CH2: Functions

S2.1 : Functions and Their Graphs

<u>Definition</u>: A function f (or a mapping f) from a set A to a set B is a rule that assigns to each element a of A exactly one element b of B. The set A is called the domain of f and the set B is called the codomain of f. If f assigns b to a, then b is called the image of a under f. The subset of B comprised of all the images of elements of A under f (which is denoted by f(A)) is called the image of A under f (or the range of f).

We use $f: A \rightarrow B$ to mean that f is a function from A to B. We will write f(a) = b to indicate that b is the image of a under f.

Example 2.1.1:

Let $A = \{2, 4, 5\}$, $B = \{1, 2, 3, 6\}$, and $f: A \to B$ be the function defined by f(2) = 1, f(4) = 3, f(5) = 6. Then the domain of f is $A = \{2, 4, 5\}$, the codomain of f is $B = \{1, 2, 3, 6\}$, and the range of $f = \{1, 3, 6\}$.

Counter example :

Let $C = \{1, 2, 3, 4\}$ and $D = \{2, 3, 4, 5\}$, and let *h* be the rule defined by h(1) = 2, h(1) = 4, h(2) = 3, h(3) = 5, h(4) = 4, then *h* is not a function from *C* to *D* since there are two different elements (2 and 4) belong to *D* are assigned to the same element 1 of *C*.

Example 2.1.2: Find the domain and the range of the function f defined by $f(x) = \sqrt{x+10}$.

<u>Solution</u>: For $y = f(x) = \sqrt{x+10}$ to be real, x+10 must be greater than or equal to 0. That is, $x+10 \ge 0$ which means that $x \ge -10$. Thus the domain is $\{x:x \ge -10\}$ and the range is $\{y:y \ge 0\}$.

Exercises:

1) Let
$$A = \{2, 4, 5, 7\}$$
, $B = \{1, 2, 3, 6, 9\}$, and $f: A \rightarrow B$ be the function defined by $f(2) = 9$, $f(4) = 3$, $f(5) = 6$, $f(7) = 2$. Find the domain of f , the codomain of f , and the range of f .

- 2) Let f be a function defined by $f(x) = \frac{1}{x+2}$. Find the domain and the range of the function f.
- 3) Find the domain and the range of the function f defined by $f(x) = \sqrt{2x-9}$.

<u>Definition</u>: The graph of a function f is the line passing through all the points (x, f(x)) on the xy-plane.

<u>Definition</u>: The y-coordinate of the point where a graph of a function intersect the y-axis is called the y-intercept of the function.

<u>Definition</u>: The x-coordinate of a point where a graph of a function intersects the x-axis is called an x-intercept of the function.

Remarks :

- 1) The graph of any function f has at most one y-intercept. The graph of the function f has exactly one y-intercept if 0 is in the domain of the function f and the y-intercept is f(0).
- 2) The graph of any function f has no x intercept if there is no x in the domain of the function f such that f(x) = 0.
 The graph of a function f has one or more than one x intercepts if f(x) = 0 for some x in the domain of f , and the number of x intercepts is the number of the distinct solutions of the equation f(x) = 0.

Properties of Functions :

- 1) A function y = f(x) is called an even function of x if f(-x) = f(x), $\forall x$.
- 2) A function y = f(x) is called an odd function of x if f(-x) = -f(x), $\forall x$.

S2.2 : Linear Functions and their Graphs

<u>Definition</u>: A function $f: R \to R$ is called a linear function if f is defined by f(x) = ax + b, $a \neq 0$ where a and b are real numbers. Example 2.2.1: The function $f: R \to R$ defined by f(x) = 3x + 12 is a linear function.

Example 2.2.2: The function $g: R \to R$ defined by g(x) = x - 0.2 is a linear function.

Example 2.2.3: The function $h: R \to R$ defined by $h(x) = -\frac{3}{2}x + 1$ is a linear function.

Example 2.2.4: Let $f: R \to R$ be the linear function defined by f(x) = 4x + 10. Find the x-intercept and the y-intercept of f.

Solution: $f(x) = 0 \Rightarrow 4x + 10 = 0$

$$\Rightarrow 4x = -10$$

$$\Rightarrow x = -\frac{10}{4} = -2.5$$

Therefore the x - intercept is -2.5

 $f(0)=10 \Rightarrow$ the y-intercept is 10.

Example 2.2.5: Let $g: R \to R$ be the linear function defined by $g(x) = \frac{1}{5}x - 6$. Find the x-intercept and the y-intercept of g. Solution: $g(x)=0 \Rightarrow \frac{1}{5}x - 6 = 0$ $\Rightarrow \frac{1}{5}x = 6 \Rightarrow x = 30$

Therefore the x - intercept is 30

 $g(0) = -6 \Rightarrow$ the y-intercept is -6.

Graph of a linear function :

The graph of a linear function f is the straight line passing through the two points (a, 0) and (0, b) where a is the x-intercept of the function f and b is the y-intercept of the function f.

<u>Remark</u>: The graph of any linear function f has exactly one x - intercept and has exactly one y - intercept.

Example 2.2.6: Let $f: R \to R$ be the linear function defined by f(x) = -2x + 7. Find the x-intercept and the y-intercept of f, then graph the function f.

Solution: $f(x) = 0 \implies -2x + 7 = 0$ $\implies -2x = -7$ $\implies x = \frac{-7}{-2} = 3.5$

Therefore the x - intercept is 3.5 .

 $f(0) = 7 \Rightarrow$ the *y*-intercept is 7.

Thus the graph of the function f is the straight line passing through the two points (3.5, 0) and (0, 7).

Thus the graph of the function f is the following graph

Example 2.2.7: Let $g: R \to R$ be the linear function defined by g(x) = 4x + 12. Find the *x*-intercept and the *y*-intercept of *g*, then graph the function *g*.

Solution: $g(x) = 0 \implies 4x + 12 = 0$ $\implies 4x = -12$ $\implies x = \frac{-12}{4} = -3$

Therefore the x-intercept is -3 $g(0)=12 \implies$ the y-intercept is 12. Thus the graph of the function g is the straight line passing through the two points (-3, 0) and (0, 12).

Thus the graph of the function g is the following graph

Exercises:

- 1) Let $f: R \to R$ be the linear function defined by f(x) = 3x 10. Find the x-intercept and the y-intercept of f.
- 2) Let $g: R \to R$ be the linear function defined by g(x) = 0.3x + 0.7. Find the x-intercept and the y-intercept of g.
- Let f: R → R be the linear function defined by f(x) = -4x+8.
 Find the x-intercept and the y-intercept of f, then graph the function f.
- 4) Let $g: R \to R$ be the linear function defined by g(x) = 5x + 15. Find the x-intercept and the y-intercept of g, then graph the function g.

S2.3 : Some well-known Functions and their Graphs

1) A function f(x) = c where c is a fixed number is called a constant function.

Example 2.3.1 : The function y = f(x) = 1 is a constant function and its graph is

2) The absolute value function y = f(x) = |x| is defined by the formula

$$y = f(x) = |x| = \begin{cases} x & if \quad x \ge 0 \\ -x & if \quad x < 0 \end{cases}$$

and its graph is

Remember that $|x| = \sqrt{x^2}$.

3) A function $y = f(x) = x^r$ where r is a real number is called a power function.

Example 2.3.2 :

The function $y = f(x) = x^2$ is a power function (which is also a quadratic function) and its graph is

Example 2.3.3: The function $y = f(x) = x^3$ is a power function and its graph is

Example 2.3.5: The function $y = f(x) = \frac{1}{x}$ is a power function and its graph is

4) Let a be a positive real number other than 1. The function $y = f(x) = a^x$ is called the exponential function with base a.

Example 2.3.6 : Graph the exponential function $y = 2^x$

<u>Answer</u>: To draw the graph of $y = 2^x$, we can make use of a table give values for x and find the corresponding values for y

$$x = 0$$
 gives $y = 2^{\circ} = 1$,

$$x = 1$$
 gives $y = 2^1 = 2$,

x = -1 gives $y = 2^{-1} = \frac{1}{2}$.

Following the process we make the table

x	-4	-3	-2	- 1	0	1	2	3	4
2^x	0.0625	0.125	0.25	0.5	1	2	4	8	16

Example 2.3.7 : The function $y = 5^x$ is an exponential function and its graph is

Answer:

x = 0 gives $y = 5^{\circ} = 1$,

x = 1 gives $y = 5^1 = 5$,

x = -1 gives $y = 5^{-1} = 0.2$

Exercise 2.3.8: Graph the exponential function $y = 10^x$.

The properties of exponential function and their graph

- The domain is R (set of real numbers).
- The range is R⁺ (set of positive real numbers).
- The graph is always continuous (no break in the graph).

<u>Rules of Exponents</u>: If a > 0 and b > 0, the following rules of exponent should be hold for all real numbers x and y:

- 1. $a^x \times a^y = a^{x+y}$
- 2. $\frac{a^{x}}{a^{y}} = a^{x-y}$ 3. $a^{0} = 1$
- 4. $\frac{1}{a^{x}} = a^{-x}$ 5. $(a^{x})^{y} = (a^{y})^{x} = a^{xy}$ 6. $(ab)^{x} = a^{x}b^{x}$
- 7. $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
- *5) The function $y = e^x$ is called the natural exponential function whose base is $e \cong 2.718281828$, and its graph is

Remark : Graph of e^x and e^{-x} are reflections of each other.

6) The function $y = \log_b x$ is called the logarithm function with base b where b is a positive number $\neq 1$; and x > 0, and the graph of $y = \log_b x$ where b is greater than 1 is the following graph

<u>Remark</u>: $y = \log_b x$ means that $x = b^y$.

Example 2.3.9 : The function $y = \log_2 x$ is a logarithm function with base 2 and its graph is

Example 2.3.10 : Draw the graph of $\log_{10} x$.

Answer:

<u>Rules of logarithm</u>: For x > 0 and y > 0, and b is a positive number $\neq 1$ we have the following rules :

- 1. $\log_b x y = \log_b x + \log_b y$
- $2. \log_b \frac{x}{y} = \log_b x \log_b y$

$$3. \log_b x^y = y \cdot \log_b x$$

4. $\log_b a = \frac{\log_c a}{\log_c b}$, where c can be any base.

Remarks :

- The logarithm of any number to the base of the same number will be 1 (log_b b = 1, log₅ 5 = 1 etc ...).
- Logarithm of 1 to any base is 0 ($\log_b 1 = 0$, $\log_3 1 = 0$ etc ...).
- The logarithm function is defined only for positive numbers.
- The domain of the logarithm function is \mathbb{R}^+ .
- The range of the logarithm function is R.
- 7) The logarithm function with base e is called the natural logarithm function and will be denoted by $y = \ln x$ (i.e. $y = \log_e x = \ln x$) and its graph is

Remarks:

- $\ln e = 1$ (since $\ln e = \log_e e$)
- ln 1 = 0

Exercise 2.3.12 : Draw the graph for the following logarithmic functions:

- 1. $\log_5 x$
- 2. $\log_8 x$
- 3. $\log_3 x$
- 8) A polynomial function is defined as

 $y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where

 a_0 , a_1 , ... , a_{n-1} , a_n are constants .

Algebra of Functions

<u>Definition</u>: The sum , difference , product , and quotient of the functions f and g are the functions defined by

(f+g)(x) = f(x)	(x) + g(x)	sum function
(f-g)(x) = f(x)	(x) - g(x)	difference function
(f.g)(x) = f(x)	$) \cdot g(x)$	product function
$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$g(x) \neq 0$	quotient function

The domain of each function is the intersection of the domains of fand g, with the exception that the values of x where g(x) = 0 must be excluded from the domain of the quotient function.

<u>Definition</u>: Let f and g be functions, then $f \circ g$ is called the composite of g and f and is defined by the equation $(f \circ g)(x) = f(g(x))$.

The domain of $f \circ g$ is the set $\mathbf{D} = \{ x \in \text{domain } g : g(x) \in \text{domain } f \}$.

Example 2.3.14: Let f and g be the functions defined by f(x)=x-7 and $g(x)=x^2+5$. Find the functions f+g, f-g, $f \cdot g$, $\frac{g}{f}$, $f \circ g$, $g \circ f$ and find their domains.

Solution :

 $(f+g)(x) = f(x) + g(x) = x-7 + x^{2} + 5 = x^{2} + x-2$ $(f-g)(x) = f(x) - g(x) = x-7 - x^{2} - 5 = -x^{2} + x - 12$ $(f.g)(x) = f(x) \cdot g(x) = (x-7) \cdot (x^{2} + 5) = x^{3} - 7x^{2} + 5x - 35$ $\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{x^{2} + 5}{x-7}$ $(f \circ g)(x) = f(g(x)) = f(x^{2} + 5) = x^{2} + 5 - 7 = x^{2} - 2$ $(g \circ f)(x) = g(f(x)) = g(x-7) = (x-7)^{2} + 5$ $= x^{2} - 14x + 49 + 5 = x^{2} - 14x + 54$

The domain of $f = \mathbf{R}$

The domain of $g = \mathbf{R}$

The intersection of the domains of f and g is **R**

Thus the domain of each of the functions f + g, f - g, $f \cdot g$, $f \circ g$, and $g \circ f$ is **R**.

The domain of $\frac{g}{f} = \mathbf{R} - \{7\}$.

<u>Remark :</u> The domain of any polynomial function is \mathbf{R} .

Example 2.3.15: Let f and g be the functions defined by f(x) = x + 5 and $g(x) = x^2 - 3$, Find $f \circ g(x)$, $g \circ f(x)$, $f \circ g(3)$ and $g \circ f(3)$.

Solution: $f \circ g(x) = f(g(x)) = f(x^2 - 3)$ = $x^2 - 3 + 5$ = $x^2 + 2$ $g \circ f(x) = g(f(x)) = g(x+5)$

> $= (x+5)^2 - 3$ = x² + 10 x + 25 - 3 = x² + 10 x + 22

 $f \circ g(3) = (3)^2 + 2 = 9 + 2 = 11$ $g \circ f(3) = (3)^2 + 10(3) + 22 = 9 + 30 + 22 = 61$

Exersice 2.3.16: Let f and g be the functions defined by f(x) = x - 4 and $g(x) = \sqrt{x}$. Find the functions f + g, f - g, $f \cdot g$, $\frac{f}{g}$ and find their domains.

S 2.4 : Unit Circle and Basic Trigonometric Functions

Definition 1: Let x be any real number and let U be the unit circle with equation $a^2 + b^2 = 1$ (the centre of the circle U is the point O(0,0), and the radius of the circle U equals 1). Start from the point A(1,0) on U and proceed counterclockwise if x is positive and clockwise if x is negative around the unit circle U until an arc length of |x| has been covered. Let P(a, b) be the point at the terminal end of the arc. The measurement of the angle AOP is x radians.

3)
$$y = \tan x = \frac{b}{a}$$
 $(a \neq 0)$
= $\tan (x \text{ radians}) = \tan (t \text{ degrees}) = \tan t^{\circ}$
4) $y = \cot x = \frac{a}{b}$ $(b \neq 0)$

= $\cot (x \text{ radians}) = \cot (t \text{ degrees}) = \cot t^{\circ}$

5)
$$y = \sec x = \frac{1}{a}$$
 $(a \neq 0)$
 $= \sec (x \text{ radians}) = \sec (t \text{ degrees}) = \sec t^3$
6) $y = \csc x = \frac{1}{b}$ $(b \neq 0)$
 $= \csc (x \text{ radians}) = \csc (t \text{ degrees}) = \csc t^4$
Remark 1: Definition 1 uses the standard function notation $y = f(x)$, with
 f replaced by the name of a particular trigonometric function. For example,
 $y = \cos x$ actually means $y = \cos (x)$ and
 $\cos t^\circ$ actually means $\cos (t^\circ)$.
Remark 2: Remember that $t^\circ = t \times \frac{\pi}{180}$ radians and
 $x \text{ radians} = (x \times \frac{180}{\pi})^\circ$.
Theorem 1:
For any real number x we have the following trigonometric identities:
1) $\csc x = \frac{1}{\sin x}$.
2) $\sec x = \frac{1}{\cos x}$.
3) $\cot x = \frac{1}{\tan x}$.
4) $\tan x = \frac{\sin x}{\cos x}$.
5) $\cot x = \frac{\cos x}{\sin x}$.
6) $\sin (-x) = -\sin (x)$.
7) $\cos (-x) = \cos (x)$.
8) $\tan (-x) = -\tan (x)$.
9) $\cot (-x) = -\cot (x)$.
10) $\sin^2 x + \cos^2 x = 1$.
11) $\sec^2 x = \tan^2 x + 1$.
12) $\csc^2 x = \cot^2 x + 1$.

1.6

1.10 - 20

S 2.5: Graphs of Sine and Cosine Functions

2.5.1: Table for values of $\sin x$, $\cos x$, and $\tan x$ for selected values of x

Values of - <i>x</i>	Degrees	0	30	45	60	90
	Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$		0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos x		1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan x		0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

Values of x	Degrees	120	135	150	180	270
	Radians	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$
$\sin x$		$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
cos x		$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0
tan x		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	Undefined

Definition: A function f is periodic if there exists a positive real number p such that f(x) = f(x + p) for all x in the domain of f. The smallest such positive number p is the period of f.

Remarks :

- 1) The functions $\sin x$, $\cos x$, $\sec x$, and $\csc x$ are periodic functions with period 2π .
- 2) The functions $\tan x$ and $\cot x$ are periodic functions with period π .

2.5.2: The Graph of sin x

The graph of the function $y = \sin x$ is the line passing through all the points $(x, \sin x)$ on the x y-plane.

The graph of the function $y = \sin x$ for the interval $[0, 2\pi]$ is the line passing through the points (0, 0), $(\frac{\pi}{6}, \frac{1}{2})$, $(\frac{\pi}{2}, 1)$, $(\frac{5\pi}{6}, \frac{1}{2})$, $(\pi, 0)$, $(\frac{7\pi}{6}, -\frac{1}{2})$, $(\frac{3\pi}{2}, -1)$, $(\frac{11\pi}{6}, -\frac{1}{2})$, and $(2\pi, 0)$ which is shown in the

following figure

The graph of the function $y = \sin x$ is shown in the following figure

The period of the function $y = \sin x$ is 2π . The domain of the function $y = \sin x$ is the set of all real numbers R. The range of the function $y = \sin x$ is the interval [-1,1].

2.5.3: The Graph of cos x

The graph of the function $y = \cos x$ is the line passing through all the points $(x, \cos x)$ on the xy-plane.

The graph of the function $y = \cos x$ for the interval $[0, 2\pi]$ is the line Passing through the points (0, 1), $(\frac{\pi}{3}, \frac{1}{2})$, $(\frac{\pi}{2}, 0)$, $(\frac{2\pi}{3}, -\frac{1}{2})$, $(\pi, -1)$, $(\frac{4\pi}{3}, -\frac{1}{2})$, $(\frac{3\pi}{2}, 0)$, $(\frac{5\pi}{3}, \frac{1}{2})$, and $(2\pi, 1)$ which is shown in the following figure

The graph of the function $y = \cos x$ is shown in the following figure

The period of the function $y = \cos x$ is 2π . The domain of the function $y = \cos x$ is the set of all real numbers R. The range of the function $y = \cos x$ is the interval [-1,1].

2.5.4: The Graphs of $\tan x$ and $\sec x$

The graph of the function $y = \tan(x)$ is the line passing through all the points $(x, \tan x)$ on the xy-plane.

The graph of $y = \tan(x)$ is shown in the following figure

Exercise: Draw the graph of the following trigonometric functions :

TH

- 1) $y = \csc(x)$
- $2) \quad y = \cot(x)$