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Chapter three
Electrostatic Boundary Value Problems

As given in chapter two, the electrostatic field has two
characteristic properties which are;

o V E = EE Diff. form of Gauss law

o VXE=0 Vanishing of Electrostatic field
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E = —VU :&) connll 3¢l o daie ye

AS shown in chapter two, the procedure by which the electric field
E is determined can be accomplished either by Coulomb's law or Gauss's
law when the charge distribution is known, or using E = —V U when the
potential U is known throughout the region.

But in most practical situations neither the charge distribution nor the
potential distribution is known.
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In this chapter, we shall consider practical electrostatic problems where
only electrostatic conditions (charge and potential) at some boundaries are
known and it's desired to find E and U throughout the region. Such
problems, however, are usually solved by Poisson's or Laplace's equation.

3-1 Poisson's Equation ¢ .s« s dalaa

Poisson's and also Laplace's equation are easily derived from Gauss's
low for a linear medium. It has been shown in previous chapter that Gauss's
low can be expressed as;

V.D=V.(eE)=p ..(2—26)
Also, it is proved that
E=-VU ..(2-10)
Substituting equation (2-10) in(2-26) yields ;
V.e(—VU) = p(3=1)

For a homogenous medium equation (3-1) becomes;

V2U=—I—€) .(3-2)

Equation (3-2) called Poisson’s equation.

3-2 Laplace's Eguation («S¥ dalas

In fact Laplace's equation is a special case for Poisson's equation

which: occurs when the region under consideration being free from charge

(ive:{==.0). Thus equation (3-2) becomes;

VZU=0 ..(3-3)

Last equation is Laplace's equation for homogenous medium.

For an inhomogeneous medium the Laplace's equation is equation
(3-1) when the right-hand side vanishes (p = 0).
According to ideas of chapter one, Laplace's equation in Cartesian,

cylindrical and spherical coordinates respectively is given by;

2 FITIRT N TR TRER N




Department of Physics/College of Education (UOM) 2012-2013 Electromagnetic Theory/4th Class

U 0 U _
0x2  0y?  0z2 o )

ror

16(26U>+ 1 6(_96U>+ 1 6U_0 3—5)
rz2ar\" ar) " rZsing 96 \°"" 96 r2sin? 0 dp2

16(6U)+16U+62U_0 G4
"or r2dp? 9z

Depending on whether the potential is U(x,y,z), U(r,9, 2y and
U(r,06,p).

Laplace's equation is of primary importance is solving €electrostatic
problems, involving a set of conductors material at different potentials.
Examples of such problems include capacitors and vacuum tube diode.

Find the mathematical form of vPaisson's equation in Cartesian,

cylindrical and spherical coordinates.

3-3: Laplace's Equation Solution in One Dimension:

3-3-1: Cartesian Coordinates

V2 = 0
0°U  9*U 0%V _
ox2 ' dy? ' 0z%

02U
— =0
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Ux)=ax+b .. . (3—6)

Where a and b are constants to be determined according to the
imposed boundary condition. Equation (3-6) describe equipotential

surfaces which are plate located at x = constant.

Example:

Two conductor plates have been set up such that the first one is
locted at z = 0 with U = 0 and the secoud one located at z = d with U =
100V, find the electeic field and the flux density deduced betweéen the two
plates, assuming that this region is charge —free.

Solution: p = 0, where the plates are both conductors,thus the key
equation is Laplace eq.:
v2y = 22U N 02U N 2u _ 0
0x? = 0dy? . \oz?

U, = U, = constant, thus the 1* and\2™ derivatives for the 1* and 2"

terms in last eq. will vanishes..Laplace equation will take the form:

02U

557 = 0
42U ; z) U =100V
dz? B>

d dU g B
|&@ze S

dU oot A0S
:-E+c=0—> dU=(—c)de Uio

U=jadz=az+b

~U=az+b

Gk V) Alisall 8y siasall (a8 g0 () (A Aniall e dgadl Ala Jiai 5 A Aalaall
Alabeall 8l il Cla G ad Alsall L 3Uanall 403 saal) Ja g 5l
1.Uz=0)=0-a(0)+b=0
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2.U(z=d) =100 - a(d) + b = 100

~ 100
SoaA = d
100
Thus: U(z) = (T) v/

O Adalul) A8Mal) Badad 3 yAW) Aaleall e 32LYL s ol Jlaad) Als Gl oY)
(el Alaalal) Aapall) Jlaal) gagall

liillie 8 salandlc iaa s

d0x dy d
9] Z
—5(1005) k
100 .
———k W/m)
d
‘el A8US Gl
D =¢E
_ 1000 .
~D=— ek (C/m?)

d
Where; at the first-plate:

€100 /¢
=~
n a \\m?2

(#) at the second plate.(why?)

3-3-2 Cylindrical Coordinate:

As an example assume that U is a function only for r, i.e.
U(r,@,z) = U(r). For this case Laplce's equation given in equation (3-4)
reduces to the form;
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U=fgdr=alnr+b
T

~Ur)=alnr+b . .o B=7)

Equation (3-7) describe an equipotentiahstrfaces which are cylinders of
r = constant.

Example: Find the potentialfunction and the electric field intensity for
the region between twosgoncentric right circular cylinders, where U = U,
atr =r;and U = 0@t = r,, where r, > 1y,
Solution: the potantial is cons. with ¢ and z,

Laplace equation reduces to:

Ur)=alnr+b

Applying the boundary conditions;
1.1.U(rp) =alnr, +b =0
b=—-aln(ry)
2.U(r;) =aln(ry) —aln(r,) = U,
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a (ln (—1>> = U,
T
Uy
e
n
In (1)
b B ()
o = — n( -
T 2
In (-
n(32)
Uy Uy
- U@r)=—7= .In(r) ———= .In(1ry)
In (r—l) In (r—l)
g )
U
= —~{In(r) — In(,)}
In (—)
)
U(r) = —~in(3)
r) =————In|—+
T
In(-+) 2
n ()
E=-VU
_ {GUA+16UA+6UE}
— lor r rdQ 0z
_ dU |
- dr r
__4) b In (L) 7
~dr In (T T,
n ()
U, d 1 .
= —In| — |7
1\ dr (r )
() 2
U; 1 1
= — . i
n\ 'r/r, r
n@) 7% 7
~ U, 7
W F=— =
Y\ 'r
In ()
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H.W Find U and E and D for the above example for the case when U; =

150, = Immand r, = 20mm.

Example: In cylindrical coordinates, two planes of a constant ¢ are

located as in the figure. Find the expression for E between the two planes

assuming a potential of 100V for ¢ = a and a zero potential for that at

©=0.
Solution:
1 6( au)+ 1 62U+62U_
ror\ ar) "2 dp?  0z2
10 _
r2 92
1 d°U
r2 do?
d (dU>—O
dg \de || —v=100v
auv
do ¢
U=ap+b
Ulpeo =0 //
~b=0
@ =0
Ulp=q =100V [Q=a
: !
100
LA00=aa > a=—-
a
U 100 v
—¢ )
~ _ 1d @
E=-VU=—-———(100—)¢@ =
rdcp( a)<p
DB 100 _ v
“E=-—¢ (V/m)
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3-3-3 Spherical coordinates:
Laplace's equation in this coordinates is written as in equation (3-5).

v2U_l 6(26U>+ 1 6(_06U)+ 1 0°U
“r2or\" ar) T r2sinea0\>"" a0) " vz sing dp?

... (3-5)

The equation describes U when it varies with (r, 8, ¢ ). As an example if
we assume that U is vary only withr, i.e. U(r,0,¢0 ) = U(1).

Consequently equation (3-5) reduces to the form;

1 d( dU)_0
r2 dr rdr N

(T2

Two concentric spheres

d / dU
71 %) 7
dUu
raza
dU a
dr
U=——+0b

r

Fo vy dUA+16U6A+ 1 dU _
B B (drr r d60 rsin@drp(p)
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Example:
Find the potential between two concentric conducting spheres of radii

0.1 m and 2.0 m at potential U = 0 and U = 100, respectively.

Solution:

Since U is not a function for 8 and ¢, Laplace's equation reduces to:

V2 = 1 d(26U>_O
“r2a\" o)

As shown above the general solution for this differential equatiotis;

- a
UF) =~=+Db
Thus;
a a
1U(01)= —H+b=0—>b=ﬁ
a a a
2U(20)= _ﬂ-l_b:_ﬂ-l_ﬂ.—l: 100

- a = 10.53and b = 105.3

Substituting the value of.a.and b in the potential general form:

N\ 0.53

E=-TU

du

=——F
LEo 1088,V
r? m

Example:
Two conducting cones, (6, and 6, ) of infinite extent, are separated by

an infinitesimal gab, at r =0. If U(6;) =0 and U(0,) = V-, find U

and E between the two cones.
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Solution:

We are taken about two cones, i.e. if they are do whole period, they will
construct two spheres, thus we need to solve the problem using the
spherical coordinates. It is seen that U vary only with 8 and constant with

r and ¢. Thus Laplace's equation reduces to the following form;

VU©) = —— 2 ( ' edu)—o
~r2singdo """ o) T

Notes.from the Calculus (Math.):
(= csch) # sin~10(= ArcSind)

{ Nsind
1 -19(=
— (= secO) # cos™0(= ArcCos0)
3. sinf = 2sin2cos2
T2 2
4. tand =20
cosf
5 (&= Inlul + ¢
u
de
6. J——=/[csc0dd = In|cscO + cotb] + C
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~U() = 49
o= aJZCOS(Q)Sin(Q)
2 2
0
cos >
multiply with: 5
COS =
2
%Secz(g)de
—a j 2
tan(j)
2]
1,20 _M
But: > sec (2) ==
0
~U(0) = aln|tan§| +b ... (#)

This equation represents the solution of Laplace equation in spherical
coordinates, in on dimension which is 0.

0
1.U(6;) =aln<tan—1>+b=0

2
0,
~b=-aln (tan—) ... (D
2
0,
2.U(0,) = aln(tan7>+b =1
Ve = [l tan22) —d (t 61]
or: Vo =a n(anz) 1 an2>
N J— ‘/O 2
a0d =T 6] (2)
tan—=-
In s
0
tan —-
2
Sub in eq:l
Veln (tan%)
~bh=- )
0,
tan7
In
b1
tan
Sub. of egs. 1 and 3 in eq.(#) yield:
tang tan%
U@@) =Vln — Vsln
1:an71 tan71
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Note from the Calculus (Math.):

1. If: y = lnu, then: y = %.1’1

2. If tan(a®), then: %tan(a@) = Sec(ah)?.a
3. Sec?f =tan?6 + 1

" FE = 1d{l(t 9)+b}§
) U
a 1 2(9) 1,
. sec(—) ..—
rtan(%) 272
a 1 1

6

ﬁ
D
N =

0
Slni CoS“w

[\

a 1 3
T r, .0 6
2 sm(i) .cos(i)
E=-—8

" rsin6

H.W.

For the example above, assume that 6, = % 0, =§ and U. = 50V,
calculate U(8) and E between the two cones.
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AnS.

7]
tan 5

V)

- 9
E@) = -

rsinf o /m

CHAP. 8| LAPLACE'S EQUATION 125

¥ig. 810

and \':Aln(nng)vs

Tre constants are foend from
V';'“"(“ﬂ%)*k ()-'Aln(ung-‘];n

h(lmg)-ln{un%’)

Hence \':\f.——a—-—a-

) s

"‘(""‘7) '"(""‘2)

£.12 In Problem .11, let  §,—10°, &, —3F, and V,— 100V, Find the voltage st # — 20",
,.i At what angle @ is the voltage 50 V?

Beluiilalingg, lve ralwra int il pranesd primailinl vapsscolum ghees

s o)

0268
, ? - 8934 (0 (201
Then, ar 1= 20F, L e B
Fo V=5V, w;—m.am(%?)

Salving pives 8= 17.41°

B.13. With reference to Probilems B.11 and B.12 and Fig. §-11, find the charge distribution on the
—1s conducting planc ot (), = AF.

The potential & obeained by substitutiog 8, =97, 6, =107, and V,= 100V in the expres
\ aton of Protdem 8,13, Than

Q\Q o)

o AR - 100 4105

Thea T T Ae™ T (ran B)in () T rsnb T
3@xI0T
D~¢E oo™ (Clm’)
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Ina - there are actually six possible trigonometric ratios, or functions.

A Greek letter (such as theta g or phi g;) will now be used to represent the angle.

]
= yPOze
o] Sa
Q.
o,
o
adjacent
. . it hypot
sine of 6 = sin@ = PPOME cosecant of 6 = csc§ =Y PENUTE en.use
hypotenuse opposite
. adyz t hypot
cosine of 8 = cog§ = I secant of 8 = sec § = 2P LNIFE p? enue
hypotenusge adjacent
tangent of & =tand =M cotangent of & = cotd =M
adjacent opposite

Notice that the three new ratios at the right are reciprocals of the ratios on the left.

Applying a little algebra shows the connection between these functions.

hypotenuse 1

1

opposite _opposite  in

w

cscd

N

sinf =—— (:scfi':_L
CsC siné
cosd =L secHd =
sect cosé
talu’i':L cc}tfﬁ':L
cot?d tan#

Also Important
siné
tané =
cosé
cosd
cot = —
smé
i
=i = ﬂ = E = tan,ﬁ‘
cos8 ad ad;
oy

R
%}p://www.regentsprep.org/Regents/math/aIgtrig/ATTl/trigsix.htm
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