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Chapter Five 

Electric Current 

Up to this point we have been dealing with charge at rest, so in this 

chapter we shall consider charges in motion. Strictly speaking we will deal 

with conductors of electricity. In other word we will regard the material in 

which the charges carriers are free to move. It should keep in mind that 

conductors include not only the conventional conductors such as metals and 

alloys, but also semiconductors, electrolytes, ionized gases, imperfect 

dielectrics and even vacuum in the vicinity of a thermionic emitting cathode. 

In many conductors the charge carriers are electrons; in other cases the 

charge may be carried positive or negative ions.  

Moving charge constitutes a current, and the process whereby charge 

is transported is called electrical conduction (𝜎 𝑜𝑟 𝑔) (the thermal 

conduction is another different concept). To be precise the current, I, is 

defined as the rate at which charge is transported past a given point in 

conducting system. Thus; 

𝐼 =
𝑑𝑄

𝑑𝑡
    .   .  .  (6 − 1) 

where Q = Q(t) is the net charge transported in time t.  

The unit of current in the MKS system is the Ampere. Evidently; 

1(𝐴𝑚𝑝𝑒𝑟𝑒) = 1
𝐶𝑜𝑢𝑙𝑜𝑚𝑏

𝑆𝑒𝑐𝑜𝑛𝑑
 

6-1: Nature of the current 

 In a metal, current is carried entirely by electrons, while the heavy 

positive ions are fixed at regular positions in the crystal structure; see 

figure (6-1). Only the valence (outermost) atomic electrons are free to 

participate in the conduction process; the other electrons are tightly 
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bound to their positions. Under steady state conditions, electrons may be 

fed into the metal at one point and removed at another, producing a 

current, but the metal as a whole is electrostatically neutral. 

 

Fig. (6-1): 

 A schematic diagram of the motion of conduction electrons in a metal.  

 In an electrolyte, the current is carried by both positive and negative 

ions, although, because some ions move faster than others, conduction 

by one type of ion usually predominates. It is important to note that 

positive and negative ions traveling in opposite directions, see figure (6-

2) contribute to the current in the same direction. The basis for this fact 

is evident from equation (6-1), since the net charge transported past a 

given point depends on both the sign of the charge carrier and the 

direction in which it is moving. Thus, in figure (6-2), both the positive 

and negative carrier groups produce currents to the right; by convention, 

the direction in which the positive carrier moves (or, equivalently, the 

direction opposite to that in which the negative carrier moves) is taken as 

the direction, or sense, of the current. In general, an electric current 

arises in response to an electric field. If an electric field is imposed on a 

conductor, it will cause positive charge carriers to move in the general 

direction of the field and negative carriers in a direction opposite to the 
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field; hence all currents produced in the process have the same direction 

as the field.  

 

Fig. (6-2): 

A schematic diagram of the motion of conduction electrons in an electrolyte.  

The currents we have described thus far in this section are known as 

conduction currents. These currents represent the drift motion of charge 

carriers through the medium which usually be at rest.  

 Liquids and gases may also undergo hydrodynamic motion, and if the 

medium has a charge density, this hydrodynamic motion will produce 

currents. Such currents, arising from mass transport called convection 

currents. Convection currents are important to the subject of 

atmospheric electricity. The motion of charged particles in vacuum (such 

as electrons in a vacuum diode) also constitutes convection currents. 

6-2: Current Density: Equation of Continuity 

Let us consider a conducting medium which has only one type of 

charge carrier, of charge 𝑞. The number of these carriers per unit volume 

will be denoted by 𝑁. However, the drift velocity for each carrier is 𝑣. We 

are now in a position to calculate the current through an element of area 𝑑𝑎 

such as shown in figure (6-3). During the time 𝛿𝑡 each carrier moves a 

distance 𝑣𝛿𝑡. From the figure it is evident that the charge amount 𝛿𝑄 which 

crosses 𝑑𝑎 during time 𝛿𝑡 is 𝑞 times the sum of all charge carriers in the 
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volume (𝑣. �̂� 𝛿𝑡𝑑𝑎), where 𝑛 is a unit vector normal to the area da, 𝑣 is the 

drift velocity. From equation (6-1) we have; 

𝑑𝐼 =
𝛿𝑄

𝛿𝑡
=

𝑞𝑁𝑣. �̂�𝛿𝑡𝑑𝑎

𝛿𝑡
= 𝑁𝑞𝑣. 𝑛𝑑𝑎     .  .  .   (6 − 2) 

If there is more than one kind of charge carrier present, there will be a 

contribution of the form (6-2) for each type of carrier. In general; 

𝑑𝐼 = [∑ 𝑁𝑖𝑞𝑖𝑣𝑖

𝒊

] . 𝑛da      .   .  .    (6 − 3) 

represents the current through the area da. The summation is over the 

different carrier types. The quantity in bracket is a vector which has 

dimensions of current per unit area; this quantity is called the current 

density, and is given by the symbol 𝐽, where; 

𝐽 = ∑ 𝑁𝑖𝑞𝑖𝑣𝑖

𝑖

    .   .   .  (6 − 4) 

The current density 𝐽 may be defined at each point in the conducting 

medium and is, therefore, a vector point function. The MKS unit of J is 

A/m2. Equation (6-3) may be written as;   

𝑑𝐼 = 𝐽. 𝑛𝑑𝑎 

and the current through the surface S, an arbitrary shaped surface area of 

macroscopic size, is given by: 

I = ∫ J. nda
S

      .  .  .  (6 − 5) 

The current density 𝐽 and the charge density 𝜌 are not independent 

quantities, but are related at each point through a differential equation, the 

so-called equation of continuity (the total amount (of the conserved quantity) inside 

any region can only change by the amount that passes in or out of the region through the 

boundary), A conserved quantity cannot increase or decrease, it can only move from place to 
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place. This relationship has its origin in the fact that charge can neither be 

created nor destroyed. The electric current entering V, the volume enclosed 

by S, is given by; 

I = − ∮ J. n da = − ∫ div J dv

VS

   .   .   .   (6 − 6) 

The minus sign in equation (6 − 6) comes about because 𝑛 is the outward 

normal and we wish to call 𝐼 positive when the net flow of charge is from 

the outside of  𝑉 to within. From (6-1) 𝐼 is equal to the rate at which charge 

is transported into 𝑉. 

𝐼 =
𝑑𝑄

𝑑𝑡
=

𝑑

𝑑𝑡
∫ ρ

𝑉

𝑑𝑉      .    .    .     (6 − 7𝑎) 

Since we are dealing with a fixed volume V, the time derivative operates 

only on the function  ρ. However,  ρ is a function of position as well as of 

time. So that the time derivative becomes the partial derivative with respect 

to time when it is moved inside the integral. Hence; 

𝐼 = ∫
𝜕𝜌

𝜕𝑡
 𝑑𝑉

𝑉

       .    .     .     (6 − 7𝑏) 

Equation (6 − 6) and (6 − 7𝑏) may now be equated,; 

∫(

𝑉

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣𝑱)𝑑𝑉 = 0       .    .     .    (6 − 8) 

But 𝑉 is completely arbitrary and the way that (6 − 8) can hold for an 

arbitrary volume segment of the medium is for the integrand to vanish at 

each point. Hence, the equation of continuity, as a differential form is: 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣𝐽 = 0       .    .    .     (6 − 9) 
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Example: 6.10 @ Schaum p.88  

6-3: Ohm’s Law: Conductivity 

It is found experimentally that in a metal at constant temperature the 

current density J is linearly proportional to the electric field (Ohm’s law). 

Thus:  

𝐽 = 𝑔𝐸     .   .   .      (6 − 10) 

Where 𝑔 is the proportionality constant and it is called conductivity. In order 

to make equation (6 − 10) valid for all conducting materials, it must be 

replaced by; 

𝐽 = 𝑔(𝐸)𝐸 

where 𝑔(𝐸) is a function of the electric field.  

Materials for which equation (6 − 10) holds are called linear media or 

Ohmic media. The reciprocal of the conductivity is called the resistivity η, 

thus;  

𝜂 =
1

𝑔
    .    .    .    (6 − 11) 

The unit of 𝜂 in the mks system is (Volt-meters/Ampere) or Ohm-meters, 

where the Ohm is defined by; 

1 𝑂ℎ𝑚 =
𝑉𝑜𝑙𝑡

𝐴𝑚𝑝𝑒𝑟𝑒
 

The unit of conductivity 𝑔 is, therefore, Ohm-1m-1. 

Consider a conducting specimen obeying Ohm’s law, in the shape of a 

straight wire of uniform cross section whose ends are maintained at a 

constant potential difference ΔU. The wire is assumed to be homogeneous 

and characterized by the constant conductivity g. Under these conditions an 

electric field will exist in the wire, the field related to ΔU by the relation 
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∆𝑈 = ∫ 𝐸. 𝑑𝑙        .    .    .     (612𝑎) 

It is evident that the electric field is purely longitudinal, because of the 

geometry, the electric field must be the same at all points along the wire. 

Therefore, equation (6-12a) reduces to; 

𝛥𝑈 = 𝐸ℓ   .   .  .     (6 − 13) 

where ℓ is the length of the wire.  

But the electric field implies a current of density  𝐽 = 𝑔 𝐸. Thus the current 

through any cross section of the wire is; 

𝐼 = ∫ 𝐽. 𝑛𝑑𝑎 = 𝐽𝐴
𝐴

    .  .  .    (6 − 14) 

Where  A is the cross section area of the wire.  

Combining equations (6-14) with (6-10)  and (6-13) we obtain;  

𝐼 =
𝑔𝐴

ℓ
∆𝑈    .    .    .   (6 − 14) 

which provides a linear relationship between 𝐼 and 𝛥𝑈. The quantity ℓ/𝑔𝐴 is 

called the resistance of the wire resistance which will be denoted by the 

symbol 𝑅. Therefore, equation (6 − 14) becomes; 

𝛥𝑈 = 𝑅𝐼     .   .   .    (6 − 15) 

which is the familiar form of Ohm’s law (𝑅 is evidently measured in units of 

Ohms).  

Equation (6-15) may be considered to be a definition of the resistance 

of an object or device that is passing a constant current. In the general case, 

𝑅 will depend upon the value of this current.  

6-4: Electromotive Force 

∮ 𝐸𝑒𝑓𝑓 . 𝑑𝑙 = 𝜀         .  .   .      (6 − 16) 
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The quantity 𝜀 is called the electromotive force or simply the emf, represents 

the driving force for the current in a closed circuit. The unit of emf in the 

mks system is joules/coulomb, or Volt (the same as the unit for potential). 

electromotive force, emf, (denoted 𝜀 and measured in volts) refers to 

voltage generated by a battery or by the magnetic force according to 

Faraday's law, which states that a time varying magnetic field will induce an 

electric current.  

Electromotive "force" is not a force (measured in Newtons) but a 

potential, or energy per unit of charge, measured in volts. Formally, emf is 

the external work expended per unit of charge to produce an electric 

potential difference across two open-circuited terminals. The electric 

potential difference produced is created by separating positive and negative 

charges, thereby generating an electric field. The created electrical potential 

difference drives current flow if a circuit is attached to the source of emf. 

When current flows, however, the voltage across the terminals of the source 

of emf is no longer the open-circuit value, due to voltage drops inside the 

device due to its internal resistance. 

Devices that can provide emf include electrochemical cells, 

thermoelectric devices, solar cells, electrical generators, transformers, and 

even Van de Graaff generators. In nature, emf is generated whenever 

magnetic field fluctuations occur through a surface. An example for this is 

the varying Earth magnetic field during a geomagnetic storm, acting on 

anything on the surface of the planet, like an extended electrical grid. 

 

In chapter two it was shown that the integral of the tangential 

component of an electrostatic field around any closed path vanishes; i.e. 

∮ 𝐸. 𝑑𝑙 = 0       
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for an Ohmic material,  𝐽 = 𝑔𝐸.  

In general case this is modified to 𝐽 = 𝑔(𝐸)𝐸, but 𝑔(𝐸) is always a 

positive quantity. Thus it follows that a purely electrostatic force cannot 

cause a current to circulate in the same sense around an entire circuit. Or, in 

other words, steady current cannot be maintained by means of purely 

electrostatic forces. 

A charged particle 𝑞 may experience other forces (mechanical, 

chemical, etc.) in addition to the electrostatic force. If the total force per unit 

charge on a charged particle is called the effective electric field 𝐸𝑒𝑓𝑓, then 

the above line integral will not necessarily vanish. i.e. 

6-5: Steady currents in media without sources of emf 

Consider a homogenous, Ohmic, conducting medium without internal 

sources of emf, under conditions of steady-state condition. Since the case is a 

steady state, the local charge density 𝜌(𝑥, 𝑦, 𝑧) is at equilibrium value, and 

𝜕𝜌 𝜕𝑡⁄ = 0  for each point in the medium. Hence, the equation of continuity 

(6 − 9) reduces to; 

𝑑𝑖𝑣𝐽 = 0     .   .   .    (6 − 17) 

Using ohm’s law in combination with (6-17), we obtain; 

𝑑𝑖𝑣 𝑔𝐸 = 0 

But with no sources of emf, E is derivable from a scalar potential. i.e.  

𝐸 = −∇𝑈 

The combination of the last two equations yields; 

∇2𝑈 = 0    .   .   .      (6 − 18) 

 which is Laplace’s equation. 
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Therefore, the steady-state conduction problem may be solved in the 

same way as electrostatic problems. Laplace’s equation is solved by one of 

the techniques discussed in chapter three. 

Under steady-state conduction the current which crosses an interfacial 

area between two conducting media may be computed in two ways: in terms 

of the current density in medium 1, or in terms of the current density in 

medium 2. Since the two procedures must yield the same result, the normal 

component of J must be continuous across the interface. i.e. 

𝐽1𝑛 = 𝐽2𝑛   .  .  .  (6 − 19a) 

𝑜𝑟:                                  𝑔1𝐸1𝑛 = 𝑔2𝐸2𝑛       .   .   .  (6 − 19𝑏) 

So long as there are no sources of emf in either medium 

∮ 𝐸. 𝑑𝑙 = 0 

For a closed path which links both media, and  

𝐸1𝑡 = 𝐸2𝑡 
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