رياضيات الحاسبات
المرحلة الأولى

مكتب قطر الندى
للطباعة والاستنساخ
مجاور الجامعة المستنصرية
عمل وطباعة بحوث والتقارير
هـ 7710029325 7713045577
<table>
<thead>
<tr>
<th>männ Detected programming Language rules of writing prog am variables and constants // Input and output statements, arithmetic assign state men/mathematical functions and using math -h//Counters increment and decrementI// Comprailal operation and logical operations and bitwise operationI//Switch statement//If and nested if statementI//While loop statement//For loop statementI//Applications//nested loops//Break and continue//Onedimensional array//Applications one dimensional array//Two dimensional array//Applications on two dimensional array// Multi dimensional array//Functions first type//Applications//functions second type//Applications//Strings//Structures//Array of structures//Passing structures to function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured programming</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>männ</th>
<th>Set Theory</th>
<th>3</th>
</tr>
</thead>
</table>

- Functions kinds there graphs*Limits
- Continuity//Derivative(differentiation) *Fintes*Derivative by definition*Derivative by rules*Derivatives of higher order*Chain rules*Applications of derivatives/
- Sequences&sseries*Sequences&series*Taylors&Maclurian ser.///Integration*Integral*Definite integral///Introduction to differentialital Eq//Special functions (Gamma -Beta -Error)// Fourier series*Fourier-
- Transformations(Ft)*Discrete if-parserals relation properties of (F t)*Fast Fourier transforms (F T)/Transcendental Function*Nature logarithm
- Exponential function(e)*Exponential function(a)*Normal logarithm*Trigonometric function&there graphs*Inverse
- Trigonometric function*Hyperbolic function*Inverse
- Hyperbolic function// Polar coordinates

<table>
<thead>
<tr>
<th>männ</th>
<th>Mathematics</th>
<th>3</th>
</tr>
</thead>
</table>

- Mathematical Induction 2- Mathematical Logic 1-
- Introduction 2-Simple logic statements 3-Variable Use in proposition statements 4-Compound logic statements 5-Logical propositions 6-
- Logical Equivalence 7- Tautology statement&contradiction statement 8-
- Logical implication 9-Algebra of propositions 10-Conditional Statements&Variations 11-Quantifiers 12-Logical Reasoning 3-Sets 1 Theory 1-Introduction 2-Methods of Expressing Sets 3-Principle Concepts of Sets 4-Venn Diagrams 5- Sets of Numbers 6-Algebra of sets
- 7-Family of Sets& Index Family of Sets 8-Ordered Pairs& Products

<table>
<thead>
<tr>
<th>männ</th>
<th>Discrete Structures</th>
<th>3</th>
</tr>
</thead>
</table>

- Set Theory 1-Binary Relations 2-Relations 3-Graph of the Relation 4-Photographer representation of the relations 5-The Domain &The Range of a Relation 6-Identity Relation &Inverse Relation 7-Composition Relation 8-Type of Relation 9-
- Equivalence Relations 5- Functions 1-Introduction 2-Principle Concepts & Definition 3-Models of Function, as 4-Composition Function 5-Algebra of Function 6-Convolution Functions through theplanned
- Equations 7-Draw Graphs Functions 8-Vectors and Matrices 1-
- Introduction 2-Vectors 3-Matrices 4-Models of Square Matrices 5-
- Algebra in the Matrices 6-Determinants 7-Minors & Co-factors 8-Find
- Inverse Square Note Singular Matrix 9-Solving System of liner
CH2: Functions

S2.1: Functions and Their Graphs

Definition: A function \(f \) (or a mapping) from a set \(A \) to a set \(B \) is a rule that assigns to each element \(a \) of \(A \) exactly one element \(b \) of \(B \). The set \(A \) is called the domain of \(f \) and the set \(B \) is called the codomain of \(f \). If \(f \) assigns \(b \) to \(a \), then \(b \) is called the image of \(a \) under \(f \). The subset of \(B \) comprised of all the images of elements of \(A \) under \(f \) (which is denoted by \(f(A) \)) is called the image of \(A \) under \(f \) (or the range of \(f \)).

We use \(f: A \rightarrow B \) to mean that \(f \) is a function from \(A \) to \(B \). We will write \(f(a) = b \) to indicate that \(b \) is the image of \(a \) under \(f \).

Example 2.1.1:
Let \(A = \{2, 4, 5\} \), \(B = \{1, 2, 3, 6\} \), and \(f: A \rightarrow B \) be the function defined by \(f(2) = 1 \), \(f(4) = 3 \), \(f(5) = 6 \). Then the domain of \(f \) is \(A = \{2, 4, 5\} \), the codomain of \(f \) is \(B = \{1, 2, 3, 6\} \), and the range of \(f \) is \(\{1, 3, 6\} \).

Counter example:
Let \(C = \{1, 2, 3, 4\} \) and \(D = \{2, 3, 4, 5\} \), and let \(h \) be the rule defined by \(h(1) = 2 \), \(h(1) = 4 \), \(h(2) = 3 \), \(h(3) = 5 \), \(h(4) = 4 \), then \(h \) is not a function from \(C \) to \(D \) since there are two different elements \(2 \) and \(4 \) belong to \(D \) are assigned to the same element \(2 \) of \(C \).

Example 2.1.2: Find the domain and the range of the function \(f \) defined by \(f(x) = \sqrt{x+10} \).

Solution: For \(y = f(x) = \sqrt{x+10} \) to be real, \(x + 10 \) must be greater than or equal to 0. That is, \(x + 10 \geq 0 \) which means that \(x \geq -10 \). Thus the domain is \(\{x: x \geq -10\} \) and the range is \(\{y: y \geq 0\} \).

Exercises:

1) Let \(A = \{2, 4, 5, 7\} \), \(B = \{1, 2, 3, 6, 9\} \), and \(f: A \rightarrow B \) be the function defined by \(f(2) = 9 \), \(f(4) = 3 \), \(f(5) = 6 \), \(f(7) = 2 \). Find the domain of \(f \), the codomain of \(f \), and the range of \(f \).
2) Let \(f \) be a function defined by \(f(x) = \frac{1}{x+2} \). Find the domain and the range of the function \(f \).

3) Find the domain and the range of the function \(f \) defined by
\[
f(x) = \sqrt{2x-9}.
\]

Definition: The graph of a function \(f \) is the line passing through all the points \((x, f(x))\) on the \(xy \)-plane.

Definition: The \(y \)-coordinate of the point where a graph of a function \(f \) intersect the \(y \)-axis is called the \(y \)-intercept of the function.

Definition: The \(x \)-coordinate of a point where a graph of a function \(f \) intersects the \(x \)-axis is called an \(x \)-intercept of the function.

Remarks:

1) The graph of any function \(f \) has at most one \(y \)-intercept. The graph of the function \(f \) has exactly one \(y \)-intercept if 0 is in the domain of the function \(f \) and the \(y \)-intercept is \(f(0) \).

2) The graph of any function \(f \) has no \(x \)-intercept if there is no \(x \) in the domain of the function \(f \) such that \(f(x) = 0 \). The graph of a function \(f \) has one or more than one \(x \)-intercepts if \(f(x) = 0 \) for some \(x \) in the domain of \(f \), and the number of \(x \)-intercepts is the number of the distinct solutions of the equation \(f(x) = 0 \).

Properties of Functions:

1) A function \(y = f(x) \) is called an even function of \(x \) if \(f(-x) = f(x) \), \(\forall \ x \).

2) A function \(y = f(x) \) is called an odd function of \(x \) if \(f(-x) = -f(x) \), \(\forall \ x \).

S2.2 : Linear Functions and their Graphs

Definition: A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is called a linear function if \(f \) is defined by \(f(x) = ax + b \), \(a \neq 0 \) where \(a \) and \(b \) are real numbers.
Example 2.2.1: The function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 3x + 12 \) is a linear function.

Example 2.2.2: The function \(g : \mathbb{R} \to \mathbb{R} \) defined by \(g(x) = x - 0.2 \) is a linear function.

Example 2.2.3: The function \(h : \mathbb{R} \to \mathbb{R} \) defined by \(h(x) = -\frac{3}{2}x + 1 \) is a linear function.

Example 2.2.4: Let \(f : \mathbb{R} \to \mathbb{R} \) be the linear function defined by \(f(x) = 4x + 10 \). Find the \(x \)-intercept and the \(y \)-intercept of \(f \).

Solution:

\[
\begin{align*}
f(x) &= 0 \\
4x + 10 &= 0 \\
4x &= -10 \\
x &= \frac{-10}{4} = -2.5
\end{align*}
\]

Therefore the \(x \)-intercept is \(-2.5\).

\(f(0) = 10 \Rightarrow \) the \(y \)-intercept is \(10\).

Example 2.2.5: Let \(g : \mathbb{R} \to \mathbb{R} \) be the linear function defined by \(g(x) = \frac{1}{5}x - 6 \). Find the \(x \)-intercept and the \(y \)-intercept of \(g \).

Solution:

\[
\begin{align*}
g(x) &= 0 \\
\frac{1}{5}x - 6 &= 0 \\
\frac{1}{5}x &= 6 \\
x &= 30
\end{align*}
\]

Therefore the \(x \)-intercept is \(30\).

\(g(0) = -6 \Rightarrow \) the \(y \)-intercept is \(-6\).

Graph of a linear function:

The graph of a linear function \(f \) is the straight line passing through the two points \((a, 0)\) and \((0, b)\) where \(a\) is the \(x \)-intercept of the function \(f \) and \(b\) is the \(y \)-intercept of the function \(f \).

Remark: The graph of any linear function \(f \) has exactly one \(x \)-intercept and has exactly one \(y \)-intercept.
Example 2.2.6: Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be the linear function defined by
\[f(x) = -2x + 7 \]. Find the \(x \)-intercept and the \(y \)-intercept of \(f \),
then graph the function \(f \).

Solution:
\[f(x) = 0 \Rightarrow -2x + 7 = 0 \]
\[\Rightarrow -2x = -7 \]
\[\Rightarrow x = \frac{-7}{-2} = 3.5 \]

Therefore the \(x \)-intercept is 3.5.

\[f(0) = 7 \Rightarrow \text{the } y \text{-intercept is 7.} \]

Thus the graph of the function \(f \) is the straight line passing through the two points \((3.5, 0)\) and \((0, 7)\).

Thus the graph of the function \(f \) is the following graph:

![Graph of f(x) = -2x + 7](image)

Example 2.2.7: Let \(g : \mathbb{R} \rightarrow \mathbb{R} \) be the linear function defined by
\[g(x) = 4x + 12 \]. Find the \(x \)-intercept and the \(y \)-intercept of \(g \), then
graph the function \(g \).

Solution:
\[g(x) = 0 \Rightarrow 4x + 12 = 0 \]
\[\Rightarrow 4x = -12 \]
\[\Rightarrow x = \frac{-12}{4} = -3 \]

Therefore the \(x \)-intercept is \(-3\).

\[g(0) = 12 \Rightarrow \text{the } y \text{-intercept is 12.} \]
Thus the graph of the function \(g \) is the straight line passing through the two points \((-3,0)\) and \((0,12)\).

Thus the graph of the function \(g \) is the following graph

\[
g(x) = 4x + 12
\]

Exercises:

1) Let \(f: \mathbb{R} \to \mathbb{R} \) be the linear function defined by \(f(x) = 3x - 10 \).
 Find the \(x \)-intercept and the \(y \)-intercept of \(f \).

2) Let \(g: \mathbb{R} \to \mathbb{R} \) be the linear function defined by \(g(x) = 0.3x + 0.7 \).
 Find the \(x \)-intercept and the \(y \)-intercept of \(g \).

3) Let \(f: \mathbb{R} \to \mathbb{R} \) be the linear function defined by \(f(x) = -4x + 8 \).
 Find the \(x \)-intercept and the \(y \)-intercept of \(f \), then graph the function \(f \).

4) Let \(g: \mathbb{R} \to \mathbb{R} \) be the linear function defined by \(g(x) = 5x + 15 \).
 Find the \(x \)-intercept and the \(y \)-intercept of \(g \), then graph the function \(g \).

S2.3 : Some well-known Functions and their Graphs

1) A function \(f(x) = c \) where \(c \) is a fixed number is called a constant function.
Example 2.3.1: The function \(y = f(x) = 1 \) is a constant function and its graph is

\[
\begin{align*}
\text{Example 2.3.2:} & \\
\text{The function } y = f(x) = x^2 & \text{ is a power function (which is also a quadratic function) and its graph is}
\end{align*}
\]
Example 2.3.3: The function \(y = f(x) = x^2 \) is a power function and its graph is

Example 2.3.4: The function \(y = f(x) = \sqrt{x} \) is a power function and its graph is
Example 2.3.5: The function $y = f(x) = \frac{1}{x}$ is a power function and its graph is

4) Let a be a positive real number other than 1. The function $y = f(x) = a^x$ is called the exponential function with base a.

Example 2.3.6: Graph the exponential function $y = 2^x$

Answer: To draw the graph of $y = 2^x$, we can make use of a table that gives values for x and finds the corresponding values for y

$x = 0$ gives $y = 2^0 = 1$,

$x = 1$ gives $y = 2^1 = 2$,

$x = -1$ gives $y = 2^{-1} = \frac{1}{2}$.

Following the process we make the table

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^x</td>
<td>0.0625</td>
<td>0.125</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Example 2.3.7: The function \(y = 5^x \) is an exponential function and its graph is

\[\begin{array}{c|ccccc}
 x & -2 & -1 & 0 & 1 & 2 \\
 5^x & 0.04 & 0.2 & 1 & 5 & 25 \\
\end{array} \]

Exercise 2.3.8: Graph the exponential function \(y = 10^x \).

The properties of exponential function and their graph
- The domain is \(\mathbb{R} \) (set of real numbers).
- The range is \(\mathbb{R}^+ \) (set of positive real numbers).
- The graph is always continuous (no break in the graph).
Rules of Exponents: If \(a > 0 \) and \(b > 0 \), the following rules of exponent should be hold for all real numbers \(x \) and \(y \):

1. \(a^x \times a^y = a^{x+y} \)
2. \(\frac{a^x}{a^y} = a^{x-y} \)
3. \(a^0 = 1 \)
4. \(\frac{1}{a^x} = a^{-x} \)
5. \((a^x)^y = (a^y)^x = a^{x\cdot y} \)
6. \((ab)^x = a^x b^x \)
7. \(\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x} \)

5) The function \(y = e^x \) is called the natural exponential function whose base is \(e \approx 2.718281828 \), and its graph is

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^x)</td>
<td>(0.1353)</td>
<td>(0.3679)</td>
<td>(1)</td>
<td>(2.718)</td>
<td>(7.389)</td>
</tr>
</tbody>
</table>

Remark: Graph of \(e^x \) and \(e^{-x} \) are reflections of each other.

6) The function \(y = \log_b x \) is called the logarithm function with base \(b \) where \(b \) is a positive number \(\neq 1 \); and \(x > 0 \), and the graph of \(y = \log_b x \) where \(b \) is greater than \(1 \) is the following graph
Remark: \(y = \log_b x \) means that \(x = b^y \).

Example 2.3.9: The function \(y = \log_2 x \) is a logarithm function with base 2 and its graph is

\[
\begin{array}{c|c|c|c|c|c}
 x & 0.25 & 0.5 & 1 & 2 & 4 \\
 y = \log_2 x & -2 & -1 & 0 & 1 & 2 \\
\end{array}
\]

![Graph of \(y = \log_2 x \)](image)

Example 2.3.10: Draw the graph of \(\log_{10} x \).

Answer:

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
 x & 0.5 & 1 & 5 & 10 & 15 & 20 & 50 & 100 \\
 y = \log_{10} x & -0.301 & 0 & 0.699 & 1 & 1.176 & 1.301 & 1.699 & 2 \\
\end{array}
\]

![Graph of \(y = \log_{10} x \)](image)

Rules of logarithm: For \(x > 0 \) and \(y > 0 \), and \(b \) is a positive number \(\neq 1 \) we have the following rules:

1. \(\log_b x y = \log_b x + \log_b y \)
2. \(\log_b \frac{x}{y} = \log_b x - \log_b y \)
3. \(\log_b x^y = y \cdot \log_b x \)
4. \(\log_b a = \frac{\log_c a}{\log_c b} \), where \(c \) can be any base.
Remarks:

- The logarithm of any number to the base of the same number will be 1 (log₆₆₆ = 1, log₅₅₅ = 1, etc...).
- Logarithm of 1 to any base is 0 (log₆₁ = 0, log₅₁ = 0, etc...).
- The logarithm function is defined only for positive numbers.
- The domain of the logarithm function is R⁺.
- The range of the logarithm function is R.

7) The logarithm function with base e is called the natural logarithm function and will be denoted by \(y = \ln x \) (i.e. \(y = \log_e x = \ln x \)) and its graph is

![Graph of \(y = \ln x \)]

Remarks:

- \(\ln e = 1 \) (since \(\ln e = \log_e e \))
- \(\ln 1 = 0 \)

Exercise 2.3.12: Draw the graph for the following logarithmic functions:

1. \(\log_5 x \)
2. \(\log_8 x \)
3. \(\log_3 x \)

8) A polynomial function is defined as

\[
y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \quad \text{where}
\]

\[
a_0, a_1, \ldots, a_{n-1}, a_n \quad \text{are constants}.
\]
Example 2.3.13: The function \(y = x^2 - 5x + 6 \) is a polynomial function.

Algebra of Functions

Definition: The sum, difference, product, and quotient of the functions \(f \) and \(g \) are the functions defined by

\[
(f + g)(x) = f(x) + g(x) \quad \text{sum function}
\]
\[
(f - g)(x) = f(x) - g(x) \quad \text{difference function}
\]
\[
(f \cdot g)(x) = f(x) \cdot g(x) \quad \text{product function}
\]
\[
\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} \quad g(x) \neq 0 \quad \text{quotient function}
\]

The domain of each function is the intersection of the domains of \(f \) and \(g \), with the exception that the values of \(x \) where \(g(x) = 0 \) must be excluded from the domain of the quotient function.

Definition: Let \(f \) and \(g \) be functions, then \(f \circ g \) is called the composite of \(g \) and \(f \) and is defined by the equation

\[
(f \circ g)(x) = f(g(x))
\]

The domain of \(f \circ g \) is the set

\[D = \{ x \in \text{domain } g : g(x) \in \text{domain } f \} \]

Example 2.3.14: Let \(f \) and \(g \) be the functions defined by

\(f(x) = x - 7 \) and \(g(x) = x^2 + 5 \). Find the functions \(f + g \), \(f - g \), \(f \cdot g \), \(\frac{g}{f} \), \(f \circ g \), \(g \circ f \) and find their domains.
Solution:

\((f + g)(x) = f(x) + g(x) = x - 7 + x^2 + 5 = x^2 + x - 2 \)

\((f - g)(x) = f(x) - g(x) = x - 7 - x^2 - 5 = -x^2 + x - 12 \)

\((f \cdot g)(x) = f(x) \cdot g(x) = (x - 7) \cdot (x^2 + 5) = x^3 - 7x^2 + 5x - 35 \)

\(\left(\frac{g}{f} \right)(x) = \frac{g(x)}{f(x)} = \frac{x^2 + 5}{x - 7} \)

\((f \circ g)(x) = f(g(x)) = f(x^2 + 5) = x^2 + 5 - 7 = x^2 - 2 \)

\((g \circ f)(x) = g(f(x)) = g(x - 7) = (x - 7)^2 + 5 = x^2 - 14x + 49 + 5 = x^2 - 14x + 54 \)

The domain of \(f = \mathbb{R} \)

The domain of \(g = \mathbb{R} \)

The intersection of the domains of \(f \) and \(g \) is \(\mathbb{R} \)

Thus the domain of each of the functions \(f + g \), \(f - g \), \(f \cdot g \), \(f \circ g \), and \(g \circ f \) is \(\mathbb{R} \).

The domain of \(\frac{g}{f} = \mathbb{R} - \{7\} \).

Remark: The domain of any polynomial function is \(\mathbb{R} \).

Example 2.3.15: Let \(f \) and \(g \) be the functions defined by \(f(x) = x + 5 \) and \(g(x) = x^2 - 3 \). Find \(f \circ g(x) \), \(g \circ f(x) \), \(f \circ g(3) \) and \(g \circ f(3) \).

Solution: \(f \circ g(x) = f(g(x)) = f(x^2 - 3) = x^2 - 3 + 5 = x^2 + 2 \)

\(g \circ f(x) = g(f(x)) = g(x + 5) = (x + 5)^2 - 3 = x^2 + 10x + 25 - 3 = x^2 + 10x + 22 \)
\[f \circ g(3) = (3)^2 + 2 = 9 + 2 = 11 \]
\[g \circ f(3) = (3)^2 + 10(3) + 22 = 9 + 30 + 22 = 61 \]

Exercise 2.3.16: Let \(f \) and \(g \) be the functions defined by
\[f(x) = x - 4 \quad \text{and} \quad g(x) = \sqrt{x} \] . Find the functions \(f + g \), \(f - g \), \(f \cdot g \) and \(\frac{f}{g} \) and find their domains.

2.4: Unit Circle and Basic Trigonometric Functions

Definition 1: Let \(x \) be any real number and let \(U \) be the unit circle with equation \(a^2 + b^2 = 1 \) (the centre of the circle \(U \) is the point \(O(0,0) \), and the radius of the circle \(U \) equals 1). Start from the point \(A(1,0) \) on \(U \) and proceed counterclockwise if \(x \) is positive and clockwise if \(x \) is negative around the unit circle \(U \) until an arc length of \(|x| \) has been covered. Let \(P(a,b) \) be the point at the terminal end of the arc. The measurement of the angle \(\angle AOP \) is \(x \) radians.

If \(x \) radians = \(t^\circ \) (degrees), then the following six trigonometric functions of \(x \) are defined in terms of the coordinates of the circular point \(P(a,b) \):

1) \[y = \sin x = b = \sin (x \text{ radians}) = \sin (t \text{ degrees}) = \sin t^\circ \]
2) \[y = \cos x = a = \cos (x \text{ radians}) = \cos (t \text{ degrees}) = \cos t^\circ \]
3) \[y = \tan x = \frac{b}{a} \quad (a \neq 0) \]
\[\quad = \tan (x \text{ radians}) = \tan (t \text{ degrees}) = \tan t^\circ \]
4) \[y = \cot x = \frac{a}{b} \quad (b \neq 0) \]
\[\quad = \cot (x \text{ radians}) = \cot (t \text{ degrees}) = \cot t^\circ \]
5) \(y = \sec x = \frac{1}{a} \quad (a \neq 0) \)
\[= \sec (x \ \text{radians}) = \sec (t \ \text{degrees}) = \sec t^\circ \]

6) \(y = \csc x = \frac{1}{b} \quad (b \neq 0) \)
\[= \csc (x \ \text{radians}) = \csc (t \ \text{degrees}) = \csc t^\circ \]

Remark 1: Definition 1 uses the standard function notation, \(y = f(x) \), with \(f \) replaced by the name of a particular trigonometric function. For example, \(y = \cos x \) actually means \(y = \cos (x) \) and \(\cos t^\circ \) actually means \(\cos (t^\circ) \).

Remark 2: Remember that \(t^\circ = t \times \frac{\pi}{180} \ \text{radians} \) and
\[x \ \text{radians} = (x \times \frac{180}{\pi})^\circ \]

Theorem 1:
For any real number \(x \) we have the following trigonometric identities:

1) \(\csc x = \frac{1}{\sin x} \).
2) \(\sec x = \frac{1}{\cos x} \).
3) \(\cot x = \frac{1}{\tan x} \).
4) \(\tan x = \frac{\sin x}{\cos x} \).
5) \(\cot x = \frac{\cos x}{\sin x} \).
6) \(\sin (-x) = -\sin (x) \).
7) \(\cos (-x) = \cos (x) \).
8) \(\tan (-x) = -\tan (x) \).
9) \(\cot (-x) = -\cot (x) \).
10) \(\sin^2 x + \cos^2 x = 1 \).
11) \(\sec^2 x = \tan^2 x + 1 \).
12) \(\csc^2 x = \cot^2 x + 1 \).
S 2.5: Graphs of Sine and Cosine Functions

2.5.1: Table for values of \(\sin x, \cos x, \text{ and } \tan x \) for selected values of \(x \)

<table>
<thead>
<tr>
<th>Values of (x)</th>
<th>Degrees</th>
<th>0</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td></td>
<td>0</td>
<td>(\frac{\pi}{6})</td>
<td>(\frac{\pi}{4})</td>
<td>(\frac{\pi}{3})</td>
<td>(\frac{\pi}{2})</td>
</tr>
<tr>
<td>(\sin x)</td>
<td></td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>1</td>
</tr>
<tr>
<td>(\cos x)</td>
<td></td>
<td>1</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>(\tan x)</td>
<td></td>
<td>0</td>
<td>(\frac{1}{\sqrt{3}})</td>
<td>1</td>
<td>(\sqrt{3})</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values of (x)</th>
<th>Degrees</th>
<th>120</th>
<th>135</th>
<th>150</th>
<th>180</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td></td>
<td>(\frac{2\pi}{3})</td>
<td>(\frac{3\pi}{4})</td>
<td>(\frac{5\pi}{6})</td>
<td>(\pi)</td>
<td>(\frac{3\pi}{2})</td>
</tr>
<tr>
<td>(\sin x)</td>
<td></td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td></td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(-\frac{\sqrt{3}}{2})</td>
<td>(-1)</td>
<td>0</td>
</tr>
<tr>
<td>(\tan x)</td>
<td></td>
<td>(-\sqrt{3})</td>
<td>(-1)</td>
<td>(-\frac{1}{\sqrt{3}})</td>
<td>0</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Definition: A function \(f \) is periodic if there exists a positive real number \(p \) such that \(f(x) = f(x + p) \) for all \(x \) in the domain of \(f \). The smallest such positive number \(p \) is the period of \(f \).

Remarks:

1) The functions \(\sin x, \cos x, \sec x, \text{ and } \csc x \) are periodic functions with period \(2\pi \).

2) The functions \(\tan x \) and \(\cot x \) are periodic functions with period \(\pi \).
2.5.2: The Graph of $\sin x$

The graph of the function $y = \sin x$ is the line passing through all the points $(x, \sin x)$ on the xy-plane.

The graph of the function $y = \sin x$ for the interval $[0, 2\pi]$ is the line passing through the points $(0, 0), \left(\frac{\pi}{6}, \frac{1}{2}\right), \left(\frac{\pi}{2}, 1\right), \left(\frac{5\pi}{6}, \frac{1}{2}\right), (\pi, 0), \left(\frac{7\pi}{6}, -\frac{1}{2}\right), \left(\frac{3\pi}{2}, -1\right), \left(\frac{11\pi}{6}, -\frac{1}{2}\right), \text{ and } (2\pi, 0)$ which is shown in the following figure.

![Graph of $y = \sin x$](image)

The graph of the function $y = \sin x$ is shown in the following figure.

![Graph of $y = \sin x$](image)

The period of the function $y = \sin x$ is 2π. The domain of the function $y = \sin x$ is the set of all real numbers \mathbb{R}.

The range of the function $y = \sin x$ is the interval $[-1, 1]$.
2.5.3: The Graph of $\cos x$

The graph of the function $y = \cos x$ is the line passing through all the points $(x, \cos x)$ on the xy-plane.

The graph of the function $y = \cos x$ for the interval $[0, 2\pi]$ is the line passing through the points $(0, 1), \left(\frac{\pi}{3}, \frac{1}{2}\right), \left(\frac{\pi}{2}, 0\right), \left(\frac{2\pi}{3}, -\frac{1}{2}\right), (\pi, -1), \left(\frac{4\pi}{3}, -\frac{1}{2}\right), \left(\frac{3\pi}{2}, 0\right), \left(\frac{5\pi}{3}, \frac{1}{2}\right)$, and $(2\pi, 1)$ which is shown in the following figure.

![Graph of cos x](image)

The graph of the function $y = \cos x$ is shown in the following figure.

![Graph of cos x](image)

The period of the function $y = \cos x$ is 2π.

The domain of the function $y = \cos x$ is the set of all real numbers \mathbb{R}.

The range of the function $y = \cos x$ is the interval $[-1, 1]$.

أضفت المادة: جان فاضل
2.5.4: The Graphs of $\tan x$ and $\sec x$

The graph of the function $y = \tan x$ is the line passing through all the points $(x, \tan x)$ on the xy-plane.

The graph of $y = \tan x$ is shown in the following figure:

![Graph of $\tan x$]

The graph of $y = \sec x$ is shown in the following figure:

![Graph of $\sec x$]
Exercise: Draw the graph of the following trigonometric functions:

1) $y = \csc(x)$

2) $y = \cot(x)$
CH3: Limits, Continuity and Differentiation

S3.1: Limits and Continuity

Remark 3.1.1: If the values of a function \(y = f(x) \) can be made as close as we like to a fixed number \(L \) by taking \(x \) close to \(x_0 \) (but not equal to \(x_0 \)), we say that \(L \) is the limit of \(f \) as \(x \) approaches \(x_0 \), and we write it as

\[
\lim_{x \to x_0} f(x) = L
\]

Also we can say that the limit of \(f \) as \(x \) approaches \(x_0 \) equals \(L \).

Definition 3.1.2:

Let \(f \) be a function defined on the set \((x_0 - p, x_0) \cup (x_0, x_0 + p)\), with \(p > 0 \). Then

\[
\lim_{x \to x_0} f(x) = L
\]

iff for each \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that

if \(0 < |x - x_0| < \delta \) then \(|f(x) - L| < \varepsilon \).

Theorem 1:

1) \(\lim_{x \to x_0} x = x_0 \)

2) \(\lim_{x \to x_0} k = k \)

Theorem 2: If \(\lim_{x \to x_0} f(x) = L_1 \) and \(\lim_{x \to x_0} g(x) = L_2 \), then

1) \(\lim_{x \to x_0} [f(x) + g(x)] = L_1 + L_2 \)

2) \(\lim_{x \to x_0} [f(x) - g(x)] = L_1 - L_2 \)

3) \(\lim_{x \to x_0} [f(x) \cdot g(x)] = L_1 \cdot L_2 \)

4) \(\lim_{x \to x_0} [k \cdot f(x)] = k \cdot L_1 \)

5) \(\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L_1}{L_2} \) if \(L_2 \neq 0 \).
Example 3.1.3: Find each of the following:

1. \(\lim_{x \to 2} 7 \)
2. \(\lim_{x \to 1} x(3-x) \)
3. \(\lim_{x \to 3} (x^2 + 2x - 1) \)
4. \(\lim_{x \to 2} \frac{x-2}{x^2 - 5x + 6} \)
5. \(\lim_{x \to 0} \frac{x^2 - 5x}{x} \)

Solution:

1. \(\lim_{x \to 2} 7 = 7 \)
2. \(\lim_{x \to 1} x(3-x) = 1(3-1) = 2 \)
3. \(\lim_{x \to 3} (x^2 + 2x - 1) = (3)^2 + 2(3) - 1 = 9 + 6 - 1 = 14 \)
4. \(\lim_{x \to 2} \frac{x-2}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{x-2}{(x-3)(x-2)} = \lim_{x \to 2} \frac{1}{x-3} = \frac{1}{2-3} = -1 \)
5. \(\lim_{x \to 0} \frac{x^2 - 5x}{x} = \lim_{x \to 0} \frac{x(x-5)}{x} = \lim_{x \to 0} (x-5) = 0 - 5 = -5 \)

Theorem 3:

1) \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)
2) \(\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \)

Example 3.1.4: Find each of the following:

1. \(\lim_{x \to 0} \frac{\sin 4x}{\sin 5x} \)
2. \(\lim_{x \to 0} \frac{3x}{\sin 2x} \)
3. \(\lim_{x \to 0} \frac{\tan x}{x} \)

Solution:

1. \(\lim_{x \to 0} \frac{\sin 4x}{\sin 5x} = \lim_{x \to 0} \frac{4x}{5x} \cdot \frac{\sin 4x}{\sin 5x} = \frac{4}{5} \)

2. \(\lim_{x \to 0} \frac{3x}{\sin 2x} = \lim_{x \to 0} \frac{3x}{2x} \cdot \frac{\sin 2x}{2x} = \frac{3}{2} \)

3. \(\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{\cos x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = 1 \times 1 = 1 \)

Exercise 3.1.5: Find each of the following:

1. \(\lim_{x \to 0} \frac{1 - \cos x}{x + \sin x} \)

2. \(\lim_{x \to \infty} \left(1 + \cos \frac{1}{x} \right) \)

3. \(\lim_{x \to 0} \frac{\sin 2x}{2x^2 + x} \)

4. \(\lim_{y \to 0} \frac{\tan 2y}{3y} \)

5. \(\lim_{y \to \infty} \frac{y^4}{y^4 - 7y^3 + 3y^2 + 9} \)

Definition 3.1.6: A function \(f(x) \) is said to be continuous at \(x_0 \) if

1) \(f \) is defined at \(x_0 \) (i.e. \(f(x_0) = L \) where \(L \in \mathbb{R} \)).

2) \(\lim_{x \to x_0} f(x) \) exists

3) \(\lim_{x \to x_0} f(x) = f(x_0) = L \)
Example 3.1.7: Let \(f(x) = \begin{cases} x^2 & \text{if } x \leq 1 \\ 3 - 2x & \text{if } x > 1 \end{cases} \)

Is \(f \) continuous at \(x = 1 \)?

Solution:
1) \(f(1) = 1^2 = 1 \)
2) \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 = 1^2 = 1 \)
 \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (3 - 2x) = 3 - 2(1) = 1 \)
 since \(\lim_{x \to 1^-} f(x) = 1 = \lim_{x \to 1^+} f(x) \).
 Therefore \(\lim_{x \to 1^-} f(x) \) exists and \(\lim_{x \to 1^+} f(x) = 1 \)
3) \(\lim_{x \to 1^-} f(x) = 1 = f(1) \)
 Therefore \(f \) is continuous at \(x = 1 \).

Example 3.1.8: Let \(f(x) = \begin{cases} 2x + 1 & \text{if } x < -2 \\ x^2 - 2 & \text{if } x \geq -2 \end{cases} \)

Is \(f \) continuous at \(x = -2 \)?

Solution:
1) \(f(-2) = (-2)^2 - 2 = 4 - 2 = 2 \)
2) \(\lim_{x \to (-2)^-} f(x) = \lim_{x \to (-2)^-} (2x + 1) = 2(-2) + 1 = -4 + 1 = -3 \)
 \(\lim_{x \to (-2)^+} f(x) = \lim_{x \to (-2)^+} (x^2 - 2) = (-2)^2 - 2 = 4 - 2 = 2 \)
 since \(\lim_{x \to (-2)^-} f(x) \neq \lim_{x \to (-2)^+} f(x) \).
 Therefore \(\lim_{x \to (-2)} f(x) \) does not exists.
 Thus \(f \) is not continuous at \(x = -2 \).
Exercise 3.1.9:

Let \(f(x) = \begin{cases}
\frac{x^2-2x-8}{x+2} & \text{if } x \neq -2 \\
-3 & \text{if } x = -2
\end{cases} \)

Is \(f \) continuous at \(x = -2 \)?

S3.2: Differentiation

Definition of Derivative, Rules of Differentiation

Definition 3.2.1:

Let \(y = f(x) \) be a function and let the variable \(x \) receive a certain increment \(\Delta x \). Then the function \(y \) will receive a certain increment \(\Delta y \). Thus for the value of \(x \) we have \(y = f(x) \) and for the value of \(x + \Delta x \), we have \(y + \Delta y = f(x + \Delta x) \).

Thus the increment \(\Delta y \) is given by:

\[
\Delta y = f(x + \Delta x) - f(x)
\]

Remark 3.2.2: \(\Delta \) is an abbreviation of difference (in \(x, y \)) and is not a factor.

Forming the ratio of the increment of the function \(y \) to the increment of the variable \(x \), we get

\[
\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

is called the average rate of change of the function \(y = f(x) \) with respect to the variable \(x \). \(\frac{\Delta y}{\Delta x} \) is also called the difference quotient of the function \(y = f(x) \). If the limit of this ratio as \(\Delta x \) approaches zero exists, that is

\[
\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

exist, then the function is called differentiable and the limit \(\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \) is called the first derivative of the function \(y = f(x) \) with respect to
the variable \(x \), which is denoted by \(f'(x) \), \(y' \), \(\frac{dy}{dx} \), \(\frac{d}{dx} y \), \(\frac{d}{dx} f(x) \).

Differentiation Rules:

Let \(f(x) \) and \(g(x) \) be two differentiable functions (in the interval under consideration), then

RULE 1 Constant Multiple Rule

If \(f(x) \) is a differentiable function of \(x \), and \(c \) is a constant, then

\[
\frac{d}{dx} (cf(x)) = c \frac{d}{dx} f(x)
\]

RULE 2 Derivative of the Sum

If \(f(x) \) and \(g(x) \) are differentiable functions of \(x \), then their sum \(f(x) + g(x) \) is differentiable, and

\[
\frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)
\]

RULE 3 Derivative of the Difference

If \(f(x) \) and \(g(x) \) are differentiable functions of \(x \), then their difference \(f(x) - g(x) \) is differentiable, and

\[
\frac{d}{dx} (f(x) - g(x)) = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)
\]

RULE 4 Derivative of the Product

If \(f(x) \) and \(g(x) \) are differentiable functions of \(x \), then their product \(f(x) \cdot g(x) \) is differentiable, and

\[
\frac{d}{dx} (f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)
\]
Derivative of the Quotient

If \(f(x) \) and \(g(x) \) are differentiable functions of \(x \) and \(g(x) \neq 0 \), then the quotient \(\frac{f(x)}{g(x)} \) is differentiable, and

\[
\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \cdot \frac{d}{dx} f(x) - f(x) \cdot \frac{d}{dx} g(x)}{g(x)^2}
\]

Derivatives of Some Special Functions and the Chain Rule:

1) Derivatives of Some Algebraic Functions:

1) Derivative of a Constant Function

If \(f(x) = c \), then

\[
\frac{d}{dx} f(x) = \frac{d}{dx} c = 0
\]

Example 3.2.3: If \(f(x) = 12 \), then

\[
\frac{d}{dx} f(x) = \frac{d}{dx} (12) = 0
\]

2) Derivatives of a Power Functions

\[
\frac{d}{dx} x^n = nx^{n-1}, \quad n \in \mathbb{Q}
\]

provided that \(x \neq 0 \) when \(n \) is negative.

Example 3.2.4: Find \(f' \) for each of the following functions:

(i) \(f(x) = x \), (ii) \(f(x) = x^2 \), (iii) \(f(x) = x^{-3} \), (iv) \(f(x) = x^{0.3} \)

Solution:

(i) \(f'(x) = x^{1-1} = x^0 = 1 \)

(ii) \(f'(x) = 2x^{2-1} = 2x \)

(iii) \(f'(x) = -3x^{-2-1} = -3x^{-4} \)

(iv) \(f'(x) = 0.3x^{0.3-1} = 0.3x^{-0.7} \)
Example 3.2.5: Find f' for each of the following functions:

(i) $f(x) = \frac{1}{2}x$, (ii) $f(x) = 9x^2$, (iii) $f(x) = 4x^{-3}$, (iv) $f(x) = x^{2.5}$.

Solution:

(i) $f'(x) = \frac{1}{2}$

(ii) $f'(x) = 9 \cdot 2x^{2-1} = 18x$

(iii) $f'(x) = 4 \cdot (-3)x^{-3-1} = -12x^{-4}$

(iv) $f'(x) = 2.5x^{2.5-1} = 2.5x^{1.5}$

Example 3.2.6: Find f' for each of the following functions:

(i) $f(x) = x^3 + 5x^{-3}$, (ii) $f(x) = x^4 - \frac{3}{5}x^4 + 7x - 14$

Solution:

(i) $f'(x) = 3x^2 - 15x^{-4}$

(ii) $f'(x) = 4x^3 - \frac{3 \cdot 2}{5}x^0 + 7 - 0 = 4x^3 - \frac{6}{5}x^0 + 7$

Example 3.2.7: Find f' for the function $f(x) = 2x \left(3x^2 + \frac{3}{x} \right)$

Solution:

$$f'(x) = 2x \left(15x^4 - \frac{3}{x^2} \right) + \left(3x^2 + \frac{3}{x} \right) \cdot 2$$

$$= 30x^5 - \frac{6}{x} + 6x^4 + \frac{6}{x} = 36x^5$$

Example 3.2.8: Find f' for the function $f(x) = \frac{2x-1}{3x+1}$

Solution:

$$f'(x) = \frac{(3x+1) \cdot 2 - (2x-1) \cdot 3}{(3x+1)^2}$$

$$= \frac{6x+2-6x+3}{(3x+1)^2} = \frac{5}{(3x+1)^2}$$
The derivative of the cosine function is the negative of the sine function:
\[
\frac{d}{dx}(\cos x) = -\sin x
\]

Example 3.2.10: Find \(f'(x) \) for the function \(f(x) = 3x^2 + 2\cos x \)

Solution: \(f'(x) = 6x - 2\sin x \)

Example 3.2.11: Find \(y' \) for each of the following functions:

(i) \(y = \sin x - \cos x \)
(ii) \(y = 2\sin x \cos x \)
(iii) \(y = \frac{3\sin x}{\cos x + 1} \)

Solution:

(i) \(y' = \cos x + \sin x \)

(ii) \(y' = 2\sin x \cdot (-\sin x) + \cos x \cdot (2\cos x) = -2\sin^2 x + 2\cos^2 x \)

(iii) \(y' = \frac{(\cos x + 1) \cdot (3\cos x) - (3\sin x) \cdot (-\sin x)}{(\cos x + 1)^2} \)

\[= \frac{3\cos^2 x + 3\cos x + 3\sin^2 x}{(\cos x + 1)^2} \]

The derivative of other trigonometric functions:

\[
\frac{d}{dx}(\tan x) = \sec^2 x
\]

\[
\frac{d}{dx}(\cot x) = -\csc^2 x
\]

\[
\frac{d}{dx}(\sec x) = \sec x \tan x
\]

\[
\frac{d}{dx}(\csc x) = -\csc x \cot x
\]

Example 3.2.12: Find \(y' \) for each of the following functions:

(i) \(y = \tan x + \sec x \)
(ii) \(y = 5\cot x \csc x \)
Solution:

(i) \[y' = \sec^2 x + \sec x \tan x \]

(ii) \[y' = 5\cot x \cdot (-\csc x \cot x) + \csc x \cdot (-5 \csc^2 x) \]
\[= -5 \csc x \cot^2 x - 5 \csc^3 x \]

Derivative of Logarithmic Function:

The derivative of the natural logarithmic function is:

\[\frac{d}{dx} (\ln x) = \frac{1}{x} \]

Example 3.2.13: Find \(y' \) for each of the following functions:

(i) \[y = 4x^3 \ln x \]
(ii) \[y = \frac{2\ln x}{9x+1} \]

Solution:

(i) \[y' = 4x^3 \left(\frac{1}{x} \right) + \ln x (12x^2) = 4x^2 + 12x^2 \ln x \]

(ii) \[y' = \frac{\left(9x+1\right) \left(\frac{2}{x}\right)-(2\ln x)(9)}{(9x+1)^2} = \frac{18 + \frac{2}{x} - 18\ln x}{(9x+1)^2} \]

Derivative of Exponential Function:

The derivative of the exponential functions are:

\[\frac{d}{dx} a^x = a^x \ln a \quad \text{and} \quad \frac{d}{dx} e^x = e^x \]

Example 3.2.14: Find \(f' \) for the function \(f(x) = 5x^7 e^x + 4 e^x \).

Solution: \[f'(x) = 5x^7 e^x + e^x \left(35x^6 \right) + 4e^x = 5x^7 e^x + 35x^6 e^x + 4e^x \]
Implicit Differentiation (Derivative of Composite Functions):

Chain Rule:

Let \(y = f(u) \), \(u = g(x) \) then \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \)

Example 3.2.15: Let \(y = 6u^3 + 5u \), \(u = \ln x \), find \(\frac{dy}{dx} \).

Solution:

\[
\frac{dy}{du} = 18u^2 + 5, \quad \frac{du}{dx} = \frac{1}{x} \\
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (18u^2 + 5) \left(\frac{1}{x} \right) = \left(18(\ln x)^3 + 5 \right) \left(\frac{1}{x} \right) \\
= \frac{18}{x}(\ln x)^3 + \frac{5}{x}
\]

Example 3.2.16: Find \(\frac{dy}{dx} \) for each of the following functions:

(i) \(y = (x + 4x^3)^6 \), (ii) \(y = \ln(x^2 + 3) \), (iii) \(y = \tan^3 x \).

Solution:

(i) let \(u = x + 4x^3 \), then \(y = u^6 \).

Thus \(\frac{dy}{du} = 6u^5 \) and \(\frac{du}{dx} = 1 + 12x^2 \)

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 6u^5(1 + 12x^2) = 6(x + 4x^3)^5(1 + 12x^2)
\]

(ii) let \(u = x^2 + 3 \), then \(y = \ln u \).

Thus \(\frac{dy}{du} = \frac{1}{u} \) and \(\frac{du}{dx} = 2x \)

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u}(2x) = \frac{2x}{x^2 + 3}
\]

(iii) let \(u = \tan x \), then \(y = u^3 \).

Thus \(\frac{dy}{du} = 3u^2 \) and \(\frac{du}{dx} = \sec^2 x \)

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2(\sec^2 x) = 3\tan^2 x \sec^2 x
\]
In examples (3.2.15 and 3.2.16) we use the Chain rule to get the derivative of a composite function using substitutions, but also we can get the same results directly without substitutions, considering the following rules:

\[
\frac{d}{dx} (f(x))^n = n (f(x))^{n-1} \cdot f'(x),
\]

\[
\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \cdot f'(x),
\]

\[
\frac{d}{dx} e^{f(x)} = e^{f(x)} \cdot f'(x),
\]

\[
\frac{d}{dx} \sin(f(x)) = \cos(f(x)) \cdot f'(x),
\]

\[
\frac{d}{dx} \cos(f(x)) = -\sin(f(x)) \cdot f'(x),
\]

\[
\frac{d}{dx} \tan(f(x)) = \sec^2(f(x)) \cdot f'(x),
\]

\[
\frac{d}{dx} \sec(f(x)) = \sec(f(x)) \cdot \tan(f(x)) \cdot f'(x),
\]

\[
\frac{d}{dx} \csc(f(x)) = -\csc(f(x)) \cdot \cot(f(x)) \cdot f'(x),
\]

\[
\frac{d}{dx} \cot(f(x)) = -\csc^2(f(x)) \cdot f'(x).
\]

Example 3.2.17: Find \(\frac{dy}{dx} \) for each of the following functions:

(i) \(y = \sqrt{x^5 + 4x} \)

(ii) \(y = \ln(x^2 + 3x) \)

(iii) \(y = e^{2x} \)

Solution:

(i) \(y = \sqrt{x^5 + 4x} = (x^5 + 4x)^{\frac{1}{2}} \)

\[
\frac{dy}{dx} = \frac{1}{2} (x^5 + 4x)^{-\frac{1}{2}} \cdot (5x^4 + 4) = \frac{5x^4 + 4}{2\sqrt{x^5 + 4x}}.
\]
Solution:

(i) \(y' = 20x^4 - 21x^3 + 3 \), \(y'' = 80x^3 - 42x \)

(ii) \(y' = x^3 (4e^{4x}) + e^{4x} (3x^2) = 4x^3e^{4x} + 3x^2e^{4x} \)
 \[y'' = 4x^3 (4e^{4x}) + e^{4x} (12x^2) + 3x^2 (4e^{4x}) + e^{4x} (6x) \]
 \[= 16x^3e^{4x} + 12x^2e^{4x} + 12xe^{4x} + 6xe^{4x} \]
 \[= 16x^3e^{4x} + 24x^2e^{4x} + 6xe^{4x} \]

(iii) \(y' = 2\cos x - 9\sin x \)
 \[y'' = -2\sin x - 9\cos x \]

Example 3.2.19: Find \(y' \), \(y'' \), \(y''' \) and \(y^{(iv)} \) for each of the following functions:

(i) \(y = x^6 + x^4 - 3x^3 \), (ii) \(y = e^{2x} \), (iii) \(y = \sin x \), (iv) \(y = \cos x \)

Solution:

(i) \(y' = 6x^5 + 4x^3 - 9x^2 \), \(y'' = 30x^4 + 12x^3 - 18x \)
 \[y''' = 120x^3 + 24x - 18 \), \(y^{(iv)} = 360x^2 + 24 \).

(ii) \(y' = 2e^{2x} \), \(y'' = 4e^{2x} \), \(y''' = 8e^{2x} \), \(y^{(iv)} = 16e^{2x} \)

(iii) \(y' = \cos x \), \(y'' = -\sin x \), \(y''' = -\cos x \), \(y^{(iv)} = \sin x \)

(iv) \(y' = -\sin x \), \(y'' = -\cos x \), \(y''' = \sin x \), \(y^{(iv)} = \cos x \)

S3.3: L'Hopital Rule

Suppose that \(f(x_0) = g(x_0) = 0 \), and both \(f'(x_0) \) and \(g'(x_0) \) exist. Then

\[\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)} \quad \text{if} \quad g'(x_0) \neq 0. \]
(ii) $y = \ln(x^2 + 3x)$

\[
\frac{dy}{dx} = \frac{1}{x^2 + 3x} \cdot (2x + 3) = \frac{2x + 3}{x^2 + 3x}.
\]

(iii) $y = e^{3x}$

\[
\frac{dy}{dx} = e^{3x} \cdot 3 = 3e^{3x}.
\]

Second Order Derivative and Derivatives of Higher Order:

When we differentiate a function $y = f(x)$ we get a new function y' (or $\frac{dy}{dx}$ or $f'(x)$ or $\frac{d}{dx}f$) which is the derivative of $y = f(x)$ (or the first derivative of $y = f(x)$). Now if this derivative $y' = f'(x)$ is also a differentiable function, we can define the second derivative of $y = f(x)$ (or the second order derivative of $y = f(x)$) by differentiating y' (or $\frac{dy}{dx}$ or $f'(x)$ or $\frac{d}{dx}f$), which is denoted by y'' (or $\frac{d^2y}{dx^2}$ or $f''(x)$ or $\frac{d^2}{dx^2}f$).

Now if the second derivative $y'' = f''(x)$ is also a differentiable function, we can define the third derivative of $y = f(x)$ (or the third order derivative of $y = f(x)$) by differentiating y'' (or $\frac{d^2y}{dx^2}$ or $f''(x)$ or $\frac{d^2}{dx^2}f$), which is denoted by y''' (or $\frac{d^3y}{dx^3}$ or $f'''(x)$ or $\frac{d^3}{dx^3}f$). So long as we have differentiability, we can continue in this manner forming the fourth derivative of $y = f(x)$, which is denoted by $y^{(4)}$ (or $\frac{d^4y}{dx^4}$ or $f^{(4)}(x)$ or $\frac{d^4}{dx^4}f$), and more generally the nth derivative of $y = f(x)$ is denoted by $y^{(n)}$ (or $\frac{d^ny}{dx^n}$ or $f^{(n)}(x)$ or $\frac{d^n}{dx^n}f$).

Example 3.2.18: Find y'' for each of the following functions:

(i) $y = 4x^5 - 7x^3 + 3x$,
(ii) $y = x^3 e^{4x}$,
(iii) $y = 2\sin x + 9\cos x$
(ii) \(y = \ln (x^2 + 3x) \)
\[
\begin{align*}
\frac{dy}{dx} &= \frac{1}{x^2 + 3x} \cdot (2x + 3) = \frac{2x + 3}{x^2 + 3x}.
\end{align*}
\]

(iii) \(y = e^{3x} \)
\[
\begin{align*}
\frac{dy}{dx} &= e^{3x} \cdot 3 = 3e^{3x}.
\end{align*}
\]

Second Order Derivative and Derivatives of Higher Order:

When we differentiate a function \(y = f(x) \) we get a new function \(y' \)
(or \(\frac{dy}{dx} \) or \(f'(x) \) or \(\frac{d}{dx} f \)) which is the derivative of \(y = f(x) \) (or the first derivative of \(y = f(x) \)). Now if this derivative \(y' = f'(x) \) is also a differentiable function, we can define the second derivative of \(y = f(x) \) (or the second order derivative of \(y = f(x) \)) by differentiating \(y' \) (or \(\frac{dy}{dx} \) or \(f'(x) \) or \(\frac{d}{dx} f \)), which is denoted by \(y'' \) (or \(\frac{d^2y}{dx^2} \) or \(f''(x) \) or \(\frac{d^2}{dx^2} f \)).

Now if the second derivative \(y'' = f''(x) \) is also a differentiable function, we can define the third derivative of \(y = f(x) \) (or the third order derivative of \(y = f(x) \)) by differentiating \(y'' \) (or \(\frac{d^2y}{dx^2} \) or \(f''(x) \) or \(\frac{d^2}{dx^2} f \)), which is denoted by \(y''' \) (or \(\frac{d^3y}{dx^3} \) or \(f'''(x) \) or \(\frac{d^3}{dx^3} f \)). So long as we have differentiability, we can continue in this manner forming the fourth derivative of \(y = f(x) \), which is denoted by \(y^{(4)} \)
(or \(\frac{d^4y}{dx^4} \) or \(f^{(4)}(x) \) or \(\frac{d^4}{dx^4} f \)), and more generally the nth derivative of \(y = f(x) \) is denoted by \(y^{(n)} \) (or \(\frac{d^ny}{dx^n} \) or \(f^{(n)}(x) \) or \(\frac{d^n}{dx^n} f \)).

Example 3.2.18: Find \(y'' \) for each of the following functions:

(i) \(y = 4x^5 - 7x^2 + 3x \),
(ii) \(y = x^4 e^{4x} \),
(iii) \(y = 2\sin x + 9\cos x \)
Solution:

(i) \(y' = 20x^4 - 21x^2 + 3 \), \(y'' = 80x^3 - 42x \)

(ii) \(y' = x^3 (4e^{2x}) + e^{2x} (3x^2) = 4x^3 e^{2x} + 3x^2 e^{2x} \)
\[y'' = 4x^3 (4e^{2x}) + e^{2x} (12x^2) + 3x^2 (4e^{2x}) + e^{2x} (6x) \]
\[= 16x^3 e^{2x} + 12x^2 e^{2x} + 12x^2 e^{2x} + 6x e^{2x} \]
\[= 16x^3 e^{2x} + 24x^2 e^{2x} + 6x e^{2x} \]

(iii) \(y' = 2 \cos x - 9 \sin x \)
\(y'' = -2 \sin x - 9 \cos x \)

Example 3.2.19: Find \(y' \), \(y'' \), \(y''' \) and \(y^{(iv)} \) for each of the following functions:

(i) \(y = x^6 + x^4 - 3x^3 \), (ii) \(y = e^{2x} \), (iii) \(y = \sin x \), (iv) \(y = \cos x \)

Solution:

(i) \(y' = 6x^5 + 4x^3 - 9x^2 \), \(y'' = 30x^4 + 12x^2 - 18x \)
\(\), \(y''' = 120x^3 + 24x - 18 \), \(y^{(iv)} = 360x^2 + 24 \).

(ii) \(y' = 2e^{2x} \), \(y'' = 4e^{2x} \), \(y''' = 8e^{2x} \), \(y^{(iv)} = 16e^{2x} \)

(iii) \(y' = \cos x \), \(y'' = - \sin x \), \(y''' = - \cos x \), \(y^{(iv)} = \sin x \)

(iv) \(y' = - \sin x \), \(y'' = - \cos x \), \(y''' = \sin x \), \(y^{(iv)} = \cos x \)

S3.3: L'Hopital Rule

Suppose that \(f(x_0) = g(x_0) = 0 \), and both \(f'(x_0) \) and \(g'(x_0) \) exist. Then
\[\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)} \text{ if } g'(x_0) \neq 0. \]
Example 3.3.1: Find each of the following limits by using L'Hopital rule:

1. \[\lim_{x \to 1} \frac{x^3 - 1}{4x^3 - x - 3} \]
2. \[\lim_{x \to 0} \frac{1 - \cos x}{x + x^2} \]
3. \[\lim_{x \to 0} \frac{3x - \sin x}{x} \]
4. \[\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x} \]

Solution:

1. \[\lim_{x \to 1} \frac{x^3 - 1}{4x^3 - x - 3} = \lim_{x \to 1} \frac{3x^2}{12x^2 - 1} = \frac{3}{12 - 1} = \frac{3}{11} \]

2. \[\lim_{x \to 0} \frac{1 - \cos x}{x + x^2} = \lim_{x \to 0} \frac{0 + \sin x}{1 + 2x} = \frac{\sin 0}{1 + 0} = \frac{0}{1} = 0 \]

3. \[\lim_{x \to 0} \frac{3x - \sin x}{x} = \lim_{x \to 0} \frac{3 - \cos x}{1} = \frac{3 - \cos 0}{1} = \frac{3 - 1}{1} = 2 \]

4. \[\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x} \]
 \[= \lim_{x \to 0} \frac{1}{2 \sqrt{4 + x} + x} = \frac{1}{4} = \frac{1}{4} \]

Example 3.3.2: Find each of the following limits by using L'Hopital rule:

1. \[\lim_{x \to 0} \frac{x - \sin x}{x \sin x} \]
2. \[\lim_{x \to 0} \frac{x^4 - 5x^2}{x^2 + x - \sin x} \]
Solution:

1. \(\lim_{x \to 0} \frac{x - \sin x}{x \sin x} \)

\[
= \lim_{x \to 0} \frac{1 - \cos x}{x \cos x + \sin x}
\]

\[
= \lim_{x \to 0} \frac{\sin x}{-x \sin x + \cos x + \cos x} = \frac{0}{2} = 0
\]

Exercises:

In exercises 1 - 6, find \(y' \) and \(y'' \) (the first and second derivatives with respect to \(x \)).

1. \(y = x^3 + 6x - 5 \)
2. \(y = 3x^4 - \frac{6}{x^2} \)
3. \(y = 7x^2 - 3\sin x \)
4. \(y = 5\sin x \cos x \)
5. \(y = 3\tan x + 4\sec x \)
6. \(y = 2\sin x - 5\cos x \)

In exercises 7 - 9, find the first and second derivatives of the given function with respect to the given variable.

7. \(w = 2u^4 - 3u + 1 \)
8. \(y = 6t^4 - \frac{4}{t} \)
9. \(v = t^2 - 8\sin t \)
In exercises 10 - 12, find y' by applying the Product Rule

10) $y = (4 + x)(x^3 - 2)$
11) $y = (x + 2)(x^3 + x - 4)$
12) $y = (4 + x)(x^2 - \frac{3}{x})$

In exercises 13 - 17, find y'.

13) $y = \tan x - 3\sin x$
14) $y = 5\sin 3x^2 + \sqrt{x}$
15) $y = 3\sin x - e^x$
16) $y = \frac{2\sin x}{3x}$
17) $y = \frac{2\tan x - 3x}{3x + 4}$

In exercises 18 - 21, find y', y'', y''', and $y^{(4)}$.

18) $y = x^5 + 6x^4 - 25x$
19) $y = 3\sin x$
20) $y = \cos 2x$
21) $y = e^{3x} + \ln x$

In exercises 22 - 24, find the limit by using L'Hopital rule.

22) $\lim_{x \to 1} \frac{x - 1}{3x^3 - x^2 - 2}$
23) $\lim_{x \to 0} \frac{\sin 5x}{x}$
24) $\lim_{x \to 0} \frac{e^x - 1}{\sin x}$
Applications of Derivatives:

Slope and Tangent Line and Normal Line:

The slope of the curve $y = f(x)$ at any point $P(x, y)$ is $y' = f'(x)$.

The tangent line to the curve $y = f(x)$ at any point $P_0(x_0, f(x_0))$ is the line whose equation

$$\frac{y - f(x_0)}{x - x_0} = f'(x_0)$$

which pass through the point P_0 on the curve $y = f(x)$.

The normal line to the curve $y = f(x)$ at any point $P_0(x_0, f(x_0))$ is the line whose equation

$$\frac{y - f(x_0)}{x - x_0} = -\frac{1}{f'(x_0)}$$

which pass through the point P_0 on the curve $y = f(x)$.

Example 3.4.1: Find the slope of the curve of the function $y = f(x) = x^3 - 2x^2 + 4$ at the point $(1, 3)$. Then find the equation of each of the tangent line and the normal line to the curve at the point $(1, 3)$.

Solution:

The slope at any point $x = f'(x) = 3x^2 - 4x$

\[x = f'(1) = 3 - 4 = -1 \]

\[\frac{y - f(1)}{x - 1} = f'(1) \Rightarrow \frac{y - 3}{x - 1} = -1 \]

\[y - 3 = -x + 1 \Rightarrow y + x - 4 = 0 \]

Thus the equation of the tangent line at the point $(1, 3)$ is $y + x - 4 = 0$.

\[\frac{y - f(1)}{x - 1} = -\frac{1}{f'(1)} \Rightarrow \frac{y - 3}{x - 1} = 1 \]

\[y - 3 = x - 1 \Rightarrow y - x - 2 = 0 \]

Thus the equation of the normal line at the point $(1, 3)$ is $y - x - 2 = 0$.

Example 3.4.2: Find the slope of the curve of the function $y = g(x) = x^2$ at the point $(3, 9)$. Then find the equation of each of the tangent line and the normal line to the curve at the point $(3, 9)$.
Solution: \(g'(x) = 2x \)

The slope of the curve at the point \((3, 9)\) is \(g'(3) = 2(3) = 6 \).

\[
\frac{y - g(3)}{x - 3} = g'(3) \quad \Rightarrow \quad \frac{y - 9}{x - 3} = 6 \quad \Rightarrow
\]

\[y - 9 = 6x - 18 \quad \Rightarrow \quad y - 6x + 9 = 0 \]

Thus the equation of the tangent line at the point \((3, 9)\) is \(y - 6x + 9 = 0 \).

\[
\frac{y - g(3)}{x - 3} = \frac{1}{g'(3)} \quad \Rightarrow \quad \frac{y - 9}{x - 3} = \frac{1}{6} \]
\[
\Rightarrow \quad 6y - 54 = -x + 3 \quad \Rightarrow \quad 6y + x - 57 = 0
\]

Thus the equation of the normal line at the point \((3, 9)\) is \(6y + x - 57 = 0 \).

Exercise 3.4.3: Find the slope of the curve of the function \(y = h(x) = 3x^2 - 1 \) at the point \((-1, 2)\). Then find the equation of each of the tangent line and the normal line to the curve at the point \((-1, 2)\).

Exercise 3.4.4: Find the slope of the curve of the function \(y = f(x) = x^3 - 4 \) at the point \((2, 4)\). Then find the equation of each of the tangent line and the normal line to the curve at the point \((2, 4)\).
S4.1 : The Indefinite Integral

Definition: A function \(F(x) \) is anti-derivative of a function \(f(x) \) with respect to \(x \) if \(\frac{d}{dx} F(x) = f(x) \) for all \(x \) in the domain of \(f \). The set of all anti derivatives of \(f \) is the indefinite integral of \(f \) with respect to \(x \), denoted by \(\int f(x) \, dx \) i.e. \(\int f(x) \, dx = F(x) + c \).

The symbol \(\int \) is an integral sign.

The function \(f \) is the integrand of the integral and \(x \) is the variable of the integration.

Example 4.1.1: \(\int 3x^2 \, dx = x^3 + c \).

Integral Formulas:

1) \(\int u^n \, du = \frac{u^{n+1}}{n+1} + c, \; n \neq -1, \; n \text{ rational} \)

\(\int du = \int 1 \, du = u + c \) (special case)

2) \(\int \sin u \, du = -\cos u + c \)

3) \(\int \cos u \, du = \sin u + c \)

4) \(\int \sec^2 u \, du = \tan u + c \)

5) \(\int \csc^2 u \, du = -\cot u + c \)

6) \(\int \sec u \tan u \, du = \sec u + c \)

7) \(\int \csc u \cot u \, du = -\csc u + c \)

8) \(\int \frac{1}{u} \, du = \ln |u| + c \)

9) \(\int e^u \, du = e^u + c \)

10) \(\int a^u \, du = \frac{a^u}{\ln a} + c \), \(a > 0 \)
Rules of Indefinite Integration:
1) \[\int k f(x) \, dx = k \int f(x) \, dx \]
2) \[\int - f(x) \, dx = - \int f(x) \, dx \]
3) \[\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx \]

Example 4.1.2:
1) \[\int dx = x + c \]
2) \[\int x^5 \, dx = \frac{x^6}{6} + c \]
3) \[\int \sin x \, dx = -\cos x + c \]
4) \[\int \cos x \, dx = \sin x + c \]
5) \[\int \sec^2 x \, dx = \tan x + c \]
6) \[\int \csc^2 x \, dx = -\cot x + c \]
7) \[\int \sec x \tan x \, dx = \sec x + c \]
8) \[\int \csc x \cot x \, dx = -\csc x + c \]

Example 4.1.3: Find each of the following:
1) \[\int (x^3 + 7)^4 \cdot 3x^2 \, dx \]
2) \[\int (x^2 + 4x + 5)^{10} (x + 2) \, dx \]
3) \[\int \sin(3x) \, dx \]
4) \[\int 2x \sin(x^2) \, dx \]
5) \[\int \sin^3 x \cos x \, dx \]
6) \[\int 2 \cos 2x \, dx \]
7) \[\int x^2 \cos(x^3) \, dx \]
8) \[\int \sec^2(7x) \, dx \]
9) \[\int \csc^2(6x) \, dx \]
10) \[\int \csc(5x) \cot(5x) \, dx \]
Example 4.1.4: Find each of the following:

1) \[\int \frac{1}{x} \, dx \]

2) \[\int \tan x \, dx \]

3) \[\int \cot x \, dx \]

4) \[\int \frac{x+1}{x^2+3x+2} \, dx \]

5) \[\int e^x \, dx \]

6) \[\int 2x e^{x^2} \, dx \]

7) \[\int (7x^2 - 5e^{7x}) \, dx \]

Solution:

1) \[\int \frac{1}{x} \, dx = \ln|x| + c \]

2) \[\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\ln|\cos x| + c \]

3) \[\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + c \]

4) \[\int \frac{x+1}{x^2+3x+2} \, dx = \int \frac{x+1}{(x+2)(x+1)} \, dx = \int \frac{1}{x+2} \, dx = \ln|x+2| + c \]

5) \[\int e^x \, dx = e^x + c \]

6) \[\int 2x e^{x^2} \, dx = e^{x^2} + c \]

7) \[\int (7x^2 - 5e^{7x}) \, dx = \int 7x^2 \, dx - \int 5e^{7x} \, dx = \frac{7x^3}{3} - \frac{5e^{7x}}{7} + c \]

Exercise 4.1.5: Find each of the following:

1) \[\int \cos^4 x \sin x \, dx \]

2) \[\int \sec^2(3x) \, dx \]

3) \[\int x^4 \sec^2(x^5) \, dx \]

4) \[\int \sec^2 x \tan x \, dx \]

5) \[\int \sec^2 x \tan^2 x \, dx \]

6) \[\int \sec^4 x \tan x \, dx \]

7) \[\int x^9 \csc^2(x^{10}) \, dx \]
S4.2 : The Definite Integral

Definition: If \(f \) is a continuous at every point of \([a, b]\) and if \(F \) is any anti-derivative of \(f \) on \([a, b]\), then

\[
\int_a^b f(x) \, dx = F(b) - F(a)
\]

is called the definite integral.

Example 4.2.1: Evaluate the integral \(\int_1^4 (x^3 + 2x + 9) \, dx \)

Solution:

\[
\int_1^4 (x^3 + 2x + 9) \, dx = \left[\frac{x^4}{4} + x^2 + 9x \right]^4_1
\]

\[
= \left(\frac{256}{4} + 16 + 36 \right) - \left(\frac{1}{4} + 1 + 9 \right)
\]

\[
= 116 - 10.25 = 105.75
\]

Example 4.2.2: Evaluate \(\int_0^\pi \sin x \, dx \)

Solution:

\[
\int_0^\pi \sin x \, dx = [-\cos x]^\pi_0 = 0 - (-1) = 1
\]

How to Find the Area:

To find the area between the graph of \(y = f(x) \) and the \(x \)-axis over the interval \([a, b]\), we should follow the following steps:

Step 1: Partition \([a, b]\) with the zeros of \(f \).

Step 2: Integrate \(f \) over each subinterval.

Step 3: Add the absolute values of the Integrals.

Example 4.2.3: Find the total area of the region between the curve \(y = x^2 + 2x \) and the \(x \)-axis over the interval \([-3, 4]\).

Solution:

\(x^2 + 2x = 0 \implies x(x + 2) = 0 \)

\(\Rightarrow x = 0 \) or \(x = -2 \)

\(\therefore \) the area

\[
= \left| \int_{-3}^{-2} (x^2 + 2x) \, dx \right| + \left| \int_{-2}^{0} (x^2 + 2x) \, dx \right| + \left| \int_{0}^{4} (x^2 + 2x) \, dx \right|
\]

\[
= \left| \left[\frac{x^3}{3} + x^2 \right]_{-3}^{-2} \right| + \left| \left[\frac{x^3}{3} + x^2 \right]_{-2}^{0} \right| + \left| \left[\frac{x^3}{3} + x^2 \right]_{0}^{4} \right|
\]
\[\begin{align*}
&= \left| \left(\frac{-8}{3} + 4 \right) - \left(\frac{-27}{3} + 9 \right) \right| + \left| (0 + 0) - \left(\frac{-8}{3} + 4 \right) \right| \\
&\quad + \left| \left(\frac{64}{3} + 16 \right) - (0 + 0) \right| \\
&= \frac{4}{3} + \frac{4}{3} + \frac{112}{3} = \frac{120}{3} = 40.
\end{align*} \]

Example 4.2.4: Find the total area of the region between the curve \(y = x^3 - 4x^2 + 3x \) and the \(x \)-axis over the interval \([0, 2]\).

Solution:
\[x^3 - 4x^2 + 3x = 0 \implies x(x^2 - 4x + 3) = 0 \]
\[\implies x(x - 1)(x - 3) = 0 \implies x = 0 \text{ (neglected)} \text{ or } x = 1 \]
\[\text{or } x = 3 \text{ (neglected)} \]
\[\text{the area} = \left| \int_0^1 (x^3 - 4x^2 + 3x) \, dx \right| + \left| \int_1^2 (x^3 - 4x^2 + 3x) \, dx \right| \]
\[= \left| \left[\frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} \right]_0^1 \right| + \left| \left[\frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} \right]_1^2 \right| \]
\[= \left| \left(\frac{1}{4} - \frac{4}{3} + \frac{3}{2} \right) - 0 \right| + \left| \left(\frac{16}{4} - \frac{32}{3} + \frac{12}{2} \right) - \left(\frac{1}{4} - \frac{4}{3} + \frac{3}{2} \right) \right| \]
\[= \left| \frac{3-16+18}{12} \right| + \left| \frac{48-128+72}{12} - \frac{3-16+18}{12} \right| \]
\[= \left| \frac{5}{12} \right| + \left| \frac{-8}{12} - \frac{5}{12} \right| = \frac{5}{12} + \left| -\frac{13}{12} \right| = \frac{5}{12} + \frac{13}{12} = \frac{18}{12} = 1.5 \]

How to Find the Area Between Two Curves over an Interval \([a, b]\):

To find the area between the two curves \(f(x) \) and \(g(x) \) over the interval \([a, b]\) we should follow the following steps:

Step 1: Partition \([a, b]\) with the zeros of \(f - g \).

Step 2: Integrate \(f - g \) over each subinterval.

Step 3: Add the absolute values of the Integrals.

Example 4.2.5: Find the total area of the region between the two curves \(f(x) = x^2 \) and \(g(x) = 2x \) over the interval \([-1, 2]\).

Solution:
\[f(x) - g(x) = x^2 - 2x = 0 \implies x(x - 2) = 0 \]
\[x = 0 \text{ or } x = 2 \text{ (neglected)} \]
the area $= \left| \int_{-1}^{0} (x^2 - 2x) \, dx \right| + \left| \int_{0}^{2} (x^2 - 2x) \, dx \right|$

$= \left| \left[\frac{x^3}{3} - x^2 \right]_{-1}^{0} \right| + \left| \left[\frac{x^3}{3} - x^2 \right]_{0}^{2} \right|$

$= \left| (0 - 0) - \left(\frac{1}{3} + 1 \right) \right| + \left| \left(\frac{8}{3} - 4 \right) - (0 - 0) \right|$

$= \frac{4}{3} + \frac{4}{3} = \frac{8}{3}$

How to Find the Area Between Two Curves:

To find the area between the two curves $f(x)$ and $g(x)$ we should follow the following steps:

Step 1: Find the zeros of $f - g$, and let them be a and b.

Step 2: Integrate $f - g$ over the interval $[a, b]$.

Step 3: Find the absolute value of the integration found in step 2.

Example 4.2.6: Find the area of the region enclosed by the parabola $y = x^2 - 2$ and the line $y = x$.

Solution:

$f(x) - g(x) = (x^2 - 2) - x = 0 \Rightarrow x^2 - 2 - x = 0$

$\Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = 2 \text{ or } x = -1$.

$\therefore \text{the area} = \left| \int_{-1}^{2} (x^2 - 2 - x) \, dx \right|$

$= \left| \left[\frac{x^3}{3} - \frac{x^2}{2} - 2x \right]_{-1}^{2} \right|$

$= \left| \left(\frac{8}{3} - \frac{4}{2} - 4 \right) - \left(\frac{1}{3} - \frac{1}{2} + 2 \right) \right|$

$= \left| \frac{8 - 6 - 12}{3} - \frac{2 - 3 + 12}{6} \right|$

$= \left| \frac{-10 - 7}{6} \right| = \left| \frac{-20 - 7}{6} \right| = \frac{27}{6} = 4 \frac{1}{2}$.

Example 4.2.7: Find the total area of the region enclosed by the parabola $f(x) = x^2$ and the line $g(x) = 2x$.

Solution:

$f(x) - g(x) = x^2 - 2x = 0 \Rightarrow x(x - 2) = 0$

$\Rightarrow x = 0 \text{ or } x = 2$
\[\text{the area} = \left| \int_{0}^{2} (x^2 - 2x) \, dx \right| \]

\[= \left| \left[\frac{x^3}{3} - x^2 \right]_{0}^{2} \right| \]

\[= \left| \left(\frac{8}{3} - 4 \right) - (0 - 0) \right| \]

\[= \left| \frac{8 - 12}{3} \right| = \left| -\frac{4}{3} \right| = \frac{4}{3} \]

Rules for definite integrals

1) Order of integration:
\[\int_{b}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx \]

2) Zero integration:
\[\int_{a}^{a} f(x) \, dx = 0 \]

3) Constant multiple:
\[\int_{a}^{b} k f(x) \, dx = k \int_{a}^{b} f(x) \, dx \quad \forall \, k \in R, \text{ and thus} \]
\[\int_{a}^{b} f(x) \, dx = -\int_{a}^{b} f(x) \, dx \quad \text{for} \quad k = -1 . \]

4) Sum and difference:
\[\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx \]

5) Additively:
\[\int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx = \int_{a}^{c} f(x) \, dx \]

Example 4.2.8: Suppose that
\[\int_{-2}^{1} f(x) \, dx = 4 \quad , \quad \int_{1}^{3} f(x) \, dx = -3 \quad \text{and} \quad \int_{-2}^{1} h(x) \, dx = 6 . \text{ Find} \]

1) \[\int_{3}^{1} f(x) \, dx \]

2) \[\int_{-2}^{1} (2 f(x) + 5 h(x)) \, dx \]
3) \[\int_{-2}^{3} f(x) \, dx \]

4) \[\int_{-2}^{1} (3f(x) - 2h(x)) \, dx \]

Solution:

1) \[\int_{3}^{1} f(x) \, dx = -\int_{1}^{3} f(x) \, dx = -(-3) = 3 \]

2) \[\int_{-2}^{1} (2f(x) + 5h(x)) \, dx = \int_{-2}^{1} 2f(x) \, dx + \int_{-2}^{1} 5h(x) \, dx \]
 \[= 2\int_{-2}^{1} f(x) \, dx + 5\int_{-2}^{1} h(x) \, dx \]
 \[= 2(4) + 5(6) = 8 + 30 = 38 \]

3) \[\int_{-2}^{3} f(x) \, dx = \int_{-2}^{1} f(x) \, dx + \int_{1}^{3} f(x) \, dx \]
 \[= 4 + (-3) = 1 \]

4) \[\int_{-2}^{1} (3f(x) - 2h(x)) \, dx = \int_{-2}^{1} 3f(x) \, dx - \int_{-2}^{1} 2h(x) \, dx \]
 \[= 3\int_{-2}^{1} f(x) \, dx - 2\int_{-2}^{1} h(x) \, dx \]
 \[= 3(4) - 2(6) = 12 - 12 = 0 \]

Exercise 4.2.9: Evaluate the following integrals:

1) \[\int_{-2}^{3} (2x + 5) \, dx \]

2) \[\int_{0}^{1} (x^2 + \sqrt{x}) \, dx \]

3) \[\int_{0}^{\pi} (1 + \cos x) \, dx \]

4) \[\int_{\frac{\pi}{2}}^{\pi} (8y^2 + \sin y) \, dy \]

5) \[\int_{2}^{\frac{2}{x^2}} \, dx \]
CH 5: Sequences and Series

5.1.1: Arithmetic Sequence and Geometric Sequence

Definition 5.1.1: A sequence of numbers is a set of numbers arranged in a specific order.

Each number is called a term in the sequence. The first number is called the first term and will be denoted by \(a_1\), the second number is called the second term and will be denoted by \(a_2\), ..., the \(n\)th number is called the \(n\)th term and will be denoted by \(a_n\).

The sequence will be written as \(a_1, a_2, ..., a_n, ...\) and will be denoted by \(\{a_n\}\).

Definition 5.1.2: If \(\{a_n\}\) is a given sequence and \(S_n\) is defined by

\[S_1 = a_1,\]
\[S_2 = a_1 + a_2,\]
\[S_3 = a_1 + a_2 + a_3,\]
\[\vdots\]
\[S_n = a_1 + a_2 + ... + a_n = \sum_{i=1}^{n} a_i\]

Then the sequence \(\{S_n\}\) will be called an infinite series and will be written as \(\sum_{i=1}^{\infty} a_i\), and the terms \(S_n\) will be called the partial sum of the series.

Definition 5.1.3: A sequence of numbers in which each
term after the first term is obtained by adding a fixed number that is added is called the common difference and will be denoted by \(d \).

Example 5.1.4: \(7, 10, 13, 16, 19, \ldots \) is an arithmetic sequence, since each term after the first term is obtained by adding 3 to the previous term. In this example we have \(d = 3 \) and \(a_1 = 7 \):

\[
\begin{align*}
 a_2 &= a_1 + d = 7 + 3 = 10 \\
 a_3 &= a_2 + d = 10 + 3 = 13 \\
 a_4 &= a_3 + d = 13 + 3 = 16 \\
 &
\end{align*}
\]

Example 5.1.5: Find the common difference \(d \) for the following arithmetic sequence \(3, 9, 15, 21, 27, \ldots \)

Solution:

\[
\begin{align*}
 d &= 9 - 3 = 6 \\
 \text{or } d &= 15 - 9 = 6 \\
 \text{or } d &= 21 - 15 = 6 \\
 \text{or } d &= 27 - 21 = 6
\end{align*}
\]

Example 5.1.6: Write the first seven terms of the arithmetic sequence whose first term \(a_1 = 4 \) and common difference \(d = 9 \).

Solution: The first term \(a_1 = 4 \).

The second term \(a_2 = a_1 + d = 4 + 9 = 13 \).
The third term \(a_3 = a_2 + d = 13 + 9 = 22 \)
The fourth term \(a_4 = a_3 + d = 22 + 9 = 31 \)
The fifth term \(a_5 = a_4 + d = 31 + 9 = 40 \)
The sixth term \(a_6 = a_5 + d = 40 + 9 = 49 \)
The seventh term \(a_7 = a_6 + d = 49 + 9 = 58 \).

Exercise 5.1.7: Write the first nine terms of each of the following arithmetic sequences if you know that

1. \(a_1 = 3 \) and \(d = -2 \)
2. \(a_1 = 7 \) and \(d = 5 \)
3. \(a_2 = 10 \) and \(d = 4 \)
4. \(a_4 = 12 \) and \(a_5 = 17 \).

Remark 5.1.8: In the arithmetic sequence with the first term \(a_1 \) and common difference \(d \), the \(n \)th term \(a_n \) is given by \(a_n = a_1 + (n-1)d \).

Example 5.1.9: Find \(a_{10} \), \(a_{12} \) and \(a_n \) for the arithmetic sequence \(-2, 5, 12, \ldots\)

Solution:
\(a_1 = -2 \) and \(d = 5 - (-2) = 5 + 2 = 7 \).

\(a_{10} = -2 + (10-1) 	imes 7 = -2 + 9 	imes 7 = -2 + 63 = 61 \).

\(a_{12} = -2 + (12-1) 	imes 7 = -2 + 11 	imes 7 = -2 + 77 = 75 \).

\(a_n = -2 + (n-1) 	imes 7 = -2 + 7n - 7 = 7n - 9 \).

Exercise 5.1.10: For each of the following arithmetic sequences, find \(d \), \(a_{15} \), \(a_n \).
(1) 2, 5, 8, 11, ...
(2) 5, 9, 13, 17, ...
(3) -5, 6, 17, 28, ...

5.2: Arithmetic Series and Geometric Series

Definition 5.2.1: If \(\{a_n\} \) is an arithmetic sequence, then the corresponding series \(\sum_{i=1}^{\infty} a_i \) is called an arithmetic series and the terms \(S_n = \sum_{i=1}^{n} a_i \) is called the nth partial sum of the arithmetic series.

Theorem (1):

(i) The nth partial sum of an arithmetic series is \(S_n = \frac{n}{2} (a_1 + a_n) \).

(ii) The nth partial sum of an arithmetic series is \(S_n = na_1 + \frac{n(n-1)}{2}d \).

Example 5.2.2: Find the sum of the first 100 positive integers.

Solution: \(a_1 = 1 \) and \(a_{100} = 100 \)

\[S_{100} = \frac{100}{2} (1 + 100) = 50 (101) = 5050 \]

Example 5.2.3: Find the sum of the first 20 terms of the arithmetic sequence \(\{10, 16, 22, \ldots \} \).
Solution:
\[a_1 = 10 \text{ and } d = 16 - 10 = 6 \]
\[S_{20} = 20 \times 10 + \frac{20(20-1)}{2} \times 6 = 200 + \frac{20(19)}{2} \times 6 \]
\[= 200 + 190 \times 6 \]
\[= 200 + 1140 = 1340. \]

Example 5.2.4: The sum of the first 16 terms of an arithmetic sequence is 80. If \(a_{16} = 20 \), find \(a_1 \) and \(d \).

Solution:
\[S_{16} = \frac{16}{2} (a_1 + a_{16}) = 8 (a_1 + 20) = 8a_1 + 160 \]
\[\Rightarrow 80 = 8a_1 + 160 \Rightarrow 8a_1 = 80 - 160 \]
\[\Rightarrow 8a_1 = -80 \]
\[\Rightarrow a_1 = \frac{-80}{8} = -10 \]
Since \(a_{16} = a_1 + (16-1)d \) then \(20 = -10 + 15d \)
\[\Rightarrow 15d = 30 \Rightarrow d = \frac{30}{15} = 2. \]

Example 5.2.5: Find the sum of the first 12 terms of the sequence 11, 18, 25, ...

Solution: \(a_1 = 11 \text{ and } d = 18 - 11 = 7 \).
The \(i \)th term \(a_i = a_1 + (i-1)d = 11 + (i-1) \times 7 \)
\[= 11 + 7i - 7 = 7i + 4 \]
\[\Rightarrow S_n = \sum_{i=1}^{n} (7i + 4) \]
\[\Rightarrow S_{12} = \sum_{i=1}^{12} (7i + 4) = \frac{12}{2} (a_1 + a_{12}) = 6 (11 + 88) \]
\[= 6 \times 99 = 594. \]

Exercise 5.2.6: Find each of the following sums:
Definition 5.2.7: A sequence of numbers in which each term after the first term is obtained by multiplying the previous term by a fixed nonzero real number is called a geometric sequence. The fixed nonzero real number that is multiplied is called the common ratio and will be denoted by r.

Example 5.2.8: $3, 6, 12, 24, 48, ...$ is a geometric sequence, since each term after the first term is obtained by multiplying the previous term by 2. In this example we have $r = 2$ and

- $a_1 = 3$
- $a_2 = r \cdot a_1 = 2(3) = 6$
- $a_3 = r \cdot a_2 = 2(6) = 12$
- $a_4 = r \cdot a_3 = 2(12) = 24$

Example 5.2.9: Find the common ratio r for the following geometric sequence

$7, 21, 63, 189, ...$

Solution: $r = \frac{21}{7} = 3$

or $r = \frac{63}{21} = 3$

or $r = \frac{189}{63} = 3$
Example 5.2.10: Write the first five terms of the geometric sequence whose first term $a_1 = 3$ and common ratio $r = -2$.

Solution: The first term $a_1 = 3$

The second term $a_2 = r \cdot a_1 = (\text{-}2) \times 3 = \text{-}6$

The third term $a_3 = r \cdot a_2 = (\text{-}2) \times (\text{-}6) = 12$

The fourth term $a_4 = r \cdot a_3 = (\text{-}2) \times 12 = \text{-}24$

The fifth term $a_5 = r \cdot a_4 = (\text{-}2) \times (\text{-}24) = 48$.

Exercise 5.2.11: Write the first seven terms of each of the following geometric sequence if you know that

1. $a_1 = \text{-}6$ and $r = 2$
2. $a_1 = 7$ and $r = \text{-}1$
3. $a_1 = 4$ and $r = 5$

Remark 5.2.12: In the geometric sequence with the first term a_1 and the common ratio r, the nth term a_n is given by $a_n = r^{n-1} \times a_1$.

Example 5.2.13: Find a_5, a_7 and a_n for the geometric sequence 5, 10, 20, ...

Solution:

$a_1 = 5$ and $r = \frac{10}{5} = 2$

$a_5 = 2^{5-1} \times 5 = 2^4 \times 5 = 16 \times 5 = 80$

$a_7 = 2^{7-1} \times 5 = 2^6 \times 5 = 64 \times 5 = 320$

$a_n = 2^{n-1} \times 5$.
Exercise 5.2.14: For each of the following geometric sequences, find r, a_6 and a_n.

1. $6, 18, 54, ...$
2. $7, -7, 7, ...$
3. $-2, 4, -8, ...$

Definition 5.2.15: If $\{a_n\}$ is a geometric sequence, then the corresponding series $\sum_{i=1}^{\infty} a_i$ is called a geometric series and the terms

$$S_n = \sum_{i=1}^{n} a_i = a_1 + r a_1 + r^2 a_1 + \ldots + r^{n-1} a_1$$

is called the nth partial sum of the geometric series.

Theorem (2):

(i) The nth partial sum of a geometric series is

$$S_n = \begin{cases}
\frac{a_1 (1 - r^n)}{1 - r} & \text{if } r \neq 1 \\
na_1 & \text{if } r = 1
\end{cases}$$

(ii) The nth partial sum of a geometric series is

$$S_n = \begin{cases}
\frac{a_1 - r a_n}{1 - r} & \text{if } r \neq 1 \\
n a_1 & \text{if } r = 1
\end{cases}$$

Example 5.2.16: Find the sum S_7 of the first seven terms of the geometric sequence (the 7th partial sum of
the geometric series) 4, 8, 18, ...

Solution:
\[r = \frac{8}{4} = 2 \], \(a_1 = 4 \)

The sum of the first seven terms is
\[S_7 = \frac{4(1-2^7)}{1-2} = \frac{4(1-128)}{-1} = \frac{4(-127)}{-1} \]
\[= -508 \]
\[= 508 \]

Example 5.2.17: Find \(\sum_{i=1}^{5} 7(4)^i \).

Solution: \(a_1 = 7(4)^1 = 28 \)
\[a_2 = 7(4)^2 = 7(16) = 112 \]
\[\therefore r = \frac{a_2}{a_1} = \frac{112}{28} = 4 \]
\[\therefore \sum_{i=1}^{5} 7(4)^i = S_5 = \frac{28(1-4^5)}{1-4} = \frac{28(1-1024)}{-3} \]
\[= \frac{28(-1023)}{-3} = \frac{-28644}{-3} = 9548 \]

Exercise 5.2.18: Find each of the following:

(1) \(\sum_{i=1}^{7} 2(3)^i \)
(2) \(\sum_{i=1}^{6} 6(2)^i \)
(3) \(\sum_{i=1}^{5} 9(-2)^i \)
(4) \(\sum_{i=1}^{10} 2^i \)
Definition 5.2.19: Let \(\sum_{i=1}^{\infty} a_i = a_1 + a_2 + \ldots + a_n + \ldots \) be an infinite series and let \(\{S_n\} \), where \(S_n = a_1 + a_2 + \ldots + a_n \) for \(n = 1, 2, 3, \ldots \) be the sequence of partial sums of the infinite series.

If \(\lim_{n \to \infty} S_n \) exists and equals a number \(S \), the series is said to be convergent (and to converge to the value \(S \)) and \(S \) is called the sum of the infinite series \(\sum_{i=1}^{\infty} a_i \).

If \(\lim_{n \to \infty} S_n \) fails to exist or not a finite number, the series is divergent and has no sum.

Example 5.2.20: Find the sum of the infinite series \(\sum_{m=1}^{\infty} \frac{1}{2^m} \).

Solution: \(S_1 = \frac{1}{2} \),
\[S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \],
\[S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8} \],
\[\vdots \]
\[S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = \frac{2^n - 1}{2^n} \]
\[\vdots \]
Then \(\sum_{m=1}^{\infty} \frac{1}{2^m} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{2^n - 1}{2^n} = \lim_{n \to \infty} (1 - \frac{1}{2^n}) \)
\[= 1 - 0 \]
\[= 1 \]

Remark 5.2.21: The geometric series converges if \(|r| < 1 \) and diverges if \(|r| \geq 1 \).
Exercise 5.2.22:
State whether each of the following series converges or diverges, and then find the sum of the series if it converges:

\[\sum_{n=1}^{\infty} \frac{1}{2^n-1} \]

\[\sum_{n=1}^{\infty} \frac{5}{3^n-1} \]

\[\sum_{n=1}^{\infty} 3(2^{n-1}) \]

\[\sum_{n=1}^{\infty} 7(-1)^{n-1} \]

S 5.3: Power Series, Taylor Series and Maclaurian Series

Definition 5.3.1: A power series is a series of the form

\[\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \ldots \]

Definition 5.3.2: The Maclaurian series for a function \(F \) is

\[f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \ldots + \frac{f^{(n)}(0)}{n!} x^n + \ldots \]

(i.e. \(f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \ldots + \frac{f^{(n)}(0)}{n!} x^n + \ldots \) about \(x = 0 \)).

Example 5.3.3: Find the Maclaurian series for the function \(f(x) = e^x \).

Solution: Since \(f(x) = e^x \), \(f'(x) = e^x \), \(f''(x) = e^x \), \ldots,

\(f^{(n)}(x) = e^x \).
Then \(f(0) = e^0 = 1 \), \(f'(0) = e^0 = 1 \), \(f''(0) = e^0 = 1 \), \ldots, \(f^{(n)}(0) = e^0 = 1 \), and this implies that the Maclaurian series for the function
\(f(x) = e^x \) is

\[
e^x = f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \cdots + \frac{f^{(n)}(0)}{n!} x^n + \cdots
\]

\[= 1 + 1 \cdot x + \frac{1}{2!} x^2 + \cdots + \frac{1}{n!} x^n + \cdots
\]

\[= \sum_{k=0}^{\infty} \frac{1}{k!} x^k.
\]

Example 5.3.4: Find the Maclaurian series for the function \(f(x) = \cos x \).

Solution: Since \(f(x) = \cos x \), \(f'(x) = -\sin x \),

\[
f''(x) = -\cos x \quad f^{(3)}(x) = \sin x \quad \vdots
\]

\[f^{(2k)}(x) = (-1)^k \cos x \quad f^{(2k+1)}(x) = (-1)^{k+1} \sin x
\]

Then \(f^{(2k)}(0) = (-1)^k \cos 0 = (-1)^k \cdot 1 = (-1)^k \)
and \(f^{(2k+1)}(0) = (-1)^{k+1} \sin 0 = (-1)^{k+1} \cdot 0 = 0 \), and this implies that the Maclaurian series for the function
\(f(x) = \cos x \) is

\[
\cos x = f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \cdots + \frac{f^{(n)}(0)}{n!} x^n + \cdots
\]

\[= 1 + 1 \cdot x + \frac{1}{2!} x^2 + \cdots + \frac{1}{n!} x^n + \cdots
\]

\[= \sum_{k=0}^{\infty} \frac{1}{k!} x^k.
\]

Exercise 5.3.5: Find the Maclaurian series for the function
\(f(x) = \sin x \).
Definition 5.3.6: The Taylor series for the function f about $x = a$ is

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \ldots$$

Remark 5.3.7: The Maclaurian series are Taylor series with $a = 0$.

Example 5.3.8: Find the Taylor series of $\cos x$ about $x = 2\pi$.

Solution:

Since $f(x) = \cos x$, $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f^{(3)}(x) = \sin x$, $f^{(4)}(x) = \cos x$, $f^{(5)}(x) = -\sin x$, $f^{(6)}(x) = -\cos x$, $f^{(7)}(x) = \sin x$, and so on.

Then $f^{(2k)}(2\pi) = (-1)^k \cos(2\pi) = (-1)^k \cdot 1 = (-1)^k$ and $f^{(2k+1)}(2\pi) = (-1)^{k+1} \sin(2\pi) = (-1)^{k+1} \cdot 0 = 0$ and this implies that the Taylor series of $f(x) = \cos x$ about $x = 2\pi$ is

$$\cos x = f(x) = f(2\pi) + f'(2\pi)(x-2\pi) + \frac{f''(2\pi)}{2!}(x-2\pi)^2 + \frac{f^{(3)}(2\pi)}{3!}(x-2\pi)^3 + \ldots$$

$$= \cos(2\pi) - \sin(2\pi)(x-2\pi) - \frac{\cos(2\pi)(x-2\pi)^2}{2!} + \frac{\sin(2\pi)(x-2\pi)^3}{3!} + \ldots$$

$$= 1 - 0(x-2\pi) - \frac{1}{2!}(x-2\pi)^2 + \frac{0}{3!}(x-2\pi)^3 + \frac{1}{4!}(x-2\pi)^4 + \ldots$$

$$= 1 - \frac{(x-2\pi)^2}{2!} + \frac{(x-2\pi)^4}{4!} + \ldots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k (x-2\pi)^{2k}}{(2k)!}.$$
Example 5.3.9: Find the Taylor series for the function
\(f(x) = \frac{1}{x} \) about \(x = 1 \).

Solution:
Since \(f(x) = \frac{1}{x} = x^{-1} \), \(f'(x) = -1 \cdot x^{-2} = -\frac{1}{x^2} \),

\[
\begin{align*}
f''(x) &= 2x^{-3} = \frac{2}{x^3} , \quad f^{(3)}(x) = -6x^{-4} = \frac{-6}{x^4} = \frac{-3!}{x^4} \\
f^{(k)}(x) &= (-1)^k \cdot \frac{k!}{x^{k+1}} , \ldots
\end{align*}
\]

Then \(f^{(k)}(1) = (-1)^k \cdot \frac{k!}{(1)^{k+1}} = (-1)^k \cdot k! \) and this implies that the Taylor series of \(f(x) = \frac{1}{x} \) about \(x = 1 \) is

\[
\begin{align*}
\frac{1}{x} &= f(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!} (x-1)^2 + \ldots + \frac{f^{(n)}(1)}{n!} (x-1)^n + \ldots \\
&= 1 + (-1)^1 (1!) (x-1) + \frac{(-1)^2 \cdot 2!}{2!} (x-1)^2 + \frac{(-1)^3 \cdot 3!}{3!} (x-1)^3 + \ldots \\
&= 1 - (x-1) + (x-1)^2 - \frac{1}{2} (x-1)^3 + \frac{1}{4} (x-1)^4 - \ldots \\
&= \sum_{k=0}^{\infty} (-1)^k (x-1)^k
\end{align*}
\]

Exercise 5.3.10: Find the Taylor series for the function
\(f(x) = \frac{1}{x} \) about \(x = -1 \).

(ans. \(\frac{1}{x} = f(x) = \sum_{k=0}^{\infty} (-1) \cdot (x+1)^k \)).
5.4: Fourier Series

Definition 5.4.1: The Fourier series of a function \(f(x) \) defined on the interval \(-L < x < L\) is

\[
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right] \quad (1)
\]

where

\[
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx
\]

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} \, dx
\]

\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} \, dx
\]

Remarks 5.4.2:

Suppose that \(f \) is a function defined over the symmetric interval \(-L < x < L\). Assume that \(f \) is expressible as the trigonometric series given by equation (1). If \(m \) and \(n \) are positive integers, then

\[
(1) \quad \int_{-L}^{L} \cos \frac{n\pi x}{L} \, dx = 0
\]

\[
(2) \quad \int_{-L}^{L} \sin \frac{n\pi x}{L} \, dx = 0
\]
\[\int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} \, dx = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases} \]

\[\int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} \, dx = 0 \]

\[\int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} \, dx = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases} \]

Example 5.4.3: Find the Fourier series expansion of the function
\[f(x) = \begin{cases} 1 & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases} \]

Solution:

Since \(L = \pi \), then \(a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx \)

\[= \frac{1}{\pi} \int_{-\pi}^{0} f(x) \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \, dx \]

\[= \frac{1}{\pi} \int_{-\pi}^{0} \, dx + \frac{1}{\pi} \int_{0}^{\pi} x \, dx \]

\[= \frac{1}{\pi} \left[x \right]_{-\pi}^{0} + \frac{1}{\pi} \left[\frac{x^2}{2} \right]_{0}^{\pi} \]

\[= \frac{1}{\pi} (-\pi) + \frac{1}{\pi} \left(\frac{\pi^2}{2} \right) = 1 + \frac{\pi}{2} \]
CH6: Hyperbolic Functions and Inverse Hyperbolic Functions

5.6.1: Hyperbolic Functions

Definition 5.6.1.1:

1. Hyperbolic cosine of x: \(\cosh x = \frac{e^x + e^{-x}}{2} \)

2. Hyperbolic sine of x: \(\sinh x = \frac{e^x - e^{-x}}{2} \)

3. Hyperbolic tangent: \(\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \)

4. Hyperbolic cotangent: \(\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \)

5. Hyperbolic secant: \(\text{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} \)

6. Hyperbolic cosecant: \(\text{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} \)
5.6.2: Inverse Hyperbolic Functions

The inverse hyperbolic sine function is defined by
\[y = \sinh^{-1} x \quad \text{iff} \quad x = \sinh y \]

The inverse hyperbolic cosine function is defined by
\[y = \cosh^{-1} x \quad \text{iff} \quad x = \cosh y \quad \text{and} \quad y \geq 0 \]

or by \(\{(x, y) \mid x = \cosh y, \ y \geq 0\} \)

Similarly, \(\tanh, \ coth \) and \(\csch \) have inverses, denoted by \(\tanh^{-1}, \ coth^{-1} \) and \(\csch^{-1} \).

Remark 6.2.1

\(\sech \) does not have a unique inverse.

We define the inverse hyperbolic secant by
\[y = \sech^{-1} x \quad \text{iff} \quad x = \sech y \quad \text{and} \quad y \geq 0 \]

or \(\{(x, y) \mid x = \sech y, \ y \geq 0\} \).

Remarks 6.2.2

Since the natural logarithmic function is the inverse of the exponential function, then the inverse hyperbolic functions may be expressed in terms of \(\ln x \).
Let $y = \cosh^{-1} x$, where $x \geq 1$. Then

$$x = \cosh y = \frac{1}{2} (e^y + e^{-y}) \text{ for } y \geq 0.$$

$$\Rightarrow 2x e^y = e^{2y} + 1$$

$$\Rightarrow (e^y)^2 - 2x (e^y) + 1 = 0$$

$$\Rightarrow e^y = x \pm \sqrt{x^2 - 1} \text{ or } y = \ln (x \pm \sqrt{x^2 - 1})$$

$$\Rightarrow \cosh^{-1} x = \ln (x + \sqrt{x^2 - 1}) \quad [\text{since } \cosh^{-1} x \text{ is the larger of these two values of } y]$$

Similarly

$$\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1}) \quad (\text{for any } x),$$

$$\cosh^{-1} x = \ln (x + \sqrt{x^2 - 1}) \quad (x \geq 1),$$

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1 + x}{1 - x} \quad (-1 < x < 1).$$