the statistics produced by the
tool. Another issue we’ve encountered in this context is that often tools designed
for analysis almost force us into accepting the ‘orthographic word’ as the cor-
rect unit of analysis, which is e.g. exemplified in the fact that the BYU interfaces
don’t allow us to compare ‘words’ with ‘phrases’ directly. These are just some
of the issues we need to constantly be aware of when we use such tools, so the
idea that ‘bigger is better’, even if it is indeed often important to work with very
large amounts of data for such research as collocation analysis in order to be able
to find rarer combinations, may not always be fully justified if the quantity of
data isn’t equally matched by quality. Having criticised some of the larger cor-
pora and their interfaces rather heavily, I now need to relativise this again, as, of
course, creating such large and complex resources still remains a highly laudable
effort despite these apparent flaws, and having these mega corpora and associa-
ted interfaces already takes us a very long way in advancing our knowledge of
language and its uses, apart from providing us with huge amounts of extremely
valuable real-life materials for teaching and learning, and other applications of or in
linguistics.

256 CONCLUSION AND FURTHER PERSPECTIVES

In the final brief section (Chapter 11), I’ve tried to provide you with a short,
but nevertheless highly practical, glimpse at what current technology in the form
of XML has to offer to linguists who want to enrich their data and/or visualise
important facts inherent in it. Here, I’ve deliberately advocated a form of annota-
tion I call ‘Simple XML’, which still makes it possible to read and edit the corpus
data, or annotate it further, but without the need for complex interfaces many less
computer-literate corpus linguists may have a hard time to even install, let alone
use without accepting a steep learning curve.

This book being (only) an introductory textbook, the topics we’ve covered can
obviously not be exhaustive, in particular because of the more practical nature of
our approach. I’ve therefore had to restrict my discussion of relevant topics in
corpus linguistics to what I consider the most essential ones for beginners. There
are, however, also many other applications of corpus linguistics I’ve been unable
to cover, but which may be of interest to you now that you’ve mastered the basics,
and which I’d like to mention here briefly.

Diachronic/historical corpus linguistics is an important area that aims at
answering many of the as yet unanswered questions in language history, including
differences in style, vocabulary, grammar, and even pragmatics. In translation stu-
dies and teaching, parallel corpora, that is, corpora that cover similar textual matter
or even represent aligned translations of texts, continue to have a very strong influ-
ence. In L1 Acquisition, there’s a substantial body of data that has been collected
following the standard of the Child Language Data Exchange System (CHILDES;
http://childes.psy.cmu.edu/), and on which active research is being carried out.
And, of course, corpora and the original techniques developed in corpus linguis-
tics, such as concordancing and the creation of frequency lists, have also had a very
strong impact on the areas of Computational Linguistics, Natural Language Pro-
cessing (NLP), and Language Engineering. However, research in those disciplines
has taken a very different direction that is often far removed from corpus lin-
guistics, although sometimes self-proclaimed corpus linguists tend to forget this.
The reason for this is quite simple: in these disciplines, the objective of research
is generally not so much to understand how language works or can be taught,
but to achieve very practical aims, such as processing large quantities of data (e.g.
taken off the web) efficiently and fully automatically in order to provide interfaces
to search engines, Q & A or dialogue systems, where humans can ‘interact’ in
‘natural language’ with the computer and get quick results. This is why creating
efficient algorithms or ‘quick-and-dirty’ solutions is often more important in these
areas because it’s simply economically more viable, while understanding the finer
nuances of language that linguists and other language professionals may be inter-
ested in is only of minor, if any, importance. This also appears to be at least part of
the reason why textbooks in NLP, such as Manning & Schütze (1999) or Jurafsky
& Martin (2009), tend to focus more on quantitative analyses and very quickly
turn to discussions and implementations of probabilistic techniques for language
analysis.

http://childes.psy.cmu.edu/

CONCLUSION AND FURTHER PERSPECTIVES 257

Of course, this use of statistics, as we’ve seen to a very small extent when we
looked at collocations, etc., is also partly shared with corpus linguistics, and me-
thods and textbooks in this domain, such as Oakes (1998) or Gries (2009), to
name but two, enjoy increasing popularity. However, a word of warning is in order
here. Many of the assumptions and tests in statistical analysis are still based on the
premise of data being normally distributed, which is a feature often observed in
nature, but simply not true for most aspects of language, as, for example, Zipf
(1949) has clearly shown. This is probably the case because language, unlike natu-
ral phenomena that cannot be controlled, involves making conscious choices on
many levels. Thus, while undeniably statistics do have a role to play in language
analysis, many commonly used statistical measures are still not applicable to lan-
guage research, and thus greater efforts need to be made to devise better, more
language-appropriate measures.

As this brief overview has shown, there are still many more advanced topics
in corpus linguistics for you to explore. However, for the moment, I’d first like
to suggest that you consolidate what you’ve learnt from this book further, and
devise your own ways of dealing with any issues you may encounter in your own
research. If, however, somewhere along the line you should realise that what the
tools available have to offer you is not enough, you can always investigate learning
how to write your own analysis programs, as this will liberate you from many of the
constraints described above, and will also give you a degree of flexibility in your
research that no single tool can offer. The idea of doing this may at first appear
daunting, but I can assure you that, if you’ve gone through this book carefully
and now feel relatively secure in conducting the types of analysis described here,
taking this next logical step will already have become much easier…

Last, but not least, I should also point out that there aren’t only book or journal
publications relevant to corpus linguistics, but also online discussion groups on
various social or professional media, such as Facebook or LinkedIn, and especially
the corpora mailing list at http://www.hit.uib.no/corpora/ that you can subscribe to
for up-to-date discussions, even if they, sadly, may often these days contain more
content related to NLP-oriented conferences or research, rather than ‘genuine’
corpus linguistics. In addition, links to many corpora and resources appear on
David Lee’s ‘devoted to corpora’ website, which I already referred to in Chapter
2. And finally, once you’ve actually reached a stage where you’re ready to share
your own corpus research with others, you may well want to consider attending
either the ICAME, CL, or TaLC (Teaching and Language Corpora) conferences
that take place at regular (yearly) intervals.

http://www.hit.uib.no/corpora/

Glossary

ACE: the Australian Corpus of English, also known as the Macquarie Corpus (see
Section 2.3.1.1)

alignment: establishing a link between the source text and the translation, usually
at the sentence, phrase or word level

ANC: the American National Corpus (see Section 2.3.2.2)
annotation: the process of enriching corpus data with (interpretative) linguistic

information (see Chapter 11)
ARCHER: a diachronic corpus (see Section 2.3.3)
ASCII: American Standard Code for Information Interchange (see

Section 3.3.1)
BNC: the British National Corpus (see Section 2.3.2.2)
BNCweb: the web interface of the BNC (see Section 8.1.1)
BoE: the Bank of English (see Section 2.5)
Brown: the Brown University Standard Corpus of Present-day American English

(see Section 2.3.1.1)
balance: the notion in corpus building, especially for reference corpora, that a

corpus should contain as many representative pieces of texts, from all repre-
sentative genres, as well as possibly all relevant media (i.e. generally written vs.
spoken vs written-to-be-spoken); often also linked to representativeness (see
Section 3.1.3)

CES: the Corpus Encoding Standard
character encoding: a computer-based system of representing characters as num-

bers (see Section 3.3)

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

272 GLOSSARY

colligation: the association/collocation (see below) of a PoS category or word
with a particular word class (see Section 10.5.2)

collocation: the characteristic co-occurrence of lexical patterns involving two or
more words within a certain (limited) distance of one another, usually up to
4–5 words to the left or right of the word under investigation (the node); these
can be investigated/identified ‘manually/visually’ or by means of statistical test
for co-occurrence (see Sections 10.5.1 & 10.8.1)

concordance: a listing of a word/expression in a corpus, generally within a specific
context (cf. KWIC) (see Section 5.1)

concordancer: a software package that generates concordances, as well as possibly
displays of other linguistic features, for corpora (see Section 5.1)

corpus (pl. corpora): a collection of texts in machine-readable form (see
Section 2.1)

corpus-based (research): research that primarily uses corpora to verify the
researcher’s intuitions

corpus-driven (research): research based on few, if any, prior intuitions, where
the results of corpus analysis directly lead to new insights and theories

dispersion: a term in descriptive statistics which refers to a quantifiable variation
of measurements of differing members of a population within the scale on which
they are measured (see Section 10.7)

ditto tag: in corpus annotation assigning the same part-of-speech code to each
word in an idiomatic expression (see Section 9.1.1)

Document Type Definition (DTD): a separate document in markup languages
such as HTML, SGML and XML that is linked to a content-bearing document
and defines which elements and attributes are allowed to occur within the doc-
ument, thereby constraining available options and making it possible to test the
validity (as opposed to well-formedness) of the document (see Section 11.2.3)

EAGLES: Expert Advisory Group on Language Engineering Standards; an ini-
tiative of European researchers that made recommendations regarding stan-
dards and guidelines for best practice in Language Engineering

EAP: English for Academic Purposes
error-tagging: the process of adding error-related information to a corpus
FLOB: the Freiburg-LOB Corpus of British English, an update of the LOB cor-

pus in the early 1990s (see Section 2.3.1)
frequency: the number of occurrences of a linguistic feature in a corpus (see

Section 9.2)
Frown: the Freiburg-Brown Corpus of American English, an update of the

Brown Corpus in the early 1990s (see Section 2.3.1)
HTML: Hypertext Markup Language (see Sections 4.2 & 11.2.3)
header: the (top) part of a corpus that provides bibliographical information and

meta-data related to the corpus (see Sections 3.2.1 & 11.5)
ICE: the International Corpus of English; an initiative to represent as many

varieties of English as possible in the form of comparable corpora (see
Section 2.3.2.1)

GLOSSARY 273

ICLE: the International Corpus of Learner English; an initiative to represent as
many varieties of learner English as possible in the form of comparable corpora
(see Section 2.4.1.2)

keyword: words in a corpus whose occurrence is unusually frequent (positive key-
words) or infrequent (negative keywords) in comparison to a reference corpus
(see Section 9.3.3)

KWIC: key-word-in-context (concordance); a listing of search terms found in a
corpus, where the search term(s) generally appears centred on the line, with a
fixed number of words or characters to the left and right (see Section 5.1)

learner corpus: a collection of essays/academic writing by, or interviews
with, learners in the form of a corpus, possibly also containing error
coding/annotation (see Section 2.4.1.2)

lemma: cf. headword/entry in a lexicon; generally, a lemma is assumed to subsume
all forms of a word paradigm, with further distinctions according to PoS (see
Sections 8.1.8 & 8.2.1)

lemmatisation: grouping together all of the different inflected forms of the same
word, possibly also according to PoS

LLC: the London-Lund Corpus; one of the earliest spoken corpora, containing
exhaustive prosodic markup (see Section 2.3.1.2)

LOB: the Lancaster-Oslo-Bergen Corpus of British English (see Section 2.3.1)
LOCNESS: the Louvain Corpus of Native English Essays; a corpus of native-

speaker essays specifically created for comparison purposes with learner data
(see Section 2.4.1.2)

log-likelihood: statistical measure used for collocation or keyword analysis; also
referred to as G2

markup: a term often used synonymously with annotation to refer to adding
enriching information to a corpus; sometimes specifically used to refer to the
physical act of marking specific parts of a text using specific symbols (see
Chapter 11)

meta-data: a term used to describe data about data, typically the contextual infor-
mation of corpus samples (see Section 3.2.1)

MI: mutual information, a statistical measure of co-occurrence that measures the
strength of collocations (see Section 10.8.1)

MICASE: the Michigan Corpus of Academic Spoken English (see
Section 2.4.1.1)

monitor corpus: a corpus that is constantly updated and enlarged with new cor-
pus materials (see Section 2.5)

MWU: multi-word unit; a unit of sense that consists of multiple words (see
Section 9.1.1)

node: the central word or search term in a collocation or concordance (see
Sections 10.5.3, 10.6 & 10.8.1)

normalisation/norming: the first term may refer to two things, either a) the pro-
cess of standardising transcriptions/data by regularising spelling where multiple
variants may exist (see Section 4.3), or b) the process of norming frequency

274 GLOSSARY

counts by a relative factor, such as per million words (see Section 9.5); the sec-
ond term only applies to b)

OCR: optical character recognition; a process where scanned images of text are
converted to machine-readable and searchable text

OLAC: the Open Language Archives Community; “an international partnership
of institutions and individuals who are creating a worldwide virtual library of
language resources” (http://www.language-archives.org/)

parallel corpus: a corpus which is composed of source texts and their transla-
tions in one or more different languages; sometimes referred to as translation
corpus

parsing: a process that analyses the sentences in a corpus into their constituents
(see Chapter 11), also called treebanking or bracketing

polysemy: the ability of word forms to represent multiple meanings or word
classes, e.g. bank as ‘financial institution’ (noun), ‘side of a river’ (noun),
‘act of keeping an account with a financial institution’ (verb), ‘turn sharply’
(verb)

PoS (part-of-speech): word class or morpho-syntactic category (see Chapter 7)
post-editing: human correction of automatically processed data (see

Section 11.5)
reference corpus: a balanced representative corpus for general usage (see

Section 2.4); in keyword analysis, a corpus that is used to provide a reference
wordlist (see Section 9.3.3)

representativeness: the notion in corpus building that a corpus built for a specific
(or general) purpose should include a suitable number of texts that describe the
characteristics of the domain(s) covered suitably (see Section 3.1.3)

SEC: the Lancaster/IBM Spoken English Corpus (see Section 2.3.1.2)
SED: the Survey of English Dialects corpus
semantic preference: a term used to indicate the particular words a node word

collocates with in its immediate environment
semantic prosody: a term used to indicate the particular words or topics, inclu-

ding positive or negative connotations, a node word collocates with in its wider,
non-immediate, environment; see also semantic preference

SEU: Survey of English Usage; an early, non-computerised corpus, later half
computerised as the LLC (see Section 2.3.1.2)

SGML: Standard Generalized Markup Language; the first standardised markup
language used for linguistic purposes, now superseded by XML (see
Section 11.2.3)

sorting: arranging concordance or a frequency list data in a certain order, alpha-
betical, descending alphabetical, ascending frequency, descending frequency, or
reverse sorted (see Section 5.2.1)

SPAAC/SPAADIA: the Speech Act Annotated Dialogue Corpus (see
Section 2.4.1.3)

span: in collocation analysis, the number of words to be taken into consideration
on either side of the node word (see Section 10.8.1)

http://www.language-archives.org/

GLOSSARY 275

specialised corpus: a domain-specific corpus designed to represent a particular
sublanguage or genre (see Section 2.4)

subcorpus: a component of a corpus, usually defined using certain criteria such
as text types and domains (see Section 9.3.2)

tagging: an alternative term for annotation, especially word-level annotation such
as PoS tagging and semantic tagging (see Chapter 7)

tagset: a scheme of codes for corpus annotation, especially PoS tagging (see
Section 7.1)

TEI: the Text Encoding Initiative; an organisation of researchers involved in
annotating language data that publishes guidelines and recommendations for
such annotations (see Section 11.5)

text archive: a repository of texts of different types, possibly also including com-
plete or partial corpora (see Section 4.1.3)

token: an actual occurrence of any given word form, as opposed to its type (see
Section 9.1.2)

tokenisation: also called segmentation, a process that divides running text into
individual tokens considered to constitute words (see Section 10.2)

transcription: converting spoken data into a written form, either rendering it
orthographically or phonetically/phonemically

treebank: an alternative term for a parsed corpus (see Chapter 11)
t-score: a statistical measure to establish the certainty of collocations (see

Section 10.8.1)
type: a word form (label), as opposed to its individual occurrences (tokens) in a

text (see Section 9.1.2)
type-token ratio: the ratio of types to tokens
Unicode: a character encoding system designed to support the processing and

display texts from languages across the world, including phonetic characters,
etc. (see Section 3.3.2)

URL: Uniform Resource Locator, i.e. a web address (see Section 4.2.4)
wildcard: a special character such as an asterisk (∗) or a question mark (?) that

can be used to represent one or more characters in pattern matching (see
Section 8.1.5)

word (frequency) list: a list of words occurring in a corpus, generally with fre-
quency information (see Section 9.2)

WSC: the Wellington Corpus of Spoken New Zealand English (see Section 2.3.1)
WWC: the Wellington Corpus of Written New Zealand English (see

Section 2.3.1)
XCES: XML Corpus Encoding Standard
XML: the Extensible Markup Language (see Section 11.2)

Appendix A
The CLAWS C5 Tagset

Tag Description

AJ0 adjective (unmarked) (e.g. GOOD, OLD)
AJC comparative adjective (e.g. BETTER, OLDER)
AJS superlative adjective (e.g. BEST, OLDEST)
AT0 article (e.g. THE, A, AN)
AV0 adverb (unmarked) (e.g. OFTEN, WELL, LONGER, FURTHEST)
AVP adverb particle (e.g. UP, OFF, OUT)
AVQ wh-adverb (e.g. WHEN, HOW, WHY)
CJC coordinating conjunction (e.g. AND, OR)
CJS subordinating conjunction (e.g. ALTHOUGH, WHEN)
CJT the conjunction THAT
CRD cardinal numeral (e.g. 3, FIFTY-FIVE, 6609) (excl. ONE)
DPS possessive determiner form (e.g. YOUR, THEIR)
DT0 general determiner (e.g. THESE, SOME)
DTQ wh-determiner (e.g. WHOSE, WHICH)
EX0 existential THERE
ITJ interjection or other isolate (e.g. OH, YES, MHM)
NN0 noun (neutral for number) (e.g. AIRCRAFT, DATA)
NN1 singular noun (e.g. PENCIL, GOOSE)
NN2 plural noun (e.g. PENCILS, GEESE)
NP0 proper noun (e.g. LONDON, MICHAEL, MARS)
NULL the null tag (for items not to be tagged)

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

260 THE CLAWS C5 TAGSET

Tag Description

ORD ordinal (e.g. SIXTH, 77TH, LAST)
PNI indefinite pronoun (e.g. NONE, EVERYTHING)
PNP personal pronoun (e.g. YOU, THEM, OURS)
PNQ wh-pronoun (e.g. WHO, WHOEVER)
PNX reflexive pronoun (e.g. ITSELF, OURSELVES)
POS the possessive (or genitive morpheme)’S or ’
PRF the preposition OF
PRP preposition (except for OF) (e.g. FOR, ABOVE, TO)
PUL punctuation - left bracket (i.e. (or [)
PUN punctuation - general mark (i.e. . ! , : ; - ? …)
PUQ punctuation - quotation mark (i.e. ‘ ’ ")
PUR punctuation - right bracket (i.e.) or])
TO0 infinitive marker TO
UNC "unclassified" items which are not words of the English lexicon
VBB the "base forms" of the verb "BE" (except the infinitive), i.e. AM,

ARE
VBD past form of the verb "BE", i.e. WAS, WERE
VBG -ing form of the verb "BE", i.e. BEING
VBI infinitive of the verb "BE"
VBN past participle of the verb "BE", i.e. BEEN
VBZ -s form of the verb "BE", i.e. IS, ’S
VDB base form of the verb "DO" (except the infinitive), i.e. DO
VDD past form of the verb "DO", i.e. DID
VDG -ing form of the verb "DO", i.e. DOING
VDI infinitive of the verb "DO"
VDN past participle of the verb "DO", i.e. DONE
VDZ -s form of the verb "DO", i.e. DOES
VHB base form of the verb "HAVE" (except the infinitive), i.e. HAVE
VHD past tense form of the verb "HAVE", i.e. HAD, ’D
VHG -ing form of the verb "HAVE", i.e. HAVING
VHI infinitive of the verb "HAVE"
VHN past participle of the verb "HAVE", i.e. HAD
VHZ -s form of the verb "HAVE", i.e. HAS, ’S
VM0 modal auxiliary verb (e.g. CAN, COULD, WILL, ’LL)
VVB base form of lexical verb (except the infinitive)(e.g. TAKE, LIVE)
VVD past tense form of lexical verb (e.g. TOOK, LIVED)
VVG -ing form of lexical verb (e.g. TAKING, LIVING)
VVI infinitive of lexical verb
VVN past participle form of lex. verb (e.g. TAKEN, LIVED)
VVZ -s form of lexical verb (e.g. TAKES, LIVES)
XX0 the negative NOT or N’T
ZZ0 alphabetical symbol (e.g. A, B, c, d)

Appendix B
The Annotated Dialogue File

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/css" href="./dialogue.css"?>
<dialogue id="01" corpus="test">
<turn n="1" speaker="A">
<frag n="01" sp-act="greet">
good afternoon
</frag>
<frag n="02" sp-act="identifySelf">
Virgin train line Sandra speaking
</frag>
<q-wh n="03" sp-act="reqDirect">
for which journey do you wish to purchase a ticket
</q-wh>
</turn>
<turn n="2" speaker="B">
<frag n="04" sp-act="direct">
er Euston to Manchester please
</frag>
</turn>
<turn n="3" speaker="A">
<dm n="05" sp-act="init">
<pause /> now
</dm>

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

262 THE ANNOTATED DIALOGUE FILE

<q-yn n="06" sp-act="reqInfo">
do you hold a current debit or credit card
</q-yn>
</turn>
<turn n="4" speaker="B">
<dm n="07" sp-act="acknowledge">
aha
</dm>
</turn>
<turn n="5" speaker="A">
<q-yn n="08" sp-act="reqInfo">
do you have a railcard at all
</q-yn>
</turn>
<turn n="6" speaker="B">
<no n="09" sp-act="answer">
no
</no>
</turn>
<turn n="7" speaker="A">
<q-wh n="10" sp-act="reqInfo"
and how many people's travelling
</q-wh>
</turn>
<turn n="8" speaker="B">
<frag n="11" sp-act="answer">
just one please
</frag>
</turn>
<turn n="9" speaker="A">
<q-wh n="12" sp-act="reqInfo">
and what date is it you're travelling
</q-wh>
</turn>
<turn n="10" speaker="B">
<decl n="13" sp-act="answer">
the Saturday which is the third i think
</decl>
</turn>
<turn n="11" speaker="A">
<frag n="14" sp-act="confirm">
third of Oc…
</frag>
</turn>

THE ANNOTATED DIALOGUE FILE 263

<turn n="12" speaker="B">
<frag n="15" sp-act="complete">
<overlap type="start" /> October
</frag>
</turn>
<turn n="13" speaker="A">
<frag n="16" sp-act="echo">
</frag>
<q-wh n="17" sp-act="reqInfo">
departing at what time from London Euston
</q-wh>
</turn>
<turn n="14" speaker="B">
<decl n="18" sp-act="state">
i'm not sure what time the trains are
</decl>
<q-yn n="19" sp-act="reqInfo">
do you know
</q-yn>
</turn>
<turn n="15" speaker="A">
<dm n="20" sp-act="init">
well
</dm>
<decl n="21" sp-act="state">
the trains run at 10 to the hour every hour
</decl>
</turn>
<turn n="16" speaker="B">
<frag n="22" sp-act="echo">
every hour <pause />
</frag>
<decl n="23" sp-act="express-opinion">
and that'll be the 14 50 i think then
</decl>
</turn>
<turn n="17" speaker="A">
<frag n="24" sp-act="state">
arriving at 17 30
</frag>
</turn>
<turn n="18" speaker="B">
<decl n="25" sp-act="acknowledge">
that's right

264 THE ANNOTATED DIALOGUE FILE

</decl>
<yes n="26" sp-act="acknowledge">
yeah
</yes>
</turn>
<turn n="19" speaker="A">
<q-wh n="27" sp-act="reqInfo">
when are you returning
</q-wh>
</turn>
<turn n="20" speaker="B">
<frag n="28" sp-act="answer">
er Monday
</frag>
</turn>
<turn n="21" speaker="A">
<frag n="29" sp-act="reqInfo">
departing at what time
</frag>
</turn>
<turn n="22" speaker="B">
<frag n="30" sp-act="unclassifiable">
em {unclear_2_syllables} that time
</frag>
</turn>
<turn n="23" speaker="A">
<frag n="31" sp-act="state">
on the half hour
</frag>
<decl n="32" sp-act="confirm">
and that's Monday the fifth
</decl>
<yes n="33" sp-act="acknowledge">
yeah
</yes>
</turn>
<turn n="24" speaker="B">
<decl n="34" sp-act="acknowledge">
that's right yeah
</decl>
<imp n="35" sp-act="suggest">
em let's say <pause /> half 2 in the afternoon
</imp>
</turn>

THE ANNOTATED DIALOGUE FILE 265

<turn n="25" speaker="A">
<dm n="36" sp-act="init">
<pause length="8s" /> now
</dm>
<decl n="37" sp-act="state">
there's a train at 14 30 from Manchester Picadilly <pause />
</decl>
<decl n="38" sp-act="state">
you arrive in London Euston for 17 hundred
</decl>
</turn>
<turn n="26" speaker="B">
<dm n="39" sp-act="acknowledge">
ok
</dm>
<decl n="40" sp-act="appreciate">
that's great
</decl>
</turn>
<turn n="27" speaker="A">
<dm n="41" sp-act="init">
now
</dm>
<decl n="42" sp-act="informIntent-hold">
i'm just going to check with you what's your cheap-
est fare available to you
</decl>
</turn>
<turn n="28" speaker="B">
<dm n="43" sp-act="accept">
sure <pause length="9s" />
</dm>
<decl n="44" sp-act="state">
i was quoted 19 pounds
</decl>
</turn>
<turn n="29" speaker="A">
<decl n="45" sp-act="state">
the 19 pounds is not available at the dates and times specified
</decl>
</turn>
<turn n="30" speaker="B">
<dm n="46" sp-act="acknowledge">
right

266 THE ANNOTATED DIALOGUE FILE

</dm>
</turn>
<turn n="31" speaker="A">
<decl n="47" sp-act="state">
you'd need to travel out an hour later on Satur-
day and come back on the 19 59 train in the evening on Monday
</decl>
</turn>
<turn n="32" speaker="B">
<dm n="48" sp-act="acknowledge">
right em
</dm>
</turn>
<turn n="33" speaker="A">
<decl n="49" sp-act="state">
if it has to be the dates and times that you speci-
fied to me <backchannel content="ok" />
</decl>
<decl n="50" sp-act="state">
that's a super advance return at 30 pounds
</decl>
</turn>
<turn n="34" speaker="B">
<frag n="51" sp-act="confirm">
30 em <pause />
</frag>
<imp n="52" sp-act="hold">
let me think <pause />
</imp>
<q-yn n="53" sp-act="req-modal">
do you mind if i cancel
</q-yn>
</turn>
<turn n="35" speaker="A">
<decl n="54" sp-act="confirm">
you don't want to book at all
</decl>
</turn>
<turn n="36" speaker="B">
<no n="55" sp-act="acknowledge">
no thank you
</no>
</turn>
<turn n="37" speaker="A">

THE ANNOTATED DIALOGUE FILE 267

<dm n="56" sp-act="init">
ok then sir
</dm>
<frag n="57" sp-act="bye">
<overlap type="start" /> bye
</frag>
</turn>
<turn n="38" speaker="B">
<frag n="58" sp-act="bye" >
bye <overlap type="end" />
</turn>
</dialogue>

Appendix C
The CSS Style Sheet

/∗
style sheet for displaying call centre dialogues
author: Martin Weisser
last edit: 11:34 12-Sep-2014
∗/
/∗ this controls the display for the dialogue container∗/
dialogue {background-color: #ffffdd; font-size: 1.25em;
margin-left: 2.5%;}
/∗ every turn is displayed as a block level element, i.e. with
spacing before and after ∗/
turn {display: block; color: black; margin-left: 5.5%;
line-height: 1.5em; text-indent: -3.5em;}
/∗ every turn with speaker attribute A has Agent: pre-pended
automatically, every turn by speaker B, Caller: ∗/
turn[speaker=A]:before {content: attr(n)" – Agent:";}
turn[speaker=B]:before {content: attr(n)" – Caller:";}
/∗ indent every syntactic tag and make it an inline element ∗/
address, decl, dm, frag, imp, no, yes, q-yn, q-wh {display:
inline; margin-left: .5%;}
/∗ every discourse marker (DM) gets an orange background and
white foreground∗/
dm { color: white; background-color: #ff8000;}
/∗ a dash is automatically appended to every DM ∗/

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

270 THE CSS STYLE SHEET

dm:after {content: " –";}
yes {color: white; background-color: blue;}
no {color: white; background-color: red;}
imp, frag {background-color: #d9ffff;}
frag {color: #4b4b4b;}
imp {color: red;}
imp:after {content: "!";}
decl {color: blue; background-color: white;}
yes:after, no:after, frag:after, decl:after, address:after
{content: ".";}
q-wh, q-yn {background-color: #f5f984;}
q-wh, [sp-act=reqInfo] {color: #009b00;}
q-yn {color: red;}
q-wh:after, q-yn:after {content: "?";}
/∗
change the punctuation mark after any reqInfo tag to a
question mark, overriding any previous mark
∗/
[sp-act=reqInfo]:after {content: "?";}
/∗
in order to be able to display empty elements, we have to
cheat because they don't normally get displayed.
what we can do here is to use the pseudo-element syntax for
text appearing after elements in order to insert the content
∗/
pause, unclear, overlap, backchannel {display: inline;
color: #808080;}
pause:after {content: "<pause length='"attr(length)"' />";}
unclear:after {content: "<unclear length='"attr(length)"' />";}
overlap:after {content: "<overlap type='"attr(type)"' />";}
backchannel:after {content: "<backchannel content='"attr
(content)"' />";}

References

Abney, Steven. (1996). Statistical Methods and Linguistics. In Klavans, J. & Resnik, P.
(Eds.). (1996). The Balancing Act. Cambridge, MA: MIT Press.

Anderson, Wendy & Corbett, John. (2009). Exploring English with Online Corpora: An
Introduction. Basingstoke: Palgrave Macmillan.

Anthony, Laurence. (2014). AntConc (Version 3.4.3) [Computer Software]. Tokyo,
Japan: Waseda University. Downloadable from http://www.laurenceanthony.net/

Atkins, Sue, Clear, Jeremy, & Ostler, Nicholas. (1992). Corpus Design Criteria. Literary
and Linguistic Computing, 7(1).

Barnbrook, Geoffrey. (1996). Language and Computers: A Practical Introduction to the
Computer Analysis of Language. Edinburgh: EUP.

Biber, Douglas. (1993). Representativeness in Corpus Design. Literary and Linguistic
Computing, 8(4).

Biber, Douglas, Conrad, Susan, & Reppen, Randi. (1998). Corpus Linguistics: Investiga-
ting Language Structure and Use. Cambridge: CUP.

Biber, Douglas, Johansson, Stig, Leech, Geoffrey, Conrad, Susan, & Finegan, Edward.
(1999). Longman Grammar of Spoken and Written English. London: Longman.

Burnard, Lou. (2009). The BNC in Numbers. http://www.natcorp.ox.ac.uk/corpus/
index.xml?ID=numbers. [last accessed: 12-Aug-2015]

Bondi, Marina & Scott, Mike. (Eds.). (2010). Keyness in Texts. Amsterdam: John Ben-
jamins.

Cheng, Winnie, Greaves, Chris, & Warren, Martin. (2008). A Corpus-driven Study of
Discourse Intonation: the Hong Kong Corpus of Spoken English (Prosodic). Amsterdam/
Philadelphia: John Benjamins.

Cloren, Jan. (1999). Tagsets. In van Halteren, H. (Ed.). (1999). Syntactic Wordclass Tag-
ging. Dordrecht: Kluwer Academic Publishers.

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.laurenceanthony.nethbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://www.laurenceanthony.net/
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.natcorp.ox.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}corpushbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}index.xml?ID=numbers
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.natcorp.ox.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}corpushbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}index.xml?ID=numbers
http://www.natcorp.ox.ac.uk/corpus/index.xml?ID=numbers
http://www.natcorp.ox.ac.uk/corpus/index.xml?ID=numbers

278 REFERENCES

Cotterill, Janet. (2008). How to Use Corpus Linguistics in Forensic Linguistics. In
O’Keeffe, A. & McCarthy, M. (Eds.) (2010). The Routledge Handbook of Corpus Lin-
guistics. London: Routledge.

Coxhead, Averil. (2002). The Academic Word List: A Corpus-based Word List for Aca-
demic Purposes. In Kettemann & Marko. (Eds.). (2002). Teaching and Learning by
Doing Corpus Analysis. Proceedings of the Fourth International Conference on Teach-
ing and Language Corpora, Graz 19–24 July, 2000. Amsterdam: Rodopi.

Davies, Mark. (2009). The 385+ Million Word Corpus of Contemporary American English
(1990–2008+): Design Architecture, and Linguistic Insights. International Journal of
Corpus Linguistics, 14(2).

Davies, Mark. (2010). The Corpus of Contemporary American English as the First Reliable
Monitor Corpus of English. Literary and Linguistic Computing, 25(4).

DeRose, Stephen. (1988). Grammatical Category Disambiguation by Statistical Optimiza-
tion. Computational Linguistics, 14(1), pp. 31–39.

Dybkjær, Laila, Hemsen, Holmer, & Minker, Wolfgang (Eds.). (2007). Evaluation of Text
and Speech Systems. Berlin/New York: Springer.

Edwards, Jane & Lampert, Martin. (Eds.). (1993). Talking Data: Transcription and Co-
ding in Discourse Research. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Fillmore, Charles. (1992). ‘Corpus Linguistics’ vs. ‘Computer-Aided Armchair Linguis-
tics’. In Svartvik, Jan. (Ed.). Directions in Corpus Linguistics. Berlin: DeGruyter,
pp. 35–60.

Friedl, Jeffrey. (2006). Mastering Regular Expressions (3rd edition). Sebastopol, CA:
O’Reilly.

Garside, Roger, Leech, Geoffrey, & McEnery, Anthony. (Eds.) (1997). Corpus Annota-
tion: Linguistic Information from Computer Text Corpora. London: Longman.

Garside, Roger & Smith, Nicholas. (1997). A Hybrid Grammatical Tagger: CLAWS4. In
Garside, R., Leech, G., & McEnery, A. (Eds.) (1997). Corpus Annotation: Linguistic
Information from Computer Text Corpora. London: Longman.

Gries, Stefan. (2009). Quantitative Corpus Linguistics with R: A Practical Introduction.
New York/London: Routledge.

Hoffmann, Sebastian, Evert, Stefan, Smith, Nicholas, Lee, David, & Berglund Prytz, Ylva.
(2008). Corpus Linguistics with BNCweb – A Practical Guide. Frankfurt: Peter Lang.

Hunston, Susan. (2002). Corpora in Applied Linguistics. Cambridge: CUP.
Hunston, Susan. (2008). How Can a Corpus Be Used to Explore Patterns? In O’Keeffe, A.

& McCarthy, M. (Eds.) (2010). The Routledge Handbook of Corpus Linguistics. London:
Routledge.

Illouz, Gabriel. (2000). Sublanguage Dependent Evaluation: Toward Predicting NLP Per-
formances. In Proceedings of the Second International Conference on Language Resources
and Evaluation (LREC), Athens, Greece. pp. 1251–1254.

Jenks, Christopher. (2011). Transcribing Talk and Interaction. Amsterdam:
John Benjamins.

Jurafsky, Daniel & Martin, James. (2009). Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computational Linguistics, and Speech Recognition
(2nd edition). Upper Saddle River, NJ: Prentice Hall.

Kennedy, Graeme. (1998). An Introduction to Corpus Linguistics. London: Longman.
Kettemann, Bernhard & Marko, Georg. (Eds.). (2002). Teaching and Learning by Doing

Corpus Analysis. Proceedings of the Fourth International Conference on Teaching and
Language Corpora, Graz 19–24 July, 2000. Amsterdam: Rodopi.

REFERENCES 279

Ladefoged, Peter. (2003). Phonetic Data Analysis: An Introduction to Fieldwork and
Instrumental Techniques. Oxford: Blackwell.

Lee, David. (2002). Genres, Registers, Text Types, Domains and Styles: Clarifying the
Concepts and Navigating a Path through the BNC Jungle. In Kettemann & Marko.
(Eds). (2002). Teaching and Learning by Doing Corpus Analysis. Proceedings of the
Fourth International Conference on Teaching and Language Corpora, Graz 19–24 July,
2000. Amsterdam: Rodopi.

Leech, Geoffrey, Rayson, Paul, & Wilson, Andrew. (2001). Word Frequencies in Written
and Spoken English. London: Longman.

Leech, Geoffrey & Smith, Nicholas, (2000). Manual to Accompany the British National
Corpus (Version 2) with Improved Word-class Tagging. UCREL: Lancaster Univer-
sity. Available from <http://www.natcorp.ox.ac.uk/docs/bnc2postag_manual.htm>. Last
accessed: 12-Aug-2015.

Leech, Geoffrey & Weisser, Martin. (2013). The SPAADIA Annotation Scheme. Available
from <http://martinweisser.org/publications/SPAADIA_Annotation_Scheme.pdf>

Leech, Geoffrey, Weisser, Martin, Wilson, Andrew, & Grice, Martine. (2000). Survey and
Guidelines for the Representation and Annotation of Dialogue. In Gibbon, Mertins,
& Moore. (Eds.). (2000). Handbook of Multimodal and Spoken Language Systems.
Dordrecht: Kluwer Academic Publishers.

Leech, Geoffrey, Myers, Greg, & Thomas, Jenny. (Eds.). (1995). Spoken English on
Computer. London: Longman.

Legal Information Institute. (n.d.). U.S.C. : Title 17 – COPYRIGHTS. <http://www.
law.cornell.edu/uscode/text/17>. [last accessed: 12-Aug-2015]

Lindquist, Hans. (2009). Corpus Linguistics and the Description of English. Edinburgh:
EUP.

Lüdeling, Anke & Kytö, Merja. (Eds.). (2008). Corpus Linguistics: An International
Handbook. Berlin: DeGruyter.

McCarthy, Michael & O’Keeffe, Anne. Historical Perspective. In O’Keeffe, A. &
McCarthy, M. (Eds.) (2010). The Routledge Handbook of Corpus Linguistics. London:
Routledge.

Manning, Christopher & Schütze, Hinrich. (1999). Foundations of Statistical Natural
Language Processing. Cambridge, MA: MIT Press.

McEnery, Tony & Hardie, Andrew. (2012). Corpus Linguistics: Method, Theory and Prac-
tice. Cambridge: CUP.

Meyer, Charles. (2002). English Corpus Linguistics: An Introduction. Cambridge: CUP.
Mikheev, Andrei. Text Segmentation. In Mitkov, R. (Ed.). (2003). The Oxford Handbook

of Computational Linguistics. Oxford: OUP.
Nattinger, James & DeCarrico, Jeanette. (1992). Lexical Phrases in Language Teaching.

Oxford: OUP.
Oakes, Michael. (1998). Statistics for Corpus Linguistics. Edinburgh: EUP.
O’Keeffe, Anne & McCarthy, Michael. (Eds.) (2010). The Routledge Handbook of Corpus

Linguistics. London: Routledge.
Ooi, V. (1998). Computer Corpus Lexicography. Edinburgh: EUP.
Paroubek, Patrick. (2007). Evaluating Part-Of-Speech Tagging and Parsing. In Dybkjær,

L., Hemsen, H., & Minker, W. (Eds.). (2007). Evaluation of Text and Speech Systems.
Berlin/New York: Springer.

Santorini, Beatrice. (1990). Part of Speech Tagging Guidelines for the Penn Treebank
Project (3rd Revision, 2nd Printing).

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.natcorp.ox.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}docshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}bnc2postag_manual.htm
http://www.natcorp.ox.ac.uk/docs/bnc2postag_manual.htm
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}publicationshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}SPAADIA_Annotation_Scheme.pdf
http://martinweisser.org/publications/SPAADIA_Annotation_Scheme.pdf
http://www.law.cornell.edu/uscode/text/17
http://www.law.cornell.edu/uscode/text/17
http://www.natcorp.ox.ac.uk/docs/bnc2postag_manual.htm

280 REFERENCES

Scott, Mike. (1997). PC Analysis of Key Words – and Key Key Words. System, 25(2), pp.
233–245.

Scott, Mike. (2010). Problems in Investigating Keyness, or Clearing the Undergrowth and
Marking Out Trails… In Bondi & Scott. (Eds.). (2010). Keyness in Texts. Amsterdam:
John Benjamins.

Schmid, Helmut. (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees.
Proceedings of International Conference on New Methods in Language Processing, Manch-
ester, UK.

Sinclair, John. (1991). Corpus, Concordance, Collocation. Oxford: OUP.
Sinclair, John. (2003) Reading Concordances. Harlow: Pearson Education Ltd.
Sinclair, John. (2005). Corpus and Text – Basic Principles. In Wynne, M. (Ed.).

Developing Linguistic Corpora: A Guide to Good Practice. Oxford: Oxbow Books:
pp. 1–16. Available from <http://www.ahds.ac.uk/creating/guides/linguistic-corpora/
chapter1.htm> [last accessed 12-Aug-2015].

Stubbs, Michael. (1995). Collocations and Semantic Profiles: On the Cause of the Trouble
with Quantitative Studies. Functions of Language, 2(1), pp. 23–55.

Stubbs, Michael. (1996). Text and Corpus Analysis. Oxford: Blackwell.
Taylor, A., Marcus, M., & Santorini, B. (2003). The Penn Treebank: An Overview. In

Abeillé, A. Treebanks. Springer Netherlands. pp. 5–22.
Thompson, H. & McKelvie, D. (1997). Hyperlink Semantics for Standoff Markup of

Read-only Documents. In Proceedings of SGML Europe’97. Available from <http://
www.ltg.ed.ac.uk/∼ht/sgmleu97.html> [last accessed 12-Aug-2015].

Tribble, Christopher. (2008). What Are Concordances and How Are They Used? In
O’Keeffe, A. & McCarthy, M. (Eds.) (2010). The Routledge Handbook of Corpus Lin-
guistics. London: Routledge.

van Halteren, Hans. (Ed.). (1999). Syntactic Wordclass Tagging. Dordrecht: Kluwer Aca-
demic Publishers.

Weisser, Martin. (2001). A Corpus-Based Methodology for Comparing and Evaluating
Native and Non-Native Speaker Accents. Unpublished PhD thesis: Lancaster Univer-
sity.

Weisser, Martin. (2009). Essential Programming for Linguistics. Edinburgh: EUP.
Weisser, Martin. (2013). ICEweb (Version 1.0) [Computer Software]. Downloadable

from http://martinweisser.org/ling_soft.html#iceweb.
Weisser, Martin. (2014). The Dialogue Annotation and Research Tool (DART) (Ver-

sion 1.0) [Computer Software]. Downloadable from http://martinweisser.org/ling_
soft.html#DART.

Weisser, Martin. (2014). The Simple Corpus Tool (Version 1.21) [Computer Software].
Downloadable from http://martinweisser.org/ling_soft.html#viewer.

Weisser, Martin. (2014). The Simple PoS Tagger (Version 1.0) [Computer Software].
Downloadable from http://martinweisser.org/ling_soft.html#tagger.

Wikipedia. (n.d.). Fair use. Available from <http://en.wikipedia.org/wiki/Fair_use>. [last
accessed: 12-Aug-2015]

WordBanks. (2009). Available from <http://wordbanks.harpercollins.co.uk/Docs/WBO/
WordBanksOnline_English.html> [last accessed 12-Aug-2015].

World Wide Web Consortium. (n.d.). Extensible Markup Language. http://www.w3.org/
XML/.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}creatinghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}guideshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}linguistic-corporahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}chapter1.htm
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}creatinghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}guideshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}linguistic-corporahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}chapter1.htm
http://www.ahds.ac.uk/creating/guides/linguistic-corpora/chapter1.htm
http://www.ahds.ac.uk/creating/guides/linguistic-corpora/chapter1.htm
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ltg.ed.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}~hthbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}sgmleu97.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ltg.ed.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}~hthbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}sgmleu97.html
http://www.ltg.ed.ac.uk/~ht/sgmleu97.html
http://www.ltg.ed.ac.uk/~ht/sgmleu97.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}ling_soft.html
http://martinweisser.org/ling_soft.html#iceweb
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}ling_soft.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}ling_soft.html
http://martinweisser.org/ling_soft.html#DART
http://martinweisser.org/ling_soft.html#DART
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}ling_soft.html
http://martinweisser.org/ling_soft.html#viewer
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}martinweisser.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}ling_soft.html
http://martinweisser.org/ling_soft.html#tagger
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}en.wikipedia.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}wikihbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}Fair_use
http://en.wikipedia.org//wiki/Fair_use
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}wordbanks.harpercollins.co.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}Docshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}WBOhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}WordBanksOnline_English.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}wordbanks.harpercollins.co.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}Docshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}WBOhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}WordBanksOnline_English.html
http://wordbanks.harpercollins.co.uk/Docs/WBO/WordBanksOnline_English.html
http://wordbanks.harpercollins.co.uk/Docs/WBO/WordBanksOnline_English.html
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.w3.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}XMLhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.w3.orghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}XMLhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://www.w3.org/XML/
http://www.w3.org/XML/
http://martinweisser.org/ling_soft.html#iceweb
http://martinweisser.org/ling_soft.html#viewer
http://martinweisser.org/ling_soft.html#tagger
http://en.wikipedia.org/wiki/Fair_use

REFERENCES 281

Wynne, Martin. (Ed.). (2005). Developing Linguistic Corpora: A Guide to Good Prac-
tice. Oxford: Oxbow Books. Available from <http://www.ahds.ac.uk/creating/guides/
linguistic-corpora/> [last accessed 12-Aug-2015].

Xiao, Richard. (2008).Well-known and Influential Corpora. In Lüdeling, A. & Kytö, M.
(Eds.). (2008). Corpus Linguistics: An International Handbook. Berlin: DeGruyter.

Zipf, George. (1949). Human Behavior and the Principle of Least Effort: An Introduction
to Human Ecology. Cambridge, MA: Addison-Wesley Press.

http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}creatinghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}guideshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}linguistic-corporahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http:hbox {{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}{protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}}www.ahds.ac.ukhbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}creatinghbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}guideshbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}linguistic-corporahbox {protect elax protect edef n{nreg}protect xdef OT1/Galliard/m/nreg/9.5 {OT1/Galliard/m/n/9.5 }OT1/Galliard/m/nreg/9.5 size@update enc@update char '057}
http://www.ahds.ac.uk/creating/guides/linguistic-corpora/
http://www.ahds.ac.uk/creating/guides/linguistic-corpora/

Index

American National Corpus
(ANC). See Chapter 2

annotation, 227
morpho-syntactic, 77, 101,

112, 143, 228
ditto tags, 148, 221

pragmatic, 24, 228,
238–239

speech acts, 24, 228, 238,
240, 245, 251, 252

scheme, 101
semantico-pragmatic, 228
syntactic, 274

c-unit, 194–195, 196, 215,
219, 237, 238

labelled bracketing, 229
s-unit, 201, 225

tags
HTML, 58, 64, 233
HTML/XML, 37
PoS, 101–105, 111–113,

122, 130–131, 135, 137,
142–144, 186, 188, 199,
218, 228

SGML, 232
XML, 201, 230–233,

236–239, 246, 249–251
XML

standoff, 248
XML declaration, 236, 237,

241, 249
AntConc. See software
archives (compressed)

.zip, 46, 51, 60–61, 63

balance, 18, 20, 25, 27, 30–32,
160, 223, 271

BNCweb. See web interfaces
British National Corpus (BNC).

See Chapter 2
BROWN Corpus. See Chapter 2

Cascading Style Sheets (CSS),
229

case sensitivity, 72, 78, 79
character sets. See encoding
Child Language Data Exchange

System (CHILDES), 256

Chinese. See languages (natural)
COCA. See web interfaces
Colligation, 200, 203, 205, 207,

212, 218, 224–225
collocation, 19, 29, 31, 67, 160,

196–198, 200, 203, 205,
207–212, 216, 220,
223–227, 255, 257, 272,
273, 274, 275

node, 203, 208, 209, 210,
211, 220, 223, 225, 272,
273, 274

compiling, 30, 43, 53
computational linguistics, 256
concordancers

line-based, 69, 88, 204
stream-based, 69, 88, 203

context menu, 35, 45, 53, 61, 62
corpora. See Chapter 2

types
diachronic, 15, 20, 25, 38,

271
general, 21, 29, 32, 114,

122, 169, 255, 274

Practical Corpus Linguistics: An Introduction to Corpus-Based Language Analysis, First Edition. Martin Weisser.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

284 INDEX

corpora (Continued)
monitor, 25, 30, 133, 178,

273
snapshot, 25
specific, 22
synchronic, 15

corpus (definition), 13
Corpus of Contemporary

American English
(COCA). See Chapter 2

co-text. See context
CSS. See Cascading Style Sheets

(CSS)
CSS concepts

attr(), 242, 245, 252, 253
background-color, 235, 240,

252
display, 234, 235, 240,

241–245, 249–253
font-style, 235
font-weight, 235
line-height, 241, 252
margin-left, 240, 241, 252
pseudo-class, 242, 244, 245
text-indent, 241, 252

DART. See software
data

definition, 3
datum, 3

derived form, 33
database management system

(DBMS), 15
de-lexicalised verbs, 220
dialogue types

task-oriented, 24, 207
transactional, 25

domain, 32, 153, 158, 169, 182

elements (SGML/HTML/
XML), 231

encoding, 38–39, 41, 42,
46–48, 56, 185, 233,
234, 236, 249, 271, 275

character sets, 14, 39, 41–42,
69, 85, 94, 233

8-bit, 39
ASCII, 39, 40, 94, 233, 271
double-byte, 39
Latin1, 39, 40
legacy, 39
non-Latin, 69
Unicode, 14, 39, 176, 275
UTF-8, 14, 39, 40, 42,

45–48, 185, 233, 236,
249

English. See languages (natural)
ethical/legal issues

copyright, 4, 33, 44, 45, 58,
179

fair use, 33
quoting, 6
surreptitious recording, 33

file managers, 51, 52, 60, 61,
63, 76, 110

file types/formats
audio

.mp3, 54

.wav, 54
extension, 37, 46, 47, 50, 71,

164, 165, 176
proprietary, 37–38, 40, 42,

58, 229
MS Word, 37, 58
PDF, 37–38, 42, 45, 52, 58,

62, 65
Postscript, 37
Word Perfect, 37

text
.htm(l), 37
.txt, 37, 46–48, 164, 171,

204
.xml, 37
plain text, 13, 37–38,

40–42, 46–48, 52, 58, 63,
66, 75, 78, 137, 230, 234

forensic linguistics, 22
formatting, 15, 37, 38, 41–45,

49, 50, 56, 59, 63, 64,
118, 166, 189, 190, 229,
231, 233–236, 241–242

dashes, 6, 105, 115, 244
m-dash, 7, 185
n-dash, 57

font, 14, 40, 235, 240, 244,
245, 252, 253

hyphen, 84, 98, 115, 119,
143, 147, 154, 180–182

issues, 6
layout, 34, 37–38, 42, 44–45,

48, 63, 64, 179, 231,
233–234

line breaks, 37, 47–49, 56,
63–64, 66, 69, 90, 118,
203, 231, 233, 238, 246,
250

normalising, 56
formulaic language/

constructions, 19, 67, 97,
103, 147, 191–193, 197,
199, 200, 208, 220

frequency
absolute, 156
frequency lists, 6, 50, 52, 57,

66, 67, 130, 149–179,
182–192, 198, 204, 221,
256, 274

lexical density, 160
n-grams, 31, 196–198,

203–207, 210, 215,
221–223, 227, 251

lexical bundles, 196, 197,
205, 208

lexical phrases, 196, 197
trigrams, 222

norming, 136, 175, 273
relative, 133, 134, 144, 156,

173, 175–178, 189–190,
208, 226

token, 52, 149–151, 153, 155,
170–171, 176, 180–181,
185, 187, 189, 191, 206,
222, 225–226, 275

type, 149–151, 155–157, 169,
173, 175, 177, 179, 180,
183–185, 187–192, 201,
206, 222, 225–226, 275

INDEX 285

genre, 4, 32, 36, 43, 51, 112,
146, 150, 158, 167, 169,
171, 176, 184, 191–192,
212, 275

differences, 6
German. See languages (natural)

hapax legomena, 183, 210,
223

header. See text (divisions), 35
header files, 247
headword, 131–132, 134,

143–144, 149, 161–162,
273

HTML (Hypertext Markup
Language), 229

ICEweb. See software
idioms. See formulaic language/

constructions, 147
information retrieval, 160

keyword-in-context (KWIC),
68–69, 73, 74, 76, 123,
137, 179, 203, 205, 219,
272, 273

Korean. See languages (natural)
KWIC. See keyword-in-context

language
type

agglutinated, 113
right-to-left, 14

language engineering, 256, 272
languages (natural)

Arabic, 14
Bulgarian, 113
Chinese, 14, 20, 39, 94, 113,

148
Czech, 20, 183
Dutch, 113
English, 26, 29, 39, 40, 45,

50, 82, 84–86, 94, 102,
103, 112, 113, 147, 148,
154, 156, 195, 200, 203,
223, 233, 271–274

American, 16, 20, 29, 87,
122, 127, 133, 135–136,
144, 203, 222, 271–272

Australian, 16, 17, 271
British, 87, 122, 127, 130,

135–136, 144, 272–273
Early Modern, 21
Elizabethan, 224
for Academic Purposes

(EAP), 22, 160, 184, 272
for Specific Purposes (ESP),

22, 160, 184
Hong Kong, 18, 150
Indian, 16
International, 19, 20, 137
Middle, 15, 30
New Zealand, 16, 275
Old, 14–15, 25, 30

Estonian, 113
Finnish, 113
French, 113, 148
Galician, 113
German, 113, 148, 195
Greek, 14
Hebrew, 14
Hindi, 14
Indic, 14
Italian, 113
Japanese, 14
Korean, 20, 39, 113
Latin, 113
Mongolian, 113
Polish, 20, 113
Portuguese, 113
Russian, 113
Slovak, 113
Spanish, 113
Swahili, 113
Vietnamese, 14

languages (programming)
Java, 83
Perl, 83, 88
Python, 83

lemma, 131–137, 144, 150–151,
161–162, 198, 273

lemma query, 135, 144

lemmatisation, 150, 273
lexicography, 29, 67, 79, 151
LOB Corpus. See Chapter 2

macros, 46–47
markup, 37, 40, 49, 71, 77, 179,

227–234, 239, 272, 273,
274

Document Object Model
(DOM), 233

Document Type Definition
(DTD), 232, 272

elements, 231–232, 234–238,
241, 243, 245, 249,
251–252

root element, 236
schema, 234
span, 233, 274

markup concepts
angle brackets, 35, 41, 63,

179, 231
attribute, 65, 231–232, 234,

239, 241–242, 245, 251
block-level, 235, 241–242,

252
inline, 233, 235, 242, 245,

252–253
valid, 234, 236, 237
well-formed, 233, 234, 236,

251, 272
meaning potential, 34, 138
meta-information, 34, 138,

273
speaker-related

age, 56, 184
education, 56
provenance, 56
sex, 56, 184
social class, 184

modality
deontic, 192
epistemic, 192

morphology
case, 113
compounds, 91, 129, 135,

147–148, 154, 183

286 INDEX

morphology (Continued)
conversion/zero-derivation,

102
pseudo-compounds, 6
stem, 91–92, 100, 102,

184
multi-word unit (MWU), 109,

148, 150, 219, 273

natural language processing
(NLP), 256

norms, 36, 149

phrase alternation, 128
plain text. See file types/formats
polysemy, 72, 102, 113, 123,

129, 137, 149, 150,
274

PoS tagging. See annotation
(morpho-syntactic)

production, 30
punctuation, 6, 85, 89–92, 94,

95, 104, 114, 115, 119,
128–129, 144, 147, 150,
185, 188, 194–196, 211,
213–214, 226, 228,
244–245, 248, 252, 255

query, 122–124, 126, 128–129,
131, 134–135, 138,
140–141, 143, 199–201,
203, 210–211, 215–218,
220–222

reception, 30
regex, 47, 82, 100, 123,

126–128, 180, 196, 198,
200, 203–204, 216, 218,
221, 237, 250–251

regex concepts
alternation, 89, 128
anchoring, 88

caret, 86, 90
backreference, 89, 237
bracketing, 89, 141
escaping, 90

backslash, 88, 90

greediness
greedy, 90
non-greedy, 90

lookaround, 91
lookahead, 91–92, 99
lookbehind, 91, 100

quantifiers, 86, 90, 98–99,
126, 141, 215

register, 4
appropriateness, 67
differences, 4, 6
types, 5

repositories
Oxford Text Archive (OTA),

26, 44, 45
Project Gutenberg, 44, 58,

92, 110, 206
text archives, 8, 44, 275

representation, 185, 228
electronic form, 44
form, 7, 14, 38, 149
orthographically transcribed,

1, 3, 15, 30, 54, 150, 226
phonetic, 77
phonetic transcription, 16
transliterated, 3, 15

representativeness, 18, 21, 24,
27–29, 31–32, 43, 67,
113, 130, 161, 205, 271,
274

sampling, 22, 25, 26, 29, 30, 32,
137, 142, 160, 172, 184,
206, 211, 216

search term, 57, 68, 73–75, 77,
79, 82–83, 88–89, 91–93,
99, 125, 128, 137, 160,
201–202, 205, 207, 208,
210, 211, 250, 273

slots, 128–129, 134, 201,
203

search-and-replace, 46–48,
56–57, 59, 65, 75, 81,
83, 89

SGML (Standard Generalized
Markup Language, 229

Simple Corpus Tool. See software

Simple PoS Tagger. See software
Simple Query Syntax, 128, 131
singletons. See hapax legomena
software

Adobe Acrobat, 58
AntConc, 69–79, 92, 94,

96–97, 151–156, 158,
163, 169–171, 175, 181,
186, 187, 203, 205–207,
208–211, 221, 224, 236,
239, 251, 255

DART (Dialogue Annotation
and Research Tool), 251

freeware, 7, 109
ICEweb, 50–52, 60
Simple Corpus Tool, 69, 204,

251
Simple PoS Tagger, 111–112
spreadsheets

MS Excel, 60, 63, 156–166,
177, 186–189, 203

OpenOffice Calc, 60, 156,
163–166, 177, 186–189,
203

text editors, 13, 37, 46–50,
52, 54, 57, 75, 138, 236,
237

gedit, 47
KomodoEdit, 47
Kwrite, 47
Notepad++, 47, 118, 171,

221, 249
TextEdit, 47
TextWrangler, 47, 57

word processors
MS Word, 38, 42, 46, 52,

58, 63, 65
OpenOffice Writer, 46, 58,

65
spelling variants, 15, 95,

128–129, 140–141, 235
spoken language features

backchannels, 55, 239, 245,
251, 253

discourse markers (DMs),
180, 182, 214, 219, 238,
239, 244, 246

INDEX 287

fillers, 15, 27, 31, 180, 182,
186

h-dropping, 185, 196
hesitation markers, 6, 55,

214
minimal responses, 55
overlap, 27, 55, 228, 239,

245, 251, 253
turn, 55, 179, 194, 201–202,

214, 219, 233, 237,
239–242, 244, 245,
249–252

stance, 192
statistics

chi-square(d), 169
dispersion, 178, 206, 272
expected frequency, 208
mutual information (MI),

208–212, 224, 273
observed frequency, 208
t-score, 208, 209, 211, 224,

275
stop words, 156, 158–160,

182
stop word lists, 156, 158–160

stylistics, 160
stylometry, 160
subcorpora, 34, 161–163,

167–169, 172–173, 176,

178, 179, 184, 188–190,
211, 275

symbolic, 112

taggers
CLAWS, 105, 109, 111–112,

118–119, 131, 142–143,
183, 191, 218–219

Simple PoS Tagger, 111–112
TreeTagger, 112, 113

tagging. See annotation
(morpho-syntactic)

tagsets, 103, 109, 111–114,
129, 131, 132, 143, 275

CLAWS, 109, 111, 143, 219
text

divisions
body, 35, 41, 59
front and back matter, 34,

36
header, 35, 40, 41, 56,

58–59, 138, 162, 230,
247, 272

headings, 35–37, 48–50,
63–64, 115, 119, 150,
153, 177, 179, 230, 232,
233

Text Encoding Initiative (TEI),
233, 248, 275

text type, 4, 43, 60, 112, 152,
156, 179, 199, 275

tokenisation, 113, 150, 183,
187, 191, 196, 255

web interfaces
BNCweb, 15, 34, 122–130,

132, 138, 142, 144, 147,
150, 160–169, 170,
172–174, 179, 185, 186,
188–191, 198–202, 205,
208–209, 210–211, 216,
218, 220, 224, 225, 230,
248, 255, 271

COCA, 15, 25, 30, 121, 122,
132–137, 144, 160,
178–179, 202–205,
211–212, 222, 246,
248

whitespace, 85, 87, 94, 95, 147,
150, 170, 246, 250

wildcards, 126, 128, 129, 131,
134, 141, 198, 199, 201

WWW, 8, 46, 229

XML (eXtensible Markup
Language), 230–239

Zipf, 157, 208, 257

