
Chapter Two Addressing Data Memory

١

Chapter Two Addressing Data Memory

Addressing Data Memory

Depending on the model, the processor can access one or more bytes of memory

at a time. Consider the Hexa value (0529H) which requires two bytes or one

word of memory. It consist of high order (most significant) byte 05 and a low

order (least significant) byte 29.

The processor store the data in memory in reverse byte sequence i.e. the low

order byte in the low memory address and the high order byte in the high

memory address. For example, the processor transfer the value 0529H from a

register into memory address 04A26 H and 04A27H like this:

The processor expects numeric data in memory to be in reverse byte

sequence and processes the data accordingly, again reverses the bytes, restoring

them to correctly in the register as hexa 0529H.

 When programming in assembly language, you have to distinguish between the

address of a memory location and its contents. In the above example the content

of address 04A26H is 29, and the content of address 04A27H is 05.

Chapter Two Addressing Data Memory

٢

There are two types of addressing schemes:

1. An Absolute Address, such as 04A26H, is a 20 bit value that directly

references a specific location.

 2. A Segment Offset Address, combines the starting address of a segment with

an offset value.

Segments and Addressing

Segments are special area defined in a program for containing the code, the

data, and the stack. Segment Offset within a program, all memory locations

within a segment are relative to the segment starting address. The distance in

bytes from the segment address to another location within the segment is

expressed as an offset (or displacement).

To reference any memory location in a segment, the processor combine the

segment address in a segment register with the offset value of that location, that

is, its distance in byte from the start of the segment.

Specifying addresses

To represent a segment address and its relative offset we use the notation:

Segment: offset

Thus 020A:1BCD denotes offset 1BCDH from segment 020AH. The actual

address it refers to is obtained in the following way:

 Add zero to the right hand side of the segment address.

 Add to this the offset.

Chapter Two Addressing Data Memory

٣

Hence the actual address referred to by 020A:1BCD is 03C6D.

Address Bus in the 8086 is 20 bits wide (20 lines) i.e. the processor can

access memory of size 220 or 1048576 bytes (1MB).

Instruction Pointer = 16 bit register which means the processor can only address

0 – 216 (65535) bytes of memory. But we need to write instructions in any of

the 1MB of memory. This can be solved by using memory segmentation., where

each segment register is 16-bit (this 16-bit is the high 16-bit of Address Bus

(A4- A19)) i.e. each of the segment registers represent the actual address after

shifting the address 4-bit to get 20 bits.

Registers

Registers are 8, 16, or 32-bit high speed storage locations directly inside the

CPU, designed to be accessed at much higher speed than conventional memory.

Chapter Two Addressing Data Memory

٤

Figure 7: Intel 16-bit registers

The CPU has an internal data bus that is generally twice as wide as its external

data bus.

Data Registers: The general purpose registers, are used for arithmetic and data

movement. Each register can be addressed as either 16-bit or 8 bit value.

Example, AX register is a 16-bit register, its upper 8-bit is called AH, and its

lower 8-bit is called AL. Bit 0 in AL corresponds to bit 0 in AX and bit 0 in AH

corresponds to bit 8 in AX. See Figure 8.

Figure 8: AX register

Chapter Two Addressing Data Memory

٥

Instructions can address either 16-bit data register as AX, BX, CX, and DX or

8-bit register as AL, AH, BL, BH, CL, CH, Dl, and DH. If we move 126FH to

AX then AL would immediately 6FH and AH = 12H.

General Purpose Register

Each general purpose register has special attributes:

 AX (Accumulator): AX is the accumulator register because it is favored

by the CPU for arithmetic operations. Other operations are also slightly

more efficient when performed using AX.

 BX (Base): the BX register can hold the address of a procedure or variable.

Three other registers with this ability are SI, DI and BP. The BX register

can also perform arithmetic and data movement.

 CX (Counter): the CX register acts as a counter for repeating or looping

instructions. These instructions automatically repeat and decrement CX

 DX (Data): the DX register has a special role in multiply and divide

operation. When multiplying for example DX hold the high 16 bit of the

product.

Segment Registers

Segment Registers: the CPU contain four segment registers, used as base

location for program instruction, and for the stack.

 CS (Code Segment): The code segment register holds the base location of

all executable instructions (code) in a program.

Chapter Two Addressing Data Memory

٦

 DS (Data Segment): the data segment register is the default base location

for variables. The CPU calculates their location using the segment value in

DS.

 SS (Stack Segment): the stack segment register contain the base location

of the stack.

 ES (Extra Segment): The extra segment register is an additional base

location for memory variables.

Index Registers

Index registers contain the offset of data and instructions. The term offset

refers to the distance of a variable, label, or instruction from its base segment.

The index registers are:

 BP (Base Pointer): the BP register contain an assumed offset from the

stack segment register, as does the stack pointer. The base pointer register is

often used by a subroutine to locate variables that were passed on the stack

by a calling program.

 SP (Stack Pointer): the stack pointer register contain the offset of the top of

the stack. The stack pointer and the stack segment register combine to form

the complete address of the top of the stack.

 SI (Source Index): This register takes its name from the string movement

instruction, in which the source string is pointed to by the source index

register.

 DI (Destination Index): the DI register acts as the destination for string

movement instruction

Chapter Two Addressing Data Memory

٧

Status and Control Register

1. IP (Instruction Pointer): The instruction pointer register always contain

the offset of the next instruction to be executed within the current code

segment. The instruction pointer and the code segment register combine to

form the complete address of the next instruction.

2. The Flag Register: is a special register with individual bit positions

assigned to show the status of the CPU or the result of arithmetic operations.

The Figure9 describe the 8086/8088 flags register:

Figure 9: Flag Register

There Two Basic Types of Flags

There two basic types of flags: (control flags and status flags)

1. Control Flags: individual bits can be set in the flag register by the

programmer to control the CPU operation , these are

 The Direction Flag (DF): affects block data transfer instructions, such as

MOVS, CMPS, SCAS. The flag values are 0 = up and 1 = down.

Chapter Two Addressing Data Memory

٨

 The Interrupt flag (IF): dictates whether or not a system interrupt can

occur. Such as keyboard, disk drive, and the system clock timer. A

program will sometimes briefly disable the interrupt when performing a

critical operation that cannot be interrupted. The flag values are 1 =

enable, 0 = disable.

 The Trap flag (TF): Determine whether or not the CPU is halted after

each instruction. When this is set, a debugging program can let a

programmer to enter single stepping (trace) through a program one

instruction at a time. The flag values are 1 = on, 0 = off. The flag can be

set by INT 3 instruction.

2. Status Flags: The status flags reflect the outcomes of arithmetic and logical

operations performed by the CPU, these are:

 The Carry Flag (CF): is set when the result of an unsigned arithmetic

operation is too large to fit into the destination for example, if the sum of

71 and 99 where stored in the 8-bit register AL, the result cause the carry

flag to be 1. The flag values = 1 = carry, 0 = no carry.

 The Overflow (OF): is set when the result of a signed arithmetic operation

is too wide (too many bits) to fit into destination. 1 = overflow, 0 = no

overflow.

 Sign Flag (SF): is set when the result of an arithmetic of logical operation

generates a negative result, 1= negative, 0 = positive.

 Zero Flag (ZF): is set when the result of an arithmetic of logical operation

generates a result of zero, the flag is used primarily by jump or loop

instructions to allow branching to a new location in a program based on the

comparison of two values. The flag value = 1 = zero, & 0 = not zero.

Chapter Two Addressing Data Memory

٩

 Auxiliary Flag: is set when an operation causes a carry from bit 3 to bit 4

(or borrow from bit 4 to bit 3) of an operand. The flag value = 1 = carry, 0

= no carry.

 Parity Flag: reflect the number of 1 bits in the result of an operation. If

there is an even number of bit, the parity is even. If there is an odd

number of bits, parity is odd. This flag is used by the OS to verify

memory integrity and by communication software to verify the correct

transmission of data.

Instruction Execution and Addressing

An assembly language programmer writhe a program in symbolic code and

uses the assembler to translate it into machine code as .EXE program. For

program execution, the system looks only the machine code into memory.

Every instruction consists of at least one operation, such as MOV, ADD.

Depending on the operation, an instruction may also have one or more

operands that reference the data the operation is to process.

The Basic Steps the Processor

The basic steps the processor takes in executing on instruction are:

1. Fetch the next instruction to be executed from memory and place it in the

instruction queue.

2. Decode the instruction calculates addressed that reference memory, deliver

data to the Arithmetic Logic Unit, and increment the instruction pointer (IP)

register.

Chapter Two Addressing Data Memory

١٠

3. Execute the instruction, performs the request operation, store the result in

a register or memory, and set flags such as zero or carry where required.

For an .EXE program the CS register provide the address of the beginning

of a program code segment, and DS provide the address of the beginning of the

data segment.

The CS contains instructions that are to be executed, where as the DS

contain data that the instruction reference. The IP register indicates the offset

address of the current instruction in the CS that is to be executed. An instruction

operand indicates on offset address in the DS to be referenced.

Consider and example in which the program loader has determined that it is

to be load on .EXE program into memory beginning at location 05BE0H. The

loader accordingly initialize CS with segment address 05BE[0]H and IP with

zero.

CS: IP together determine the address of the first instruction to execute

05BE0H + 0000H = 05BE0H. In this way the first instruction in CS being

execution, if the first instruction is two byte long, the processor increment IP by

2, so that , the next instruction to be executed is 05BE0H + 0002H = 05BE2H.

Assume the program continues executing, and IP contain the offset

0023H. CS: IP now determine the address of the next instruction to execute, as

follows:

 CS address: 05BE0H

 IP offset: 0023H +

 Instruction address: 05C03H

Chapter Two Addressing Data Memory

١١

EX: let's say that MOV instruction beginning at 0FC03H copies the content of

a byte in memory into the AL register. The byte is at offset 0016H in the DS.

Her are the machine code and the symbolic code for this operation.

Address Symbolic Code MIC code

 0FC03 MOV AL, [0016] A0 1600

Address 0FC03H contain the first byte (A0H) of the MIC code instruction

the processor is to access

The second and third byte contains the offset value in reversed byte

sequence. In symbolic code, the operand [0016] in square brackets (an index

operator) indicates an offset value to distinguish it from the actual storage

address 16. Lest say that the program has initialized the DS register with DS

address 05D1[0]H. To access the data item, the processor determines its

location from the segment address in DS + the offset (0016H) in the instruction.

Operand become DS contain 0FD1[0]H, the actual location of the reference

data item is

Chapter Two Addressing Data Memory

١٢

 DS: 05D10H

 Offset: 0016H +

 Address of data item: 05D26H

Assume the address 05D26H contain 4AH, the processor now extract the

4AH at address 05D26H and copy it into AL register.

 An instruction may also access more than one byte at a time

EX: Suppose an instruction is to store the content of the AX register (0248H) in

two adjacent byte in the DS beginning at offset 0016H.

The symbolic code MOV [0016], AX

The processor stores the two byte in memory in revered byte sequence as

Content of AX: 02 48

Offset in DS: 0017 0016

Another instruction, MOV AX, [0016], subsequently could retrieve these

byte by copy them from memory back into AX.

The operation reverses (and corrects) the byte in AX as: 02

 48

Number of Operands

Operands specify the value an instruction is to operate on, and where the result

is to be stored. Instruction sets are classified by the number of operands used.

An instruction may have no, one, two, or three operands.

Chapter Two Addressing Data Memory

١٣

1. Three-Operand Instruction: In instruction that have three operands, one

of the operand specifies the destination as an address where the result is to

be saved. The other two operands specify the source either as addresses of

memory location or constants.

EX: A=B+C

 ADD destination, source1, source2

 ADD A,B,C

EX: Y=(X+D)* (N+1)

 ADD T1, X,

 D ADD T2, N, 1

 Mul Y, T1, T2

2.Two operand instruction :In this type both operands specify sources. The

first operand also specifies the destination address after the result is to be saved.

The first operand must be an address in memory, but the second may be an

address or a constant.

ADD destination, source

EX: A=B+C

 MOV A, B

 ADD A, C

Chapter Two Addressing Data Memory

١٤

EX: Y=(X+D)* (N+1)

 MOV T1, X

 ADD T1, D

 MOV Y, N

 ADD Y, 1

 MUL Y, T1

3. One Operand instruction: Some computer have only one general purpose

register, usually called on Acc. It is implied as one of the source operands and

the destination operand in memory instruction the other source operand is

specified in the instruction as location in memory.

 ADD source

LDA source; copy value from memory to ACC.

STA destination; copy value from Acc into memory.

 EX: A=B+C EX: Y=(X+D)* (N+1)

 LDA B LDA X

ADD C ADD D

STA A STA T1

 LDA N

 ADD 1

 MUL T1

 STA Y

Chapter Two Addressing Data Memory

١٥

4. Zero Operand instruction: Some computers have arithmetic instruction in

which all operands are implied, these zero operand instruction use a stack, a

stack is a list structure in which all insertion and deletion occur at one end, the

element on a stack may be removed only in the reverse of the order in which

they were entered. The process of inserting an item is called Pushing, removing

an item is called Popping.

Computers that use Zero operand instruction for arithmetic operations also use

one operand PUSH and POP instruction to copy value between memory and

the stack.

PUSH source; Push the value of the memory operand onto the Top of the stack.

POP destination; POP value from the Top of the stack and copy it into the

memory operand.

EX: A=B+C

PUSH B

PUSH C

 ADD;

 POP A

Pop the two value of
the stack, add them,
and then push the sum
back into the stack

Chapter Two Addressing Data Memory

١٦

EX: Y=(X+D)* (N+1)

 PUSH X

PUSH D

ADD

 PUSH N

 PUSH 1

 ADD

 MUL

 POP Y

Assembly Language Instruction

Assembly Language Instruction Assembly language instructions are

provided to describe each of the basic operations that can be performed by a

microprocessor. They are written using alphanumeric symbols instead of the

0s and 1s of the microprocessor's machine code. Program written in assembly

language are called source code. An assembly language description of this

instruction is

 ADD AX, BX

 In tins example, the contents of BX and AX are added together and their

sum is put in AX. Therefore, BX is considered to be the source operand and

AX the destination operand.

 Here is another example of an assembly language statement:

LOOP: MOV AX, BX ; COPY BX INTO AX

Chapter Two Addressing Data Memory

١٧

This instruction statement starts with the word LOOP. It is an address

identifier for the instruction MOV AX, BX. This type of identifier is called a

label or tag. The instruction is followed by "COPY BX INTO AX." This part of

the statement is called a comment. Thus a general format for writing and

assembly language statement is:

LABEL: INSTRUCTION ; COMMENT

