S2.1 : Functions and Their Graphs

Definition: A function \(f \) (or a mapping \(f \)) from a set \(A \) to a set \(B \) is a rule that assigns to each element \(a \) of \(A \) exactly one element \(b \) of \(B \). The set \(A \) is called the domain of \(f \) and the set \(B \) is called the codomain of \(f \). If \(f \) assigns \(b \) to \(a \), then \(b \) is called the image of \(a \) under \(f \). The subset of \(B \) comprised of all the images of elements of \(A \) under \(f \) (which is denoted by \(f(A) \)) is called the image of \(A \) under \(f \) (or the range of \(f \)).

We use \(f : A \to B \) to mean that \(f \) is a function from \(A \) to \(B \). We will write \(f(a) = b \) to indicate that \(b \) is the image of \(a \) under \(f \).

Example 2.1.1:
Let \(A = \{2, 4, 5\} \), \(B = \{1, 2, 3, 6\} \), and \(f : A \to B \) be the function defined by \(f(2) = 1, f(4) = 3, f(5) = 6 \). Then the domain of \(f \) is \(A = \{2, 4, 5\} \), the codomain of \(f \) is \(B = \{1, 2, 3, 6\} \), and the range of \(f \) is \(\{1, 3, 6\} \).

Counter example:
Let \(C = \{1, 2, 3, 4\} \) and \(D = \{2, 3, 4, 5\} \), and let \(h \) be the rule defined by \(h(1) = 2, h(1) = 4, h(2) = 3, h(3) = 5, h(4) = 4 \), then \(h \) is not a function from \(C \) to \(D \) since there are two different elements (2 and 4) belong to \(D \) are assigned to the same element 1 of \(C \).

Example 2.1.2: Find the domain and the range of the function \(f \) defined by \(f(x) = \sqrt{x+10} \).

Solution: For \(y = f(x) = \sqrt{x+10} \) to be real, \(x+10 \) must be greater than or equal to 0. That is, \(x+10 \geq 0 \) which means that \(x \geq -10 \). Thus the domain is \(\{x : x \geq -10\} \) and the range is \(\{y : y \geq 0\} \).

Exercises:

1) Let \(A = \{2, 4, 5, 7\} \), \(B = \{1, 2, 3, 6, 9\} \), and \(f : A \to B \) be the function defined by \(f(2) = 9, f(4) = 3, f(5) = 6, f(7) = 2 \). Find the domain of \(f \), the codomain of \(f \), and the range of \(f \).
2) Let \(f \) be a function defined by \(f(x) = \frac{1}{x+2} \). Find the domain and the range of the function \(f \).

3) Find the domain and the range of the function \(f \) defined by \(f(x) = \sqrt{2x-9} \).

Definition: The graph of a function \(f \) is the line passing through all the points \((x, f(x))\) on the \(xy \)-plane.

Definition: The \(y \)-coordinate of the point where a graph of a function intersect the \(y \)-axis is called the \(y \)-intercept of the function.

Definition: The \(x \)-coordinate of a point where a graph of a function intersects the \(x \)-axis is called an \(x \)-intercept of the function.

Remarks:

1) The graph of any function \(f \) has at most one \(y \)-intercept. The graph of the function \(f \) has exactly one \(y \)-intercept if 0 is in the domain of the function \(f \) and the \(y \)-intercept is \(f(0) \).

2) The graph of any function \(f \) has no \(x \)-intercept if there is no \(x \) in the domain of the function \(f \) such that \(f(x) = 0 \).

The graph of a function \(f \) has one or more than one \(x \)-intercepts if \(f(x) = 0 \) for some \(x \) in the domain of \(f \), and the number of \(x \)-intercepts is the number of the distinct solutions of the equation \(f(x) = 0 \).

Properties of Functions:

1) A function \(y = f(x) \) is called an even function of \(x \) if \(f(-x) = f(x) \), \(\forall x \).

2) A function \(y = f(x) \) is called an odd function of \(x \) if \(f(-x) = -f(x) \), \(\forall x \).

S2.2 : Linear Functions and their Graphs

Definition: A function \(f : R \rightarrow R \) is called a linear function if \(f \) is defined by \(f(x) = ax + b \), \(a \neq 0 \)

where \(a \) and \(b \) are real numbers.
Example 2.2.1: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 3x + 12$ is a linear function.

Example 2.2.2: The function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x) = x - 0.2$ is a linear function.

Example 2.2.3: The function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x) = -\frac{3}{2}x + 1$ is a linear function.

Example 2.2.4: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function defined by $f(x) = 4x + 10$. Find the x-intercept and the y-intercept of f.

Solution: $f(x) = 0 \Rightarrow 4x + 10 = 0$
$\quad \quad \quad \quad \Rightarrow 4x = -10$
$\quad \quad \quad \quad \Rightarrow x = -\frac{10}{4} = -2.5$

Therefore the x-intercept is -2.5

$f(0) = 10 \Rightarrow$ the y-intercept is 10.

Example 2.2.5: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function defined by $g(x) = \frac{1}{5}x - 6$. Find the x-intercept and the y-intercept of g.

Solution: $g(x) = 0 \Rightarrow \frac{1}{5}x - 6 = 0$
$\quad \quad \quad \quad \Rightarrow \frac{1}{5}x = 6 \Rightarrow x = 30$

Therefore the x-intercept is 30

$g(0) = -6 \Rightarrow$ the y-intercept is -6.

Graph of a linear function:

The graph of a linear function f is the straight line passing through the two points $(a, 0)$ and $(0, b)$ where a is the x-intercept of the function f and b is the y-intercept of the function f.

Remark: The graph of any linear function f has exactly one x-intercept and has exactly one y-intercept.
Example 2.2.6: Let $f: \mathbb{R} \to \mathbb{R}$ be the linear function defined by $f(x) = -2x + 7$. Find the x-intercept and the y-intercept of f, then graph the function f.

Solution:

$$f(x) = 0 \Rightarrow -2x + 7 = 0$$

$$\Rightarrow -2x = -7$$

$$\Rightarrow x = \frac{-7}{-2} = 3.5$$

Therefore the x-intercept is 3.5.

$$f(0) = 7 \Rightarrow \text{the } y\text{-intercept is } 7.$$

Thus the graph of the function f is the straight line passing through the two points $(3.5, 0)$ and $(0, 7)$.

Thus the graph of the function f is the following graph

![Graph of f](image)

Example 2.2.7: Let $g: \mathbb{R} \to \mathbb{R}$ be the linear function defined by $g(x) = 4x + 12$. Find the x-intercept and the y-intercept of g, then graph the function g.

Solution:

$$g(x) = 0 \Rightarrow 4x + 12 = 0$$

$$\Rightarrow 4x = -12$$

$$\Rightarrow x = \frac{-12}{4} = -3$$

Therefore the x-intercept is -3.

$$g(0) = 12 \Rightarrow \text{the } y\text{-intercept is } 12.$$
Thus the graph of the function g is the straight line passing through the two points $(-3, 0)$ and $(0, 12)$.

Thus the graph of the function g is the following graph

![Graph of the function g](image)

Exercises:

1) Let $f : \mathbb{R} \to \mathbb{R}$ be the linear function defined by $f(x) = 3x - 10$. Find the x-intercept and the y-intercept of f.

2) Let $g : \mathbb{R} \to \mathbb{R}$ be the linear function defined by $g(x) = 0.3x + 0.7$. Find the x-intercept and the y-intercept of g.

3) Let $f : \mathbb{R} \to \mathbb{R}$ be the linear function defined by $f(x) = -4x + 8$. Find the x-intercept and the y-intercept of f, then graph the function f.

4) Let $g : \mathbb{R} \to \mathbb{R}$ be the linear function defined by $g(x) = 5x + 15$. Find the x-intercept and the y-intercept of g, then graph the function g.

S2.3: Some well-known Functions and their Graphs

1) A function $f(x) = c$ where c is a fixed number is called a constant function.
Example 2.3.1: The function \(y = f(x) = 1 \) is a constant function and its graph is

2) The absolute value function \(y = f(x) = |x| \) is defined by the formula

\[
y = f(x) = |x| = \begin{cases} x & \text{if} \quad x \geq 0 \\ -x & \text{if} \quad x < 0
\end{cases}
\]

and its graph is

Remember that \(|x| = \sqrt{x^2} \).

3) A function \(y = f(x) = x^r \) where \(r \) is a real number is called a power function.

Example 2.3.2:

The function \(y = f(x) = x^2 \) is a power function (which is also a quadratic function) and its graph is
Example 2.3.3: The function $y = f(x) = x^3$ is a power function and its graph is

Example 2.3.4: The function $y = f(x) = \sqrt{x}$ is a power function and its graph is
Example 2.3.5: The function \(y = f(x) = \frac{1}{x} \) is a power function and its graph is

![Graph of \(\frac{1}{x} \)](image)

4) Let \(a \) be a positive real number other than 1. The function \(y = f(x) = a^x \) is called the exponential function with base \(a \).

Example 2.3.6: Graph the exponential function \(y = 2^x \)

Answer: To draw the graph of \(y = 2^x \), we can make use of a table giving values for \(x \) and find the corresponding values for \(y \)

\[
\begin{align*}
x = 0 & \quad \text{gives} \quad y = 2^0 = 1, \\
x = 1 & \quad \text{gives} \quad y = 2^1 = 2, \\
x = -1 & \quad \text{gives} \quad y = 2^{-1} = \frac{1}{2}.
\end{align*}
\]

Following the process we make the table

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^x)</td>
<td>0.0625</td>
<td>0.125</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Example 2.3.7: The function $y = 5^x$ is an exponential function and its graph is

Answer:

$x = 0$ gives $y = 5^0 = 1$,

$x = 1$ gives $y = 5^1 = 5$,

$x = -1$ gives $y = 5^{-1} = 0.2$

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5^x</td>
<td>0.04</td>
<td>0.2</td>
<td>1</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Exercise 2.3.8: Graph the exponential function $y = 10^x$.

The properties of exponential function and their graph

- The domain is \mathbb{R} (set of real numbers).
- The range is \mathbb{R}^+ (set of positive real numbers).
- The graph is always continuous (no break in the graph).
Rules of Exponents: If \(a > 0 \) and \(b > 0 \), the following rules of exponent should be hold for all real numbers \(x \) and \(y \):

1. \(a^x \times a^y = a^{x+y} \)
2. \(\frac{a^x}{a^y} = a^{x-y} \)
3. \(a^0 = 1 \)
4. \(\frac{1}{a^x} = a^{-x} \)
5. \((a^x)^y = (a^y)^x = a^{xy} \)
6. \((ab)^x = a^x b^x \)
7. \(\left(\frac{a}{b} \right)^x = \frac{a^x}{b^x} \)

5) The function \(y = e^x \) is called the natural exponential function whose base is \(e \approx 2.718281828 \), and its graph is

<table>
<thead>
<tr>
<th>(x)</th>
<th>(e^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0.1353</td>
</tr>
<tr>
<td>-1</td>
<td>0.3679</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2.718</td>
</tr>
<tr>
<td>2</td>
<td>7.389</td>
</tr>
</tbody>
</table>

Remark: Graph of \(e^x \) and \(e^{-x} \) are reflections of each other.

6) The function \(y = \log_b x \) is called the logarithm function with base \(b \) where \(b \) is a positive number \(\neq 1 \); and \(x > 0 \), and the graph of \(y = \log_b x \) where \(b \) is greater than 1 is the following graph.
Remark: $y = \log_b x$ means that $x = b^y$.

Example 2.3.9: The function $y = \log_2 x$ is a logarithm function with base 2 and its graph is

<table>
<thead>
<tr>
<th>x</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \log_2 x$</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graph of $y = \log_2 x$](image)

Example 2.3.10: Draw the graph of $\log_{10} x$.

Answer:

<table>
<thead>
<tr>
<th>x</th>
<th>0.5</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \log_{10} x$</td>
<td>-0.301</td>
<td>0</td>
<td>0.699</td>
<td>1</td>
<td>1.176</td>
<td>1.301</td>
<td>1.699</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graph of $y = \log_{10} x$](image)

Rules of logarithm: For $x > 0$ and $y > 0$, and b is a positive number $\neq 1$ we have the following rules:

1. $\log_b x y = \log_b x + \log_b y$
2. $\log_b \frac{x}{y} = \log_b x - \log_b y$
3. $\log_b x^y = y \cdot \log_b x$
4. $\log_b a = \frac{\log_c a}{\log_c b}$, where c can be any base.
Remarks:

- The logarithm of any number to the base of the same number will be 1 (\(\log_b b = 1\), \(\log_5 5 = 1\) etc ...).
- Logarithm of 1 to any base is 0 (\(\log_b 1 = 0\), \(\log_5 1 = 0\) etc ...).
- The logarithm function is defined only for positive numbers.
- The domain of the logarithm function is \(\mathbb{R}^+\).
- The range of the logarithm function is \(\mathbb{R}\).

7) The logarithm function with base \(e\) is called the natural logarithm function and will be denoted by \(y = \ln x\) (i.e. \(y = \log_e x = \ln x\)) and its graph is

![Graph of \(y = \ln x\)]

Remarks:
- \(\ln e = 1\) (since \(\ln e = \log_e e\))
- \(\ln 1 = 0\)

Exercise 2.3.12: Draw the graph for the following logarithmic functions:
1. \(\log_5 x\)
2. \(\log_8 x\)
3. \(\log_3 x\)

8) A polynomial function is defined as
\[y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0\] where
\(a_0, a_1, \ldots, a_{n-1}, a_n\) are constants.
Example 2.3.13: The function $y = x^2 - 5x + 6$ is a polynomial function.

Algebra of Functions

Definition: The sum, difference, product, and quotient of the functions f and g are the functions defined by

$$(f + g)(x) = f(x) + g(x)$$

sum function

$$(f - g)(x) = f(x) - g(x)$$

difference function

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

product function

$$
\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \quad g(x) \neq 0
$$

quotient function

The domain of each function is the intersection of the domains of f and g, with the exception that the values of x where $g(x) = 0$ must be excluded from the domain of the quotient function.

Definition: Let f and g be functions, then $f \circ g$ is called the composite of g and f and is defined by the equation

$$(f \circ g)(x) = f(g(x))$$

The domain of $f \circ g$ is the set

$$D = \{ x \in \text{domain } g : g(x) \in \text{domain } f \}.$$

Example 2.3.14: Let f and g be the functions defined by

$f(x) = x - 7$ and $g(x) = x^2 + 5$. Find the functions $f + g$, $f - g$, $f \cdot g$, $\frac{g}{f}$, $f \circ g$, $g \circ f$ and find their domains.
Solution:

\[(f + g)(x) = f(x) + g(x) = x - 7 + x^2 + 5 = x^2 + x - 2\]
\[(f - g)(x) = f(x) - g(x) = x - 7 - x^2 - 5 = -x^2 + x - 12\]
\[(f \cdot g)(x) = f(x) \cdot g(x) = (x - 7) \cdot (x^2 + 5) = x^3 - 7x^2 + 5x - 35\]
\[\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{x^2 + 5}{x - 7}\]
\[(f \circ g)(x) = f(g(x)) = f(x^2 + 5) = x^2 + 5 - 7 = x^2 - 2\]
\[(g \circ f)(x) = g(f(x)) = g(x - 7) = (x - 7)^2 + 5\]
\[= x^2 - 14x + 49 + 5 = x^2 - 14x + 54\]

The domain of \(f\) = \(\mathbb{R}\)
The domain of \(g\) = \(\mathbb{R}\)
The intersection of the domains of \(f\) and \(g\) is \(\mathbb{R}\)
Thus the domain of each of the functions \(f + g\), \(f - g\), \(f \cdot g\), \(f \circ g\), and \(g \circ f\) is \(\mathbb{R}\).
The domain of \(\frac{g}{f}\) = \(\mathbb{R} - \{7\}\).

Remark: The domain of any polynomial function is \(\mathbb{R}\).

Example 2.3.15: Let \(f\) and \(g\) be the functions defined by \(f(x) = x + 5\) and \(g(x) = x^2 - 3\). Find \(f \circ g(x)\), \(g \circ f(x)\), \(f \circ g(3)\) and \(g \circ f(3)\).

Solution:
\[f \circ g(x) = f(g(x)) = f(x^2 - 3) = x^2 - 3 + 5 = x^2 + 2\]
\[g \circ f(x) = g(f(x)) = g(x + 5) = (x + 5)^2 - 3 = x^2 + 10x + 25 - 3 = x^2 + 10x + 22\]
\[f \circ g(3) = (3)^2 + 2 = 9 + 2 = 11 \]
\[g \circ f(3) = (3)^2 + 10(3) + 22 = 90 + 30 + 22 = 61 \]

Exercise 2.3.16: Let \(f \) and \(g \) be the functions defined by
\[f(x) = x - 4 \quad \text{and} \quad g(x) = \sqrt{x} \] . Find the functions \(f + g \), \(f - g \), \(f \cdot g \), \(\frac{f}{g} \) and find their domains.

S 2.4: Unit Circle and Basic Trigonometric Functions

Definition 1: Let \(x \) be any real number and let \(U \) be the unit circle with equation \(a^2 + b^2 = 1 \) (the centre of the circle \(U \) is the point \(O(0,0) \), and the radius of the circle \(U \) equals 1). Start from the point \(A(1,0) \) on \(U \) and proceed counterclockwise if \(x \) is positive and clockwise if \(x \) is negative around the unit circle \(U \) until an arc length of \(|x| \) has been covered. Let \(P(a,b) \) be the point at the terminal end of the arc. The measurement of the angle \(AOP \) is \(x \) radians.

If \(x \) radians = \(t^\circ \) (degrees), then the following six trigonometric functions of \(x \) are defined in terms of the coordinates of the circular point \(P(a,b) \):

1) \(y = \sin x = b = \sin (x \ \text{radians}) = \sin (t \ \text{degrees}) = \sin t^\circ \)
2) \(y = \cos x = a = \cos (x \ \text{radians}) = \cos (t \ \text{degrees}) = \cos t^\circ \)
3) \(y = \tan x = \frac{b}{a} \quad (a \neq 0) \)
\[= \tan (x \ \text{radians}) = \tan (t \ \text{degrees}) = \tan t^\circ \]
4) \(y = \cot x = \frac{a}{b} \quad (b \neq 0) \)
\[= \cot (x \ \text{radians}) = \cot (t \ \text{degrees}) = \cot t^\circ \]
5) \(y = \sec x = \frac{1}{a} \quad (a \neq 0) \)
 \[= \sec (\pi \text{ radians}) = \sec (t \text{ degrees}) = \sec \theta \]

6) \(y = \csc x = \frac{1}{b} \quad (b \neq 0) \)
 \[= \csc (\pi \text{ radians}) = \csc (t \text{ degrees}) = \csc \theta \]

Remark 1: Definition 1 uses the standard function notation, \(y = f(x) \), with \(f \) replaced by the name of a particular trigonometric function. For example, \(y = \cos x \) actually means \(y = \cos (x) \) and \(\cos \theta \) actually means \(\cos (\theta) \).

Remark 2: Remember that \(\theta = t \times \frac{\pi}{180} \text{ radians} \) and \(x \text{ radians} = (x \times \frac{180}{\pi})^\circ \).

Theorem 1:

For any real number \(x \) we have the following trigonometric identities:

1) \(\csc x = \frac{1}{\sin x} \).

2) \(\sec x = \frac{1}{\cos x} \).

3) \(\cot x = \frac{1}{\tan x} \).

4) \(\tan x = \frac{\sin x}{\cos x} \).

5) \(\cot x = \frac{\cos x}{\sin x} \).

6) \(\sin (-x) = -\sin (x) \).

7) \(\cos (-x) = \cos (x) \).

8) \(\tan (-x) = -\tan (x) \).

9) \(\cot (-x) = -\cot (x) \).

10) \(\sin^2 x + \cos^2 x = 1 \).

11) \(\sec^2 x = \tan^2 x + 1 \).

12) \(\csc^2 x = \cot^2 x + 1 \).
S 2.5: Graphs of Sine and Cosine Functions

2.5.1: Table for values of \(\sin x \), \(\cos x \), and \(\tan x \) for selected values of \(x \)

<table>
<thead>
<tr>
<th>Values of (x)</th>
<th>Degrees</th>
<th>0</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td></td>
<td>0</td>
<td>(\frac{\pi}{6})</td>
<td>(\frac{\pi}{4})</td>
<td>(\frac{\pi}{3})</td>
<td>(\frac{\pi}{2})</td>
</tr>
<tr>
<td>(\sin x)</td>
<td></td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\cos x)</td>
<td></td>
<td>1</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>(\tan x)</td>
<td></td>
<td>0</td>
<td>(\frac{1}{\sqrt{3}})</td>
<td>1</td>
<td>(\sqrt{3})</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values of (x)</th>
<th>Degrees</th>
<th>120</th>
<th>135</th>
<th>150</th>
<th>180</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td></td>
<td>(\frac{2\pi}{3})</td>
<td>(\frac{3\pi}{4})</td>
<td>(\frac{5\pi}{6})</td>
<td>(\pi)</td>
<td>(\frac{3\pi}{2})</td>
</tr>
<tr>
<td>(\sin x)</td>
<td></td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(\cos x)</td>
<td></td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(-\frac{\sqrt{3}}{2})</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(\tan x)</td>
<td></td>
<td>-(\sqrt{3})</td>
<td>-1</td>
<td>-(\frac{1}{\sqrt{3}})</td>
<td>0</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Definition: A function \(f \) is periodic if there exists a positive real number \(p \) such that \(f(x) = f(x + p) \) for all \(x \) in the domain of \(f \). The smallest such positive number \(p \) is the period of \(f \).

Remarks:

1) The functions \(\sin x \), \(\cos x \), \(\sec x \), and \(\csc x \) are periodic functions with period \(2\pi \).

2) The functions \(\tan x \) and \(\cot x \) are periodic functions with period \(\pi \).
2.5.2: The Graph of $\sin x$

The graph of the function $y = \sin x$ is the line passing through all the points $(x, \sin x)$ on the x,y-plane.

The graph of the function $y = \sin x$ for the interval $[0, 2\pi]$ is the line passing through the points $(0,0), \left(\frac{\pi}{6}, \frac{1}{2}\right), \left(\frac{\pi}{2}, 1\right), \left(\frac{5\pi}{6}, \frac{1}{2}\right), (\pi, 0), \left(\frac{7\pi}{6}, -\frac{1}{2}\right), \left(\frac{3\pi}{2}, -1\right), \left(\frac{11\pi}{6}, -\frac{1}{2}\right)$, and $(2\pi, 0)$ which is shown in the following figure.

![Graph of sin x](image)

The graph of the function $y = \sin x$ is shown in the following figure.

![Graph of sin x](image)

The period of the function $y = \sin x$ is 2π. The domain of the function $y = \sin x$ is the set of all real numbers \mathbb{R}.

The range of the function $y = \sin x$ is the interval $[-1, 1]$.
2.5.3: The Graph of \(\cos x \)

The graph of the function \(y = \cos x \) is the line passing through all the points \((x, \cos x)\) on the \(x\)-\(y\)-plane.

The graph of the function \(y = \cos x \) for the interval \([0, 2\pi]\) is the line passing through the points \((0, 1), (\frac{\pi}{3}, \frac{1}{2}), (\frac{\pi}{2}, 0), (\frac{2\pi}{3}, -\frac{1}{2}), (\pi, -1), (\frac{4\pi}{3}, -\frac{1}{2}), (\frac{3\pi}{2}, 0), (\frac{5\pi}{3}, \frac{1}{2})\), and \((2\pi, 1)\) which is shown in the following figure.

![Graph of \(\cos x \)](image)

The graph of the function \(y = \cos x \) is shown in the following figure.

![Graph of \(\cos x \)](image)

The period of the function \(y = \cos x \) is \(2\pi\).

The domain of the function \(y = \cos x \) is the set of all real numbers \(\mathbb{R}\).

The range of the function \(y = \cos x \) is the interval \([-1, 1]\).
2.5.4: The Graphs of $\tan x$ and $\sec x$

The graph of the function $y = \tan (x)$ is the line passing through all the points $(x, \tan x)$ on the xy-plane.

The graph of $y = \tan (x)$ is shown in the following figure.

![Graph of tan(x)](image)

The graph of $y = \sec (x)$ is shown in the following figure.

![Graph of sec(x)](image)
Exercise: Draw the graph of the following trigonometric functions:

1) \(y = \csc (x) \)
2) \(y = \cot (x) \)