CH 2 : Functions

S2.1 : Functions and Their Graphs

Definition: A function $f($ or a mapping f) from a set A to a set B is a rule that assigns to each element a of A exactly one element b of B, The set A is called the domain of f and the set B is called the codomain of f. If f assigns b to a , then b is called the image of a under f. The subset of B comprised of all the images of elements of A under f (which is denoted by $f(A)$) is called the image of A under f (or the range of f).
We use $f: A \rightarrow B$ to mean that f is a function from A to B. We will write $f(\mathbf{a})=\mathbf{b}$ to indicate that \mathbf{b} is the image of a under f.

Example 2.1.1:

Let $A=\{2,4,5\}, B=\{1,2,3,6\}$, and $f: A \rightarrow B$ be the function defined by $f(2)=1, f(4)=3, f(5)=6$. Then the domain of f is $A=\{2,4,5\}$, the codomain of f is $B=\{1,2,3,6\}$, and the range of $f=\{1,3,6\}$.

Counter example:

Let $C=\{1,2,3,4\}$ and $D=\{2,3,4,5\}$, and let h be the rule defined by $h(1)=2, h(1)=4, h(2)=3, h(3)=5, h(4)=4$, then h is not a function from C to D since there are two different elements (2 and 4) belong to D are assigned to the same element 1 of $C_{\text {a }}$.

Example 2.1.2: Find the domain and the range of the function f defined by $f(x)=\sqrt{x+10}$.

Solution: For $y=f(x)=\sqrt{x+10}$ to be real , $x+10$ must be greater than or equal to 0 . That is , $x+10 \geq 0$ which means that $x \geq-10$ Thus the domain is $\{x: x \geq-10\}$ and the range is $\{y: y \geq 0\}$.

Exercises:

1) Let $A=\{2,4,5,7\}, B=\{1,2,3,6,9\}$, and $f: A \rightarrow B$ be the function defined by $f(2)=9, f(4)=3, f(5)=6, f(7)=2$. Find the domain of f, the codomain of f, and the range of f.
2) Let f be a function defined by $f(x)=\frac{1}{x+2}$. Find the domain and the range of the function f.
3) Find the domain and the range of the function f defined by $f(x)=\sqrt{2 x-9}$.

Definition: The graph of a function f is the line passing through all the points $(x, f(x))$ on the $x y$-plane.

Definition: The y-coordinate of the point where a graph of a function intersect the y-axis is called the y-intercept of the function.

Definition: The x-coordinate of a point where a graph of a function intersects the x-axis is called an x-intercept of the function.

Remarks:

1) The graph of any function f has at most one y-intercept. The graph of the function f has exactly one y-intercept if 0 is in the domain of the function f and the y-intercept is $f(0)$.
2) The graph of any function f has no x-intercept if there is no x in the domain of the function f such that $f(x)=0$.
The graph of a function f has one or more than one x-intercepts if $f(x)=0$ for some x in the domain of f, and the number of x-intercepts is the number of the distinct solutions of the equation $f(x)=0$.

Properties of Functions:

1) A function $y=f(x)$ is called an even function of x if $f(-x)=f(x), \forall x$.
2) A function $y=f(x)$ is called an odd function of x if $f(-x)=-f(x), \forall x$.

S2.2 : Linear Functions and their Graphs

Definition: A function $f: R \rightarrow R$ is called a linear function if f is defined by $f(x)=a x+b \quad, a \neq 0$
where a and b are real numbers.

Example 2.2.1: The function $f: R \rightarrow R$ defined by $f(x)=3 x+12$ is a linear function.
Example 2.2.2: The function $g: R \rightarrow R$ defined by $g(x)=x-0.2$ is a linear function.
Example 2.2.3: The function $h: R \rightarrow R$ defined by $h(x)=-\frac{3}{2} x+1$ is a linear function.
Example 2.2.4: Let $f: R \rightarrow R$ be the linear function defined by $f(x)=4 x+10$. Find the x-intercept and the y-intercept of f.

Solution: $f(x)=0 \Rightarrow 4 x+10=0$

$$
\begin{aligned}
& \Rightarrow \quad 4 x=-10 \\
& \Rightarrow \quad x=-\frac{10}{4}=-2.5
\end{aligned}
$$

Therefore the x-intercept is -2.5
$f(0)=10 \Rightarrow$ the y-intercept is 10.
Example 2.2.5: Let $g: R \rightarrow R$ be the linear function defined by $g(x)=\frac{1}{5} x-6$. Find the x-intercept and the y-intercept of g. Solution: $g(x)=0 \Rightarrow \frac{1}{5} x-6=0$

$$
\Rightarrow \quad \frac{1}{5} x=6 \quad \Rightarrow \quad x=30
$$

Therefore the x-intercept is 30
$g(0)=-6 \Rightarrow$ the y-intercept is -6.

Graph of a linear function:

The graph of a linear function f is the straight line passing through the two points $(\mathrm{a}, 0)$ and $(0, \mathrm{~b})$ where a is the x-intercept of the function f and b is the y-intercept of the function f.

Remark: The graph of any linear function f has exactly one x-intercept and has exactly one y-intercept.

Example 2.2.6: Let $f: R \rightarrow R$ be the linear function defined by $f(x)=-2 x+7$. Find the x-intercept and the y-intercept of f, then graph the function f.

Solution: $f(x)=0 \Rightarrow-2 x+7=0$

$$
\begin{aligned}
& \Rightarrow \quad-2 x=-7 \\
& \Rightarrow \quad x=\frac{-7}{-2}=3.5
\end{aligned}
$$

Therefore the \boldsymbol{x}-intercept is 3.5 .
$f(0)=7 \Rightarrow$ the y-intercept is 7.
Thus the graph of the function f is the straight line passing through the two points $(3.5,0)$ and $(0,7)$.
Thus the graph of the function f is the following graph

Example 2.2.7: Let $g: R \rightarrow R$ be the linear function defined by $g(x)=4 x+12$. Find the x-intercept and the y-intercept of g, then graph the function g.

Solution: $g(x)=0 \Rightarrow 4 x+12=0$

$$
\begin{aligned}
& \Rightarrow \quad 4 x=-12 \\
& \Rightarrow \quad x=\frac{-12}{4}=-3
\end{aligned}
$$

Therefore the x-intercept is -3 $g(0)=12 \Rightarrow$ the y-intercept is 12 .

Thus the graph of the function g is the straight line passing through the two points $(-3,0)$ and $(0,12)$.

Thus the graph of the function g is the following graph

Exercises:

1) Let $f: R \rightarrow R$ be the linear function defined by $f(x)=3 x-10$. Find the \boldsymbol{x}-intercept and the \boldsymbol{y}-intercept of f.
2) Let $g: R \rightarrow R$ be the linear function defined by $g(x)=0.3 x+0.7$. Find the x-intercept and the y-intercept of g.
3) Let $f: R \rightarrow R$ be the linear function defined by $f(x)=-4 x+8$. Find the x-intercept and the y-intercept of f, then graph the function f.
4) Let $g: R \rightarrow R$ be the linear function defined by $g(x)=5 x+15$. Find the x-intercept and the y-intercept of g, then graph the function g.

S2.3 : Some well-known Functions and their Graphs

1) A function $f(x)=\mathrm{c}$ where c is a fixed number is called a constant function.

Example 2.3.1: The function $y=f(x)=1$ is a constant function and its graph is

2) The absolute value function $y=f(x)=|x|$ is defined by the formula

$$
y=f(x)=|x|=\left\{\begin{array}{rll}
x & \text { if } & x \geq 0 \\
-x & \text { if } & x<0
\end{array}\right.
$$

and its graph is

Remember that $|x|=\sqrt{x^{2}}$.
3) A function $y=f(x)=x^{r}$ where r is a real number is called a power function.

Example 2.3.2:

The function $y=f(x)=x^{2}$ is a power function (which is also a quadratic function) and its graph is

Example 2.3.3: The function $y=f(x)=x^{3}$ is a power function and its graph is

Example: 2.3.4: The function $y=f(x)=\sqrt{x}$ is a power function and its graph is

Example 2.3.5: The function $y=f(x)=\frac{1}{x}$ is a power function and its graph is

4) Let a be a positive real number other than 1. The function $y=f(x)=\underline{a}^{x}$ is called the exponential function with base a.

Example 2.3.6: Graph the exponential function $y=2^{x}$

Answer: To draw the graph of $y=2^{x}$, we can make use of a table give values for x and find the corresponding values for y

$$
\begin{array}{ll}
x=0 & \text { gives } \quad y=2^{0}=1 \\
x=1 & \text { gives } \\
y=2^{1}=2 \\
x=-1 & \text { gives } y=2^{-1}=\frac{1}{2} .
\end{array}
$$

Following the process we make the table

x	-4	-3	-2	-1	0	1	2	3	4
2^{x}	0.0625	0.125	0.25	0.5	1	2	4	8	16

Example 2.3.7: The function $y=5^{x}$ is an exponential function and its graph is

Answer:

$$
\begin{array}{lll}
x=0 & \text { gives } & y=5^{0}=\mathbf{1} \\
x=1 & \text { gives } & y=5^{1}=5, \\
x=-1 & \text { gives } & y=5^{-1}=0.2
\end{array}
$$

x	-2	-1	0	1	2
5^{x}	0.04	0.2	1	5	25

Exercise 2.3.8: Graph the exponential function $y=10^{x}$.
The properties of exponential function and their graph

- The domain is R (set of real numbers).
- The range is R^{+}(set of positive real numbers).
- The graph is always continuous (no break in the graph) .

Rules of Exponents: If $\mathrm{a}>0$ and $\mathrm{b}>0$, the following rules of exponent should be hold for all real numbers x and y :

1. $a^{x} \times a^{y}=a^{x+y}$
2. $\frac{a^{x}}{a^{y}}=a^{x-y}$
3. $a^{0}=1$
4. $\frac{1}{a^{x}}=a^{-x}$
5. $\left(a^{x}\right)^{y}=\left(a^{y}\right)^{x}=a^{x y}$
6. $(a b)^{x}=a^{x} b^{x}$
7. $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
*5) The function $y=e^{x}$ is called the natural exponential function whose base is $e \cong 2.718281828$, and its graph is

x	-2	-1	0	1	2
e^{x}	0.1353	0.3679	1	2.718	7.389

Remark: Graph of e^{x} and e^{-x} are reflections of each other .
6) The function $y=\log _{\mathrm{b}} x$ is called the logarithm function with base b where b is a positive number $\neq \mathbb{1}$; and $x>0$, and the graph of $y=\log _{\mathrm{b}} x$ where b is greater than 1 is the following graph

Remark: $y=\log _{\mathrm{b}} x$ means that $x=\mathbf{b}^{y}$.
Example 2.3.9: The function $y=\log _{2} x$ is a logarithm function with base 2 and its graph is

x	0.25	0.5	1	2	4
$y=\log _{2} x$	-2	-1	0	1	2

Example 2.3.10: Draw the graph of $\log _{10} x$.

Answer:

x	0.5	1	5	10	15	20	50	100
$y=\log _{10} x$	-0.301	0	0.699	1	1.176	1.301	1.699	2

Rules of logarithm: For $x>0$ and $y>0$, and b is a positive number $\neq 1$ we have the following rules:

1. $\log _{\mathrm{b}} x y=\log _{\mathrm{b}} x+\log _{\mathrm{b}} y$
2. $\log _{\mathrm{b}} \frac{x}{y}=\log _{\mathrm{b}} x-\log _{\mathrm{b}} y$
3. $\log _{\mathrm{b}} x^{y}=y \cdot \log _{\mathrm{b}} x$
4. $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$, where c can be any base.

Remarks:

- The logarithm of any number to the base of the same number will be $1\left(\log _{b} b=1, \log _{5} 5=1\right.$ etc \ldots).
(1 Logarithm of 1 to any base is $0\left(\log _{\mathrm{b}} 1=0, \log _{3} 1=0\right.$ etc $\left.\ldots\right)$.
- The logarithm function is defined only for positive numbers .
- The domain of the logarithm function is R^{+}.
- The range of the logarithm function is \mathbb{R}.

7) The logarithm function with base e is called the natural logarithm function and will be denoted by $y=\ln x$ (i.e. $y=\log _{\mathrm{e}} x=\ln x$) and its graph is

Remarks:

- $\ln \mathrm{e}=1 \quad\left(\right.$ since $\left.\ln \mathrm{e}=\log _{\mathrm{e}} \mathrm{e}\right)$
- $\ln 1=0$

Exercise 2.3.12 : Draw the graph for the following logarithmic functions:

1. $\log _{5} x$
2. $\log _{8} x$
3. $\log _{3} x$
8) A polynomial function is defined as

$$
\begin{aligned}
& y=f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad \text { where } \\
& a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} \quad \text { are constants. }
\end{aligned}
$$

Example 2.3.13: The function $y=x^{2}-5 x+6$ is a polynomial function.

Algebra of Functions

Definition: The sum, difference, product, and quotient of the functions f and g are the functions defined by
$(f+g)(x)=f(x)+g(x) \quad$ sum function
$(f-g)(x)=f(x)-g(x) \quad$ difference function
$(f . g)(x)=f(x) \cdot g(x) \quad$ product function
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad g(x) \neq 0 \quad$ quotient function
The domain of each function is the intersection of the domains of f and g, with the exception that the values of x where $g(x)=0$ must be excluded from the domain of the quotient function.

Definition: Let f and g be functions, then $f \circ g$ is called the composite of g and f and is defined by the equation
$(f \circ g)(x)=f(g(x))$.
The domain of $f \circ g$ is the set
$\mathrm{D}=\{x \in$ domain $g: g(x) \in$ domain $f\}$.
Example 2.3.14: Let f and g be the functions defined by $f(x)=x-7$ and $g(x)=x^{2}+5$. Find the functions $f+g, f-g$ $, f . g, \frac{g}{f}, f \circ g, g \circ f$ and find their domains.

Solution:

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=x-7+x^{2}+5=x^{2}+x-2 \\
& (f-g)(x)=f(x)-g(x)=x-7-x^{2}-5=-x^{2}+x-12 \\
& (f \cdot g)(x)=f(x) \cdot g(x)=(x-7) \cdot\left(x^{2}+5\right)=x^{3}-7 x^{2}+5 x-35 \\
& \left(\begin{array}{r}
\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}=\frac{x^{2}+5}{x-7} \\
(f \circ g)(x)=f(g(x))=f\left(x^{2}+5\right)=x^{2}+5-7=x^{2}-2 \\
(g \circ f)(x)=g(f(x))
\end{array}\right. \\
& \begin{aligned}
&\left(g(x-7)=(x-7)^{2}+5\right. \\
&=x^{2}-14 x+49+5=x^{2}-14 x+54
\end{aligned}
\end{aligned}
$$

The domain of $f=\mathbf{R}$
The domain of $g=\mathrm{R}$
The intersection of the domains of f and g is \mathbf{R}
Thus the domain of each of the functions $f+g, f-g, f . g, f \circ g$, and $g \circ f$ is \mathbf{R}.

The domain of $\frac{g}{f}=\mathrm{R}-\{7\}$.
Remark: The domain of any polynomial function is R.
Example 2.3.15: Let f and g be the functions defined by $f(x)=x+5$ and $g(x)=x^{2}-3$, Find $f \circ g(x), g \circ f(x)$, $f \circ g(3)$ and $g \circ f(3)$.
Solution: $f \circ g(x)=f(g(x))=f\left(x^{2}-3\right)$

$$
\begin{aligned}
& =x^{2}-3+5 \\
& =x^{2}+2
\end{aligned}
$$

$g \circ f(x)=g(f(x))=g(x+5)$

$$
\begin{aligned}
& =(x+5)^{2}-3 \\
& =x^{2}+10 x+25-3 \\
& =x^{2}+10 x+22
\end{aligned}
$$

$f \circ g(3)=(3)^{2}+2=9+2=11$
$g \circ f(3)=(3)^{2}+10(3)+22=9+30+22=61$

Exersice 2.3.16: Let f and g be the functions defined by $f(x)=x-4$ and $g(x)=\sqrt{x}$. Find the functions $f+g, f-g$ $, f . g, \frac{f}{g}$ and find their domains.

S2.4 : Unit Circle and Basic Trigonometric Functions

Definition 1: Let x be any real number and let U be the unit circle with equation $a^{2}+b^{2}=1$ (the centre of the circle U is the point $O(0,0)$, and the radius of the circle U equals 1). Start from the point $\mathrm{A}(1,0)$ on U and proceed counterclockwise if x is positive and clockwise if x is negative around the unit circle U until an arc length of $|x|$ has been covered. Let $\mathrm{P}(a, b)$ be the point at the terminal end of the arc . The measurement of the angle AOP is x radians .

If x radians $=t^{\circ}$ (degrees),
then the following six
trigonometric functions of x are defined in terms of the coordinates of the circular point $\mathrm{P}(a, b)$:

1) $y=\sin x=b=\sin (x$ radians $)=\sin (t$ degrees $)=\sin t^{\circ}$
2) $y=\cos x=a=\cos (x$ radians $)=\cos (t$ degrees $)=\cos t^{\circ}$
3) $y=\tan x=\frac{b}{a} \quad(a \neq 0)$

$$
=\tan (x \text { radians })=\tan (t \text { degrees })=\tan t^{\circ}
$$

4) $y=\cot x=\frac{a}{b} \quad(b \neq 0)$

$$
=\cot (x \text { radians })=\cot (t \text { degrees })=\cot t^{\circ}
$$

5) $y=\sec x=\frac{1}{a} \quad(a \neq 0)$

$$
=\sec (x \text { radians })=\sec (t \text { degrees })=\sec t^{\circ}
$$

6) $y=\csc x=\frac{1}{b} \quad(b \neq 0)$
$=\csc (x$ radians $)=\csc (t$ degrees $)=\csc t$
Remark 1: Definition 1 uses the standard function notation, $y=f(x)$, with f replaced by the name of a particular trigonometric function. For example, $y=\cos x$ actually means $y=\cos (x)$ and $\cos t^{\circ}$ actually means $\cos \left(t^{\circ}\right)$.

Remark 2: Remember that $t^{\circ}=t \times \frac{\pi}{180}$ radians and x radians $=\left(x \times \frac{\mathbf{1 8 0}}{\pi}\right)^{\circ}$.

Theorem 1:

For any real number x we have the following trigonometric identities:

1) $\csc x=\frac{1}{\sin x}$.
2) $\sec x=\frac{1}{\cos x}$.
3) $\cot x=\frac{1}{\tan x}$.
4) $\tan x=\frac{\sin x}{\cos x}$.
5) $\cot x=\frac{\cos x}{\sin x}$.
6) $\sin (-x)=-\sin (x)$.
7) $\cos (-x)=\cos (x)$.
8) $\tan (-x)=-\tan (x)$.
9) $\cot (-x)=-\cot (x)$.
10) $\sin ^{2} x+\cos ^{2} x=1$.
11) $\sec ^{2} x=\tan ^{2} x+1$.
12) $\csc ^{2} x=\cot ^{2} x+1$.

S2.5: Graphs of Sine and Cosine Functions

2.5.1: Table for values of $\sin x, \cos x$, and $\tan x$ for selected values

 of x| Values of | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \cdots | Degrees | 0 | 30 | 45 | 60 | 90 |
| | Radians | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ |
| $\because \sin x$ | 0 | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1 | |
| $\cdots \cos x$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | 0 | |
| $\cdots \tan x$ | 0 | $\frac{1}{\sqrt{3}}$ | 1 | $\sqrt{3}$ | Undefined | |

Values of x	120	135	150	180	270
	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$
$\therefore \therefore \sin x$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
$\because \cos x$	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0
$\cdots \tan x$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	Undefined

Definition: A function f is periodic if there exists a positive real number p sucth that $f(x)=f(x+p)$ for all x in the domain of f.
The smallest such positive number p is the period of f.

Remarks:

1) The functions $\sin x, \cos x, \sec x$, and $\csc x$ are periodic functions with period 2π.
2) The functions $\tan x$ and $\cot x$ are periodic functions with period π.

2.5.2: The Graph of $\sin x$

The graph of the function $y=\sin x$ is the line passing through all the points $(x, \sin x)$ on the $x y$-plane.

The graph of the function $y=\sin x$ for the interval $[0,2 \pi]$ is the line passing through the points $(0,0),\left(\frac{\pi}{6}, \frac{1}{2}\right),\left(\frac{\pi}{2}, 1\right),\left(\frac{5 \pi}{6}, \frac{1}{2}\right),(\pi, 0)$, $\left(\frac{7 \pi}{6},-\frac{1}{2}\right),\left(\frac{3 \pi}{2},-1\right),\left(\frac{11 \pi}{6},-\frac{1}{2}\right)$, and $(2 \pi, 0)$ which is shown in the following figure

The graph of the function $y=\sin x$ is shown in the following figure

The period of the function $y=\sin x$ is 2π. The domain of the function $y=\sin x$ is the set of all real numbers R .

The range of the function $y=\sin x$ is the interval $[-1,1]$.

2.5.3: The Graph of $\cos x$

The graph of the function $y=\cos x$ is the line passing through all the points $(x, \cos x)$ on the $x y$-plane.

The graph of the function $y=\cos x$ for the interval $[0,2 \pi]$ is the line Passing through the points $(0,1),\left(\frac{\pi}{3}, \frac{1}{2}\right),\left(\frac{\pi}{2}, 0\right),\left(\frac{2 \pi}{3},-\frac{1}{2}\right),(\pi,-1)$, $\left(\frac{4 \pi}{3},-\frac{1}{2}\right),\left(\frac{3 \pi}{2}, 0\right),\left(\frac{5 \pi}{3}, \frac{1}{2}\right)$, and $(2 \pi, 1)$ which is shown in the following figure

The graph of the function $y=\cos x$ is shown in the following figure

The period of the function $y=\cos x$ is 2π.
The domain of the function $y=\cos x$ is the set of all real numbers R .
The range of the function $y=\cos x$ is the interval $[-1,1]$.

2.5.4: The Graphs of $\tan x$ and $\sec x$

The graph of the function $y=\tan (x)$ is the line passing through all the points $(x, \tan x)$ on the $x y$-plane.

The graph of $y=\tan (x)$ is shown in the following figure

The graph of $y=\sec (x)$ is shown in the following figure

Exercise: Draw the graph of the following trigonometric functions:

1) $y=\csc (x)$
2) $y=\cot (x)$
