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Chapter Seven 

The Magnetic Field of Steady Currents 

The second kind of field which enters into the study of electricity and 

magnetism is, of course, the magnetic field. Such fields or, more 

properly, the effects of such fields have been known since ancient times 

when the effects of the naturally occurring permanent magnet 

magnetite (Fe3 O4) were first observed. The discovery of the north- and 

south-seeking properties of this material had a profound influence on 

early navigation and exploration. Except for this application, however, 

magnetism was a little used and still less understood phenomenon until 

the early nineteenth century, when Oersted discovered that an electric 

current produced a magnetic field. This work, together, with the later 

work of Gauss, Henry, Faraday and others, has brought the magnetic 

field into prominence as a partner to the electric field. 

In this chapter the basic definitions of magnetism will be given, the 

production of magnetic fields by steady currents will be studied .and 

some important groundwork for future work will be laid.  

7-1 The definition of Magnetic Induction  

For the purpose of defining the magnetic induction (magnetic flux 

density) (B) it is convenient to define the magnetic force, 𝐹⃑𝑚 , (frequently 

called the Lorentz force), as that part of the force exerted on a moving 

charge in a steady magnetic field which is neither electrostatic nor 

mechanical, where that force is perpendicular to each B, and charge 

velocity (𝑣⃑). 

The B, is then defined as the vector which satisfies;  
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𝐹⃑𝑚 = lim
𝑞→0

𝑞𝑣⃑ × 𝐵⃑⃑     .   .    .   (∗) 

ن سرعة كل م وجود اداة الضرب الاتجاهي في العلاقة السابقة يحتم ان تكون النتيجة عمودية على

 .الشحنة واتجاه المجال المغناطيسي، وهذا يتطابق مع قاعدة اليد اليمنى

where the limit used to ensure the 𝑞 does not affect the source of B.  

For simplicity we can write; 

𝐹⃑𝑚 = 𝑞𝑣⃑ × B⃑⃑⃑    .   .   .   (7 − 1) 

The unit for magnetic induction in the "mks" system is Tesla (T), 

where according to Eq. (6-1): 

1𝑇𝑒𝑠𝑙𝑎 = 1
𝑁. 𝑆𝑒𝑐

𝐶.𝑚
= 1

𝑁

𝐴.𝑚
 

It is customary to express this unit as the Weber/meter 2; the Weber 

is the mks unit of magnetic flux which will be defined later. 

H.W:  

Prove that: 

𝑁. 𝑆𝑒𝑐

𝐶.𝑚
=
𝑁𝑒𝑤𝑡𝑜𝑛

𝐴.𝑚 
=
𝑊𝑒𝑏𝑒𝑟

𝑚𝑒𝑡𝑒𝑟2
 

And often the magnetic field is given in Gauss (G), the CGS unit. 

Consider two parallel straight wires in which two steady currents are 

flowing;  

 If the wires are neutral, there is no net electric force between the two 

wires.  

 If the current in both wires is flowing in the same direction, the 

wires are found to attract each other.  

 If the current in one of those wires is reversed, the wires are found 

to repel each other.  
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The force responsible for the attraction and repulsion is called the 

magnetic force. The magnetic force acting on a moving charge q is 

defined in terms of the magnetic field. 

 

 مستمر يؤدي الى توليد مجال مغناطيسي في سلك steady سريان تيار كهربائي مستمران 

steady  ناشيء طيسي الاتجاه المجال المغناحول ذلك السلك، واعتمادا على اتجاه ذلك التيار يتحدد

 ابعلفه الاصبتمثل )تجربة اورستد: اتجاه التيار يتمثل بالابهام، اتجاه المجال المغناطيسي المطلوب ي

جاه نفس الاتبيكون سفاذا كان اتجاه التيار للسلكين متماثلان، فالمجال المغناطيسي المتولد  (.الاربعة

د سريان ية عن. وبنفس الطريقه تكون القوة بين السلكين تنافروالقوة بين السلكين تصبح قوة تجاذب

 التيار باتجاهين متعاكسان. 

Result: 

For a wire carrying steady current, two fields will exists with two 

different plans: 

- The electric field diverges from the line charge (current carriers inside 

the wire) and is curl free: (∇̅ × 𝐸⃑⃑ = 0). 

- The magnetic field forms circles around the steady current and is 

divergence free: (∇. 𝐵⃑⃑ = 0). 

 

 

http://www.google.co.uk/url?sa=i&rct=j&q=force+between+two+current+carrying+wires&source=images&cd=&cad=rja&docid=pwiTQ_ZWt9t0xM&tbnid=g3z8qbGk6iglWM:&ved=0CAUQjRw&url=http://www.ic.sunysb.edu/Class/phy141md/doku.php?id=phy142:lectures:18&ei=d8CEUehoitSyBuzegMgO&psig=AFQjCNFUtZyPZzySwTuWQhJso1WOr9-qwQ&ust=1367740895370504
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7-2 Magnetic Force and Torque on Current-Carrying 

Conductor: 

Perfectly good definitions of the magnetic induction can be 

constructed by using the force on a current element or the torque on a 

current-carrying loop. So, from the definition of B, an expression for the 

force on an element 𝑑ℓ of a current-carrying conductor can be found.  

If 𝑑ℓ is an element of conductor with its sense taken in the direction 

of the current 𝐼 which it carries, then 𝑑ℓ is parallel to the velocity 𝑣 of 

the charge carriers in the conductor. If there are 𝑁 charge carriers per 

unit volume in the conductor, the force on the element 𝑑ℓ is; 

𝑑𝐹⃑𝑚 = 𝑁𝐴|𝑑ℓ|𝑞𝑣⃑ × 𝐵⃑⃑     .   .   .     (7 − 2) 

Where A is the cross-sectional area of the conductor and q is the charge 

per carrier. Since 𝑣⃑ and 𝑑ℓ are parallel, an alternative form of equation 

(7-2) can written as follows; 

𝑑𝐹⃑𝑚 = 𝑁𝑞|𝑣⃑ |𝐴 𝑑𝑙 × 𝐵⃑⃑      .   .   .   (7 − 3) 

However, (𝑁𝑞|𝑣⃑ |𝐴)  is just the current 𝐼 for a single species of carrier. 

Therefore the expression: 

𝑑𝐹⃑𝑚 = 𝐼 𝑑𝑙 × 𝐵⃑⃑      .   .   .   (7 − 4) 

is written for the force on an infinitesimal element of a charge-carrying 

conductor. 

Equation (7-4) can be integrated to give the force on a complete (or 

closed) circuit. If the circuit in question, represented by the contour C, 

then; 

𝐹⃑𝑚 = ∮ 𝐼 𝑑𝑙 × 𝐵⃑⃑
𝐶

      .   .   .   (7 − 5) 
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Assuming B is uniform (not depend on position) then both B and I can 

removed from eq. under integral and then equation (7-5) becomes; 

𝐹⃑𝑚 = 𝐼 {∮ 𝑑𝑙
𝐶

} × 𝐵⃑⃑      .   .   .   (7 − 6) 

The remaining integral is easy to evaluate. Since it is the sum of 

infinitesimal vectors forming a complete circuit, it must be zero. Thus; 

𝐹⃑𝑚 = 𝐼 {∮ 𝑑𝑙
𝐶

} × 𝐵⃑⃑  = 0    ∴ 𝐵⃑⃑ 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚   .   .   .   (7 − 7) 

Another interesting quantity is the torque on a complete circuit. Since 

torque is moment of force, the infinitesimal torque 𝑑𝜏 is given by; 

𝑑𝜏 = 𝑟 × 𝑑𝐹⃑𝑚       .     .     .     (7 − 8) 

= 𝑟 × 𝐼(𝑑ℓ⃑⃑ × 𝐵⃑⃑) 

The torque on a complete circuit is; 

𝜏 = 𝐼∮ 𝑟 × (𝑑ℓ⃑⃑ × 𝐵⃑⃑)
𝐶

     .   .   .    (7 − 9) 

The operation between the brackets could be fined by a matrix of cross 

product:  

𝑑ℓ⃑⃑ × 𝐵⃑⃑ = 𝑖̂(𝑑𝑦𝐵𝑧 − 𝑑𝑧𝐵𝑦) + 𝑗̂(𝑑𝑧𝐵𝑥 − 𝑑𝑥𝐵𝑧) + 𝑘̂(𝑑𝑥𝐵𝑦 − 𝑑𝑦𝐵𝑥)  .  . (7 − 10) 

The same procedure, we can find the result of:  r⃑ × (dℓ⃑⃑ × B⃑⃑⃑); 

 {𝑟 × (𝑑ℓ⃑⃑ × 𝐵⃑⃑)}
𝑥
=  𝑦𝑑𝑥𝐵𝑦 −  𝑦𝑑𝑦𝐵𝑥 −  𝑧𝑑𝑧𝐵𝑥 + 𝑧𝑑𝑥𝐵𝑧

{𝑟 × (𝑑ℓ⃑⃑ × 𝐵⃑⃑)}
𝑦
=  𝑧𝑑𝑦𝐵𝑧 −  𝑧𝑑𝑧𝐵𝑦 −  𝑥𝑑𝑥𝐵𝑦 + 𝑥𝑑𝑦𝐵𝑥

{𝑟 × (𝑑ℓ⃑⃑ × 𝐵⃑⃑)}
𝑧
=  𝑥𝑑𝑧𝐵𝑥 −  𝑥𝑑𝑥𝐵𝑧 −  𝑦𝑑𝑦𝐵𝑧 + 𝑦𝑑𝑧𝐵𝑦 }

 
 

 
 

  .  .  .  (7 − 11) 

B is assumed to be independent of r (uniform field), the x-component of 

the torque being; 

𝜏𝑥 = 𝐼∮ {𝑟 × (𝑑ℓ⃑⃑ × 𝐵⃑⃑)}
𝑥

𝐶

   .  .  .    (7 − 12) 



Department of Physics/College of Education (UOM)          2012-2013           Electromagnetic Theory/4th Class 

 

 صباحية والمسائيةالدراسات ال 6

 

Using equation (7-11); 

𝜏𝑥 = 𝐼∮ {𝑦𝑑𝑥𝐵𝑦 −  𝑦𝑑𝑦𝐵𝑥 −  𝑧𝑑𝑧𝐵𝑥 + 𝑧𝑑𝑥𝐵𝑧}    .  .  .   (7 − 13)
𝐶

 

= 𝐼 {𝐵𝑦∮ 𝑦𝑑𝑥
𝐶

− 𝐵𝑥∮ 𝑦𝑑𝑦
𝐶

− 𝐵𝑥∮ 𝑧𝑑𝑧
𝐶

 + 𝐵𝑧∮ 𝑧𝑑𝑥
𝐶

}   .  .  . (7 − 14) 

= 𝐼 {𝐵𝑦∮ 𝑦𝑑𝑥
𝐶

 + 𝐵𝑧∮ 𝑧𝑑𝑥
𝐶

}       .   .   .     (7 − 15) 

 

Figure 1: 

∮ 𝑦𝑑𝑥
𝐶

= ∫𝑦𝑑𝑥

𝑏

𝑎

+∫𝑦2𝑑𝑥 =

𝑎

𝑏

𝐴𝑧         .  .  .   (7 − 16) 

Accordingly equation (7-15) becomes; 

𝜏𝑥 = 𝐼{𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦}         .   .   .     (7 − 17𝑎) 

Similarly, for the two remaining components, we can find that; 

𝜏𝑦 = 𝐼{𝐴𝑧 𝐵𝑥 − 𝐴𝑥𝐵𝑧}       .    .   .      (7 − 17𝑏) 

𝜏𝑧 = 𝐼{AzBy − AyBx}        .   .   .   (7 − 17𝑐) 

Thus; 

𝜏 = 𝐼 A⃑⃑⃑ × B⃑⃑⃑     .   .   .    (7 − 18) 

Magnetic torque 

 

x 

y 

z 

x 

y 

x=x2(y

) 
x=x1(y) 
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Where 𝐴 is the vector whose components are the areas enclosed by 

projections of the curve 𝐶 on the yz-, zx-, and xy-planes. The quantity 

𝐼𝐴 appears very frequently in magnetic theory, and is referred to the 

magnetic moment of the circuit. The symbol m will be used for magnetic 

moment: 

𝑚 = 𝐼 𝐴       .     .    .      (7 − 19) 

Magnetic moment 

It is easy to show, by the technique used above, that the integral of   

(r⃑ × 𝑑ℓ⃑⃑) around a closed (electric circuit) path gives twice the area 

enclosed by the curve. Thus; 

1

2
𝐼 ∮ 𝑟 × 𝑑ℓ⃑⃑

𝐶

= 𝐴      .    .   .    (7 − 20)     𝑯.𝑾 

If the current exist inside a medium,  𝐼𝑑ℓ⃑⃑ → 𝐽𝑑𝑣 , also; 

𝑚 =
1

2
𝐼 ∮ 𝑟 × 𝑑ℓ⃑⃑

𝐶

          .    .    .     (7 − 21) 

 

7-3 Biot-Savart Law 

الساكن  المجال الكهربائيعلى غرار صيغه قانون كولومب )في الكهربائية الساكنة( لحساب 

steady ثابته )او متحركة بسرعة ثابته( المتولد بسبب شحنة كهربائية 𝐸⃑⃑ = 𝑘
𝑞

𝑟2
𝑟̂.  

 سيالمجال المغناطيفي المغناطيسية الساكنة اوجد بايوت وسافارت صيغه رياضية لحساب 

دار مكحركة الكترون في ) متحركة بسرعه ثابته كهربائية المتولد بسبب شحنة steadyالساكن 

رعتها وس )او التيار( الشحنةالرياضية لهذا القانون تتناسب مع  صيغهوال، ارضي حول الذرة(

 .هاوموقع

The Biot-Savart law defines the magnetic field 𝐵⃑⃑ due a point charge q 

moving with a velocity 𝑣⃑ as; 



Department of Physics/College of Education (UOM)          2012-2013           Electromagnetic Theory/4th Class 

 

 صباحية والمسائيةالدراسات ال 8

 

𝐵⃑⃑ =
𝜇𝑜
4𝜋

𝑞𝑣⃑ × 𝑟̂

𝑟3
=
𝜇𝑜
4𝜋

𝑞𝑣⃑ × 𝑟

|𝑟|3
 

 

Here, 𝑟̂ is a unit vector that points from the position of the charge to 

the point at which the field is evaluated, r is the distance between the 

charge and the point at which the field is evaluated, and the number 

µo/4π (=  10−7𝑁/𝐴2) which appears in last equation plays the same 

role here as 1/4πεo played in electrostatic, i.e. it is the constant which is 

required to make an experimental law compatible with a set of units.  

For a steady electric current moving in a wire within a circuit, the law 

takes the following two general forms: 

𝐵⃑⃑ =
µ𝑜
4𝜋
𝐼 ∮

dℓ⃑⃑ × 𝑟

|𝑟|3
 

Integral form 

Or with reference to the origin: 

𝐵⃑⃑(𝑟) =
µ𝑜
4𝜋
𝐼 ∮

dℓ⃑⃑ × (r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3

 

Last equation can be modified to express the magnetic field (𝑑𝐵⃑⃑) due 

to an infinitesimal current element ℓ⃑⃑ , which can be written as, 

𝑑𝐵⃑⃑ =
𝜇𝑜
4𝜋

𝐼𝑑ℓ⃑⃑ × 𝑟

|𝑟|2
 

Differential form 
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Illustration of Biot-Savart law, electric current form. 

The quantities in last eq. are illustrated in figure. The direction of the 

magnetic field due to the current element at the point A can be inferred 

using the right hand rule. 𝑑𝐵⃑⃑ is directed into the plane of the figure at A. 

The field due to the entire wire can be evaluated at A by adding up the 

contributions of all the current elements in the wire. 

7-4 Elementary applications of the Biot and Savart law 

1) Long straight wire:   

Assume the wire located along the x-axis, extended from minus infinity 

to plus infinity and carry a current I. The magnetic field will be 

computed at a typical point r2 on the y-axis. The geometry is best 

explained in figure bellow; 

 

Figure 6-3: Schaum p.136 Magnetic field at point P due to a long 

straight wire. 

The magnetic induction is just; 

𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋
𝐼 ∫

𝑑𝑥 𝑖̂ × (𝑟2 − 𝑟1)

|(𝑟2 − 𝑟1)|
3

+∞

−∞

      .   .   .      (7 − 29) 
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First of all we need to solve the cross product, so, (𝑟2 − 𝑟1) is ling in 

the xy-plane of the problem, then the result of its product should be 

normal (𝑘̂)to this plan:  

∴  𝑖̂ × (𝑟2 − 𝑟1) = |𝑖̂||(𝑟2 − 𝑟1)| 𝑠𝑖𝑛𝛳 𝑘̂           0 ≤ 𝜃 ≤ 𝜋         (∗) 

In order to normalize vectors and angels of the problem, we will change 

vectors to angels: 

𝑡𝑎𝑛(𝜋 − 𝜃) = −𝑡𝑎𝑛𝜃 =
𝑎

𝑥
      (∗∗) 

And, 

 csc (𝜋 − 𝜃) =  csc (𝜃) =
|(r⃑2 − r⃑1)|

𝑎
     (∗∗∗) 

Substituting eqs. *,**, ***, in eq.(7-29), yields: (H.W) 

𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋
𝐼𝑘̂
1

𝑎
∫ 𝑠𝑖𝑛𝜃 𝑑𝜃

𝜋

0

=
µ𝑜𝐼

4𝜋𝑎
𝑘̂(−𝑐𝑜𝑠𝜃)|

𝜋
0

 

∴ 𝐵⃑⃑(𝑟2) =
µ𝑜𝐼

2𝜋𝑎
𝑘̂   .  .  .  (7 − 30) 

To use this result more generally, it is only necessary to note that the 

problem exhibits an obvious symmetry about the 𝑥-axis. Thus we 

conclude that the lines of B are everywhere circles; with the conductor as 

a center. This is in complete agreement with the elementary result 

which gives the direction of B by a right-hand rule. 

2) Circular wire: p.218 Griffths 

The magnetic field produced by such a circuit at an arbitrary point is 

very difficult to compute. However, if only points on the axis of 

symmetry are considered, the expression for B is relatively simple. In 

this example a complete vector treatment will be used to demonstrate 
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the technique. Figure 7-4 illustrates the geometry and the coordinates 

to be used.  

 
Figure 7-4: Magnetic field at point P due to a circular turn of wire. 

The field is to be calculated at point r2 on the z-axis; the circular turn 

lies in the xy-plane. The magnetic induction is given by equation (6-23) 

in which, from figure 6-4, the following expressions are to be used: 

𝑑ℓ⃑⃑ = 𝑎 𝑑𝛳(− 𝑖̂ 𝑠𝑖𝑛𝜃 + 𝑗̂ 𝑐𝑜𝑠𝜃), 

(r⃑2 − r⃑1) = −𝑖̂ 𝑎 𝑐𝑜𝑠𝜃 − 𝑗̂ 𝑎 𝑠𝑖𝑛𝜃 + 𝑘̂ 𝑧  

And Pythagorean theorem: 

|(r⃑2 − r⃑1)| = (𝑎
2 + 𝑧2)1/2  

Substituting these equations into equation (6-23), yields: 

𝐵⃑⃑(𝑧) =
µ𝑜𝐼

4𝜋
∫
( 𝑖̂ 𝑧 𝑎 𝑐𝑜𝑠𝜃 + 𝑗̂ 𝑧 𝑎𝑠𝑖𝑛𝜃 + 𝑘̂𝑎2)

(𝑧2 + 𝑎2)
3
2

2𝜋

𝑜

𝑑𝜃    .   .   .      (7 − 31) 

The 1st two terms integrate to zero, 

𝐵⃑⃑(𝑧) =
µ𝑜𝐼

2

𝑎2

(𝑧2 + 𝑎2)
3
2

𝑘̂     .   .   .    (6 − 32) 

Field along the z-axis. 

7-4: Magnetic force between two circuits (Ampere Force 

Law): 
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In 1820, just a few weeks after Oersted announced his discovery that 

currents produce magnetic effects, Ampere presented the results of  

series of experiments which may be generalized and expressed in 

modern mathematical language as; 

𝐹⃑2 =
µ𝑜
4𝜋
𝐼1𝐼2∮ ∮

dℓ⃑⃑2 × [dℓ⃑⃑1 × (r⃑2 − r⃑1)]

|r⃑2 − r⃑1|
3

21

    .  .   .   (7 − 22) 

 

Figure 2: Magnetic force between two circuits. 
وطبقا لقاعدة اليد اليمنى فان القوة المغناطيسية التيارات في الدائرتين تتجهان بنفس الاتجاه عليه 

 بينهما هي قوة تجاذب وكما يتضح ذلك من الشكل
  

This rather formidable expression can be understood with reference 

to figure 2. The force F2 is the force exerted on circuit 2 due to the 

influence of circuit 1, the dℓ's and r's are explained by the figure.  

H.W: Show that (Newton's 3ed law); 

𝐹⃑1 = −𝐹⃑2 

Eqs. (7-5) & (7-22), for the last two electric circuits, Biot-Savart two 

forms could be re-writing as the special forms:  

𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋
𝐼1∮

dℓ⃑⃑1 × (r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3

1

    .   .   .    (7 − 23) 

𝑑𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋

𝐼1dℓ1⃑⃑ ⃑⃑ × (r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3

   .   .  .   (7 − 24) 

Integral and Differential forms of Biot-Savart law 
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The magnetic field exerted on circuit 2 due to the influence of circuit 1 

For continuous distribution of current, last two equations can be 

written in term of current density J, as; 

𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋
∮

J⃑(r2) × (r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3

1

 𝑑𝑣1      .   .   .   (7 − 25) 

𝑑𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋

J⃑(r2) × (r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3

𝑑𝑣1   .   .   .     (7 − 26) 

From eq. (2-25), It is possible mathematically, verify that:  

∇. 𝐵⃑⃑ = 0      .   .   .    (7 − ∗) 

An isolated magnetic pole cans never being existed 

 

The Proof: 

By using the identity, with eq. (7-25); 

𝑑𝑖𝑣(𝐴 × 𝐵⃑⃑) = −𝐴 ∙ 𝑐𝑢𝑟𝑙 𝐵⃑⃑ + 𝐵⃑⃑ ∙ 𝑐𝑢𝑟𝑙 𝐴 

Yields; 

𝑑𝑖𝑣2 𝐵⃑⃑(𝑟2) = 

µ𝑜
4𝜋
∮ [−J⃑(r2) ∙ curl2

(r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3

1

+
(r⃑2 − r⃑1)

|(r⃑2 − r⃑1)|
3
∙ curl2(J⃑(r2)]𝑑𝑣     

 .    .    .   (7 − 27) 

But the electric current is non-rotational, so the second term vanishes, 

furthermore;  ∇⃑⃑⃑
1

|(r⃑2−r⃑1)|
= −

(r⃑2−r⃑1)

|(r⃑2−r⃑1)|
3
 ,  and the curl of any gradient is zero, it 

follows that; 

𝑑𝑖𝑣2 𝐵⃑⃑(𝑟2) = 0    .   .   .   (7 − 28) 

7-5: Ampere's Circuital Law: 
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Similar to Gauss’s law, Ampere’s law states that the line integral of the 

tangential components of magnetic field strength (H) around a closed 

path is the same as the net current enclosed by the path. 

The curl of magnetic induction fields given by equations (7-23) or (7-

25) which are due to steady currents, i.e. to currents which satisfy div J 

= 0, defiantly lead to the equation; 

 

𝑐𝑢𝑟𝑙 𝐵⃑⃑(𝑟2) = 𝜇𝑜𝐽(𝑟2)    .   .  .  (7 − 33) 

Differential form of Ampere’s law 

This equation also called Ampere's Circuital Law. 

In fact this equation is still valid as long as there are no magnetic 

material present and div J = 0. However, there is another form for this 

law called integral form of Ampere’s law which may derive as follows;  

the integration of equation (7-33) over the total surface bounded by the 

circuit leads to; 

∫ 𝑐𝑢𝑟𝑙 𝐵⃑⃑ ∙ 𝑛̂𝑑𝑎
𝑆

= 𝜇𝑜 ∫ 𝐽
𝑆

∙ 𝑛̂𝑑𝑎  .  .  .  (7 − 34)  

Using the Stokes' theorem ∫ 𝑐𝑢𝑟𝑙 𝐵⃑⃑ ∙ 𝑛̂𝑑𝑎
𝑆

= ∮ 𝐵⃑⃑ ∙ 𝑑ℓ⃑⃑
𝐶

  for the right 

hand side of the last equation we get: 

∮ 𝐵⃑⃑ ∙ 𝑑ℓ⃑⃑
𝐶

= 𝜇𝑜∫ 𝐽
𝑆

∙ 𝑛̂𝑑𝑎 

∮ 𝐵⃑⃑ ∙ 𝑑ℓ⃑⃑
𝐶

= 𝜇𝑜𝐼      .  .  .  (7 − 36) 

The integral form for Ampere’s law 

 

which state that {the line integral of B around a closed path is equal to µo 

times the total current through the closed path}.  
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It is clear that Ampere’s circuital law, as equation (7-36) is called, 

is parallel to Gauss's law in electrostatics. By this is meant that it can be 

used to obtain the magnetic field due to a certain current distribution of 

high symmetry without having to evaluate the complicated integrals 

that appear in the Biot-Savart law. 

 

H.W: Starting from the integral form of Ampere’s law deduce the 

corresponding differential form.  

 

Example (1):  

Using Ampere’s law, deduce the magnetic induction at a distance 𝑟 =

𝑎 from a long straight wire. 

Solution: We have proved using Biot-Savart law the magnetic flux 

density is given as shown by equation (7-30). Here also we can prove 

that a similar result can be obtained by means of Ampere’s law. So, 

Ampere’s law is given as; 

 

∮ 𝐵⃑⃑ ∙ 𝑑ℓ⃑⃑
𝐶

= 𝜇𝑜𝐼          .    .    .   (1)                                   

Using the cylindrical coordinate, for the dot product in the left hand 

side; 
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𝐵⃑⃑ ∙ 𝑑ℓ⃑⃑ = |𝐵⃑⃑||𝑑ℓ⃑⃑|𝑐𝑜𝑠𝜒 

= |𝐵⃑⃑|𝑟𝑑𝜑𝜑̂ 

Where 𝜒 ≈ 0,→ 𝑐𝑜𝑠𝜒 ≈ 1   

∴ 𝑒𝑞(1)𝑏𝑒𝑐𝑜𝑚𝑒𝑠; 

∫ |𝐵⃑⃑|𝑟𝑑𝜑
2𝜋

0

= 𝜇𝑜𝐼 

|𝐵⃑⃑|𝑟𝜑|0
2𝜋 = 𝜇𝑜𝐼 

|𝐵⃑⃑| =
𝜇𝑜𝐼

2𝜋𝑟
 

∴ 𝐵⃑⃑ =
𝜇𝑜𝐼

2𝜋𝑟
𝜑̂ 

Another procedure: 

∮ 𝐵𝜑̂ ∙ (𝑑𝑟 𝑟̂
𝐶

+ 𝑟𝑑𝜑𝜑̂ + 𝑑𝑧𝑘̂) = 𝜇𝑜𝐼                                 

∮ 𝐵
𝐶

𝑟𝑑𝜑 = 𝜇𝑜𝐼  

∫ 𝐵𝑟𝑑𝜑
2𝜋

0

= 𝜇𝑜𝐼 

𝐵𝑟2𝜋 = 𝜇𝑜𝐼 

𝐵 =
𝜇𝑜𝐼

2𝜋𝑟
  

𝐵⃑⃑ =
𝜇𝑜𝐼

2𝜋𝑎
𝜑̂ 

Example (2):  

Consider a coaxial cable consisting of a small center conductor of 

radius 𝑟1 and a coaxial cylindrical outer cable conductor of radius 𝑟2, as 

shown in figure 7-5. Assume that the two conductors carry equal total 

currents of magnitude 𝐼 in opposite directions, Using Ampere’s law, 

deduce the magnetic induction at a distance 𝑟 from the center. 
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Solution: 

 

Figure 7-5: Cross section through a coaxial cable. 

∮ 𝐵⃑⃑ ∙ 𝑑ℓ⃑⃑
𝐶

= 𝜇𝑜𝐼 

𝐵∮ 𝑑ℓ
𝐶

= 𝜇𝑜𝐼 

𝐵2𝜋𝑟 = 𝜇𝑜𝐼 

𝐵 =
𝜇𝑜𝐼

2𝜋𝑟
     {𝑟1 < 𝑟 < 𝑟2} 

7-6 The magnetic vector potential  

The calculation of electric fields was much simplified by the 

introduction of the electrostatic potential. The possibility of making this 

simplification resulted from the vanishing of the curl of the electric field 

(∇⃑⃑⃑ × 𝐸⃑⃑ = 0) in chapter 2. 

The curl of the magnetic induction does not vanish; however, its 

divergence does (eq. (7 − ∗)). Since the divergence of any curl is zero, it 

is reasonable to assume that the magnetic induction may be written; 

 𝐵⃑⃑ = ∇⃑⃑⃑ ×  𝐴   .   .   .  (7 − 37) 

Where A is called magnetic vector potential which given by the following 

expression; 
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𝐴(𝑟2) =
µ𝑜
4𝜋
∫

 Ĵ(r1)

|𝑟2 − 𝑟1|
𝑉

𝑑𝑉1          .   .  .  (7 − 38) 

Magnetic vector potential 

The only other requirement placed on A is that, see equation (7-33); 

∇⃑⃑⃑ ×  𝐵⃑⃑ = ∇⃑⃑⃑ × ∇⃑⃑⃑ ×  𝐴 = µ𝑜𝐽  .  .  .  (7 − 39) 

Using the identity;  

𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝐴 = 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝐴 − ∇2𝐴   .   .   .     (7 − 40) 

Specifying that:  𝑑𝑖𝑣 𝐴 =  0, yields 

∇2𝐴 = −µ𝑜𝐽     .   .   .   (7 − 41) 

Equation (6-41) called Vector Poisson’s Equation in magnetostatic. 

Actually there are many way by means equation (6-38) could be 

derived, one of them are shown in the example below. 

The Proof: 

Derive the form of the magnetic vector potential – eq.(7-38). 

Solution: 

The integral form of Biot-Savart law (current density form) is;  

𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋
∫ J⃑(r1) ×

(𝑟2 − 𝑟1)

|(𝑟2 − 𝑟1)|
3

𝑉

𝑑𝑣1   .   .   .    (7 − 25) 

we have 

𝑟2 − 𝑟1
|𝑟2 − 𝑟1|

3
= −∇⃑⃑⃑2  

1

|𝑟2 − 𝑟1|
 

𝐵⃑⃑(𝑟2) =
µ𝑜
4𝜋
∫ J⃑(r1) × −∇⃑⃑⃑2  

1

|𝑟2 − 𝑟1|𝑉

𝑑𝑣1 

Where ∇⃑⃑⃑2 means that the differentiation is with respect to 𝑟2, while J⃑(r1) 

is with respect to r1 ; 
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= −
µ𝑜
4𝜋
∫ ∇⃑⃑⃑2  ×

J⃑(r1)
|𝑟2 − 𝑟1|𝑉

𝑑𝑣1 

Application of the identity; 

∇ ×  𝜑𝐴 = 𝜑 ∇⃑⃑⃑ × 𝐴 − 𝐴 × ∇⃑⃑⃑𝜑 

where 𝜑 =
1

|𝑟2−𝑟1|
, 𝐴 = J⃑(r1) 

yields; 

∇⃑⃑⃑2  ×
J⃑(r1)

|𝑟2 − 𝑟1|
=

1

|𝑟2 − 𝑟1|
 ∇⃑⃑⃑2 𝐽(𝑟1) − 𝐽(𝑟1) × ∇⃑⃑⃑2

1

|𝑟2 − 𝑟1|
 

Since 𝐽(𝑟1) does not depend on 𝑟2 the first term will vanishes and so we 

have; 

𝐵⃑⃑(𝑟2) = ∇⃑⃑⃑2 × {
µ𝑜
4𝜋
∫  

𝐽(𝑟1)

|𝑟2 − 𝑟1|
 

𝑉

𝑑𝑣1} 

Compare with equation (𝐵⃑⃑ = ∇⃑⃑⃑ × 𝐴) yield; 

𝐴(𝑟2) =
µ𝑜
4𝜋
∫

 Ĵ(r1)

|𝑟2 − 𝑟1|
𝑉

𝑑𝑣1 

Which is exactly the equation (7-38). 

(7-7) Magnetic scalar potential: 

Using  Ampere’s law (𝑐𝑢𝑟𝑙 𝐵⃑⃑ = 𝜇𝑜𝐽) 𝑑𝑖𝑣𝐵⃑⃑ = 𝜇0𝐽,  prove that the magnetic 

scalar potential U* satisfies the Laplace’s equation 

Differential form of Amp. law  ∇⃑⃑⃑ ×  𝐵⃑⃑(𝑟2) = 𝜇𝑜𝐽(𝑟2) indicates that the curl 

of the magnetic induction is zero wherever the current density is zero. Thus 

the magnetic induction in such regions can be written as the gradient of 

scalar potential: 

𝐵⃑⃑ = −𝜇𝑜 ∇⃑⃑⃑𝑈
∗ 

However, the divergence of  𝐵⃑⃑ is also zero, which means that; 
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∇ ∙ 𝐵⃑⃑ = −𝜇𝑜∇
2𝑈∗ = 0 

𝑈∗ is called magnetic scalar potential, which is satisfies Laplace equation. 

H.W 

Compare between electrostatic and magnetostatic from point of view of the 

following laws: 

Force, field (curl and divergence), potential (scalar and vector), Poisson and 

Laplace equations.  
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