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Chapter Seven

The Magnetic Field of Steady Currents

The second kind of field which enters into the study of electricity and
magnetism is, of course, the magnetic field. Such fields or, more
properly, the effects of such fields have been known since ancient times
when the effects of the naturally occurring permanent magnet
magnetite (Fes 04) were first observed. The discovery of the north- and
south-seeking properties of this material had a profound influence on
early navigation and exploration. Except for this application, however,
magnetism was a little used and still less understood phenomenon until
the early nineteenth century, when Oersted discovered that an electric
current produced a magnetic field. This work, together, with the later
worke of\Gauss, Henry, Faraday; and qthers, has brought the magnetic
field into prominence as a partner to the electric field.

In this chapter the basic definitions of magnetism will be given, the
production of magnetic fields by steady currents will be studied .and

some important groundwork for future work will be laid.

7-1 The definition of Magnetic Induction

For the purpose of defining the magnetic induction (magnetic flux

density) (B) it is convenient to define the magnetic force, ﬁm, (frequently
called the Lorentz force), as that part of the force exerted on a moving
charge in a steady magnetic field which is neither electrostatic nor
mechanical, where that force is perpendicular to each B, and charge
velocity (v).

The B, is then defined as the vector which satisfies;
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where the limit used to ensure the q does not affect the source of B.

For simplicity we can write;

-

E,=qbxB ... (7-1)

The unit for magnetic induction in the "mks" system is Tesla (T),
where according to Eq. (6-1):
N.Sec 1 N
Cm ~Am

[t is customary to express this unit as the Weber/meter 2; the Weber

1Tesla =1

is the mks unit of magnetic flux which will be defined later.

H.W:

Prove that:

N.Sec B Newton B Weber
C.m  Am  meter?

And often the magnetic field is given in Gauss (G), the CGS unit.
Consider two parallel straight wires in which two steady currents are
flowing;
o If the wires are neutral, there is no net electric force between the two
wires.
e If the current in both wires is flowing in the same direction, the
wires are found to attract each other.
e If the current in one of those wires is reversed, the wires are found

to repel each other.

2 Ity d gt ol yudl




Department of Physics/College of Education (UOM) 2012-2013 Electromagnetic Theory/4th Class

The force responsible for the attraction and repulsion is called the
magnetic force. The magnetic force acting on a moving charge q is

defined in terms of the magnetic field.
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Result:

For a wire carrying steady current, two fields will exists with two
different plans:

- The electric field diverges from the line charge (current carriers inside
the wire) and is curl free: (V x E = 0).

- The magnetic field forms circles around the steady current and is

divergence free: (V.E = 0).
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7-2 Magnetic Force and Torque on Current-Carrying
Conductor:

Perfectly good definitions of the magnetic induction can be
constructed by using the force on a current element or the torque on a
current-carrying loop. So, from the definition of B, an expression for the
force on an element d¥ of a current-carrying conductor can be found.

If d¢ is an element of conductor with its sense taken in the direction
of the current I which it carries, then d¥ is parallel to the velocity v of
the charge carriers in the conductor. If there are N charge carriers per
unit volume in the conductor, the force on the element d¥ is;

dE. = NA|d¢|gobxB ... (7-2)
Where A is the cross-sectional area of the conductor and q is the charge
per carrier. Since v and df are parallel, an alternative form of equation
(7-2) can written-as follows;

dE, =Nq|o|AdlxB . .. (7-3)
However, (Nq|v |A) is just the current I for a single species of carrier.

Therefore the expression:

dE,=1dlxB ... (7—4)

is written for the force on an infinitesimal element of a charge-carrying
conductor.

Equation (7-4) can be integrated to give the force on a complete (or
closed) circuit. If the circuit in question, represented by the contour C,

then;

ﬁm=3§ IdlxB ... (7=5)
C

4 Ity d gt ol yudl




2012-2013 Electromagnetic Theory/4th Class

Department of Physics/College of Education (UOM)

Assuming B is uniform (not depend on position) then both B and I can

removed from eq. under integral and then equation (7-5) becomes;

ﬁm=1{f dl}xE ... (7-6)
C

The remaining integral is easy to evaluate. Since it is the sum of

infinitesimal vectors forming a complete circuit, it must be zero. Thus;

ﬁmzl{% dl}xE =0 ~Bisuniform ... (7—7)
c

Another interesting quantity is the torque on a complete circuit. Since

torque is moment of force, the infinitesimal torque dt is given by;
(7—-8)

d7 = 7 x dE,,
= Fxl(d?xﬁ)

The torque on a complete circuit is;
f=17€ Fx(d¢xB) ... (7-9)
c
The operation between the brackets could be fined by a matrix of cross
product:
d¢ x B = i(dyB, — dzB,) + j(dzB, — dxB,) + k(dxB, — dyB,) . .(7 — 10)
The same procedure, we can find the result of: 1 X (d? X §) ;

ydxB, — ydyB, — zdzB, + zdxB,

{Fx (dfxB)} =
zdzB), — xdxB, + xdyB,

{7 x (d¢xB)}, = zdyB, -
{7 x (d¢ x B)} = xdzB, — xdxB, — ydyB, + ydzB,

B is assumed to be independent of r (uniform field), the x-component of

. (7—1D)

the torque being;
szljg {Fx(d¢xB)} ... (7-12)
c
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Using equation (7-11);

T, = Ijg {ydey — ydyB, — zdzB, + zdeZ} ... (7—-13)
c

:I{Bngc ydx—ijgC ydy—ijgc zdz +sz€ de} . (7-14)

=I{By7€ ydx+BZ§ de} ... (7—15)
c c
s z .
e ,
| | J ' - xExaly
: i B‘
N =l
/// |(_¢_/$’-‘—-\\ ! » L //
X \\_‘J . w X
Figure 1:
b a
% ydx=jydx+jy2dx=Az ... (7—=16)
¢ a
Accordingly equation (7-15) becomes;
. =1{A,B,—A,B,} ... (7—17a)
Similarly, for the two remaining components, we can find that;
7, =I{A; B, —AB,} . .. (7—17b)
T, =1{A,By—A;B,} ... (7—17¢)
Thus;
T=IAXB ... (7—-18)

Magnetic torque
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Where A is the vector whose components are the areas enclosed by
projections of the curve C on the yz-, zx-, and xy-planes. The quantity
IA appears very frequently in magnetic theory, and is referred to the
magnetic moment of the circuit. The symbol m will be used for magnetic

moment:

m=I14A . .. (7-19)

Magnetic moment

It is easy to show, by the technique used above, that the integral of
(Fx d?) around a closed (electric circuit) path gives twice the area

enclosed by the curve. Thus;

1 (. - .
Eljg Fxdé=A . .. (7-200 HW
C

H the-cuxrent exist inside a medium, Id? — fdv , also;

1 _
m=—1j€ Fxde .. . (7-21)
2 C

7-3 Biot-Savart Law
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The Biot-Savart law defines the magnetic field B duea point charge q

moving with a velocity v as;
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E_uoqﬁxf_#oqﬁxf
C4m r3 4m |7)3

Here, 7 is a unit vector that points from the position of the charge to
the point at which the field is evaluated, r is the distance between the
charge and the point at which the field is evaluated, and the number
Wo/4m (= 1077N/A?) which appears in last equation plays the same
role here as 1/4me, played in electrostatic, i.e. it is the constant which is
required to make an experimental law compatible with a set of units.

For a steady electric current moving in a wire within a circuit, the law

takes the following two general forms:

~ de x 7
B =ﬁ139 e
41 |73

Integral form

Or with reference to the origin:
_ df x (f, — T
B(r)zﬁlf A(zé 31)
|(r; — 1)

4
Last equation can be modified to express the magnetic field (dE) due

to an infinitesimal current element £ , which can be written as,

R Ide x 7

dB = ‘u—oA—
4 |r|?

Differential form
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[llustration of Biot-Savart law, electric current form.
The quantities in last eq. are illustrated in figure. The direction of the

magnetic field due to the current element at the point A can be inferred

using the right hand rule. dB is directed into the plane of the figure at A.
The field due to the entire wire can be evaluated at A by adding up the

contributions of all the current elements in the wire.

7-4 Elementary applications of the Biot and Savart law
1)  Long straight wire:

Assume the wire located along the x-axis, extended from minus infinity
to plus infinity and carry a current I. The magnetic field will be
computed at a typical point r2 on the y-axis. The geometry is best

explained in figure bellow;

Figure 6-3: Schaum p.136 Magnetic field at point P due to a long
straight wire.

The magnetic induction is just;

+ 00
_ Mo, f dx i x (r, — 1)
|(r, =713

(7 —29)

— 00
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First of all we need to solve the cross product, so, (, — ;) is ling in
the xy-plane of the problem, then the result of its product should be
normal (k)to this plan:

L ix (7, —1y) = U, —7)| sin6 k 0<6<m (¥
In order to normalize vectors and angels of the problem, we will change
vectors to angels:
a
tan(mr — 0) = —tanb = po (%)
And,
r, —T
csc(mr—0) = csc(0) = l(%‘tl)l (%%%)

Substituting eqgs. *,**, *** in eq.(7-29), yields: (H.W)

s
n _Ho ~1 . _ Mol ~ T
B(r;) = Elk;j sinf df = 47mk(—cos@)lo
0
2By =2l 730
2ma

To use this result more generally, it is only necessary to note that the
problem exhibits an obvious symmetry about the x-axis. Thus we
conclude that the lines of B are everywhere circles; with the conductor as
a center. This is in complete agreement with the elementary result
which gives the direction of B by a right-hand rule.

2)  Circular wire: p.218 Griffths

The magnetic field produced by such a circuit at an arbitrary point is
very difficult to compute. However, if only points on the axis of
symmetry are considered, the expression for B is relatively simple. In

this example a complete vector treatment will be used to demonstrate

10 Llaodly A Lnad! Sty




Department of Physics/College of Education (UOM) 2012-2013 Electromagnetic Theory/4th Class

the technique. Figure 7-4 illustrates the geometry and the coordinates

to be used.

Figure 7-4: Magnetic field at point P due to a circular turn of wire.

The field is to be calculated at point rz on the z-axis; the circular turn
lies in the xy-plane. The magnetic induction is given by equation (6-23)
in which, from figure 6-4, the following expressions are to be used:

de = a d6(— i sinb +j cosh),
(t,—1,) = —lacosd —jasind +kz
And Pythagorean theorem:
|(F, = T)| = (a® + 292

Substituting these equations into equation (6-23), yields:

2T

ol [ (izacosd +jzasind + ka?)
4 j a6

B(z) = (7 —31)
> (z% +a?)2

The 1sttwo terms integrate to zero,

I a’

- u
B(z) = ; 3
(z%2 + a?)2

Field along the z-axis.

k ... (6-32)

7-4: Magnetic force between two circuits (Ampere Force

Law):
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In 1820, just a few weeks after Oersted announced his discovery that
currents produce magnetic effects, Ampere presented the results of
series of experiments which may be generalized and expressed in

modern mathematical language as;

=—11127€ 7€ 42, X (483 X (@, ~ )] coL (7-22)

|r2 _1'1|3

) rl, > {vg — ry)

Figure 2: Magnetic force between two circuits.
Aulabiaal Bl (I8 el Baeiblinke s ade olaiY) oniis e il LA sl
SIS/ llh iy oS ly 25 8 h Lighp

This rather formidable expression can be understood with reference
to figure 2. The force F: is the force exerted on circuit 2 due to the

influence of circuit 1, the d¢'s and r's are explained by the figure.

H.W: Show that (Newton's 3¢d lJaw);

ﬁl == _ﬁz

Egs. (7-5) & (7-22), for the last two electric circuits, Biot-Savart two

forms could be re-writing as the special forms:

_ Mo d?1 X (I — Tq)
B0 = 421§, T =T (7=29)
. Lde; x (f, — T
dB(r,) = Mo [1d?y X (ry —17) (7 — 24)

am |(F, — TP
Integral and Differential forms of Biot-Savart law
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The magnetic field exerted on circuit 2 due to the influence of circuit 1

For continuous distribution of current, last two equations can be
written in term of current density J, as;
Ho J(ry) X (rp —14)
A1 1 |(F2_F1)|3

S e () X (F, — 1)
dB(Tz)—E TGEAE dv, . .. (7—26)

From eq. (2-25), It is possible mathematically, verify that:

E(Tz) =

V.B=0 ... (7—%)

An isolated magnetic pole cans never being existed

The Proof:
By using the identity, with eq. (7-25);
div(/f X §) = A nevinl B+ B)rcurl/A
Yields;
div, B(r,) =
- r,—T r,—r
= , [TIra)-curly |<(fzz— Fll))l3 |<(fzz— f‘ll))l3

. (7=27)

- curl, (T(rz)]dv

But the electric current is non-rotational, so the second term vanishes,

furthermore; V = - = l((fz_fl))P , and the curl of any gradient is zero, it
Irp,—rq rp)—rq

follows that;
div, B(r,) =0 . .. (7—28)
7-5: Ampere's Circuital Law:
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Similar to Gauss’s law, Ampere’s law states that the line integral of the
tangential components of magnetic field strength (H) around a closed
path is the same as the net current enclosed by the path.

The curl of magnetic induction fields given by equations (7-23) or (7-
25) which are due to steady currents, i.e. to currents which satisfy div ]

= 0, defiantly lead to the equation;

curl E(rz) = uof(rz) . .. (7-33)

Differential form of Ampere’s law

This equation also called Ampere's Circuital Law.

In fact this equation is still valid as long as there are no magnetic
material present and div J = 0. However, there is another form for this
law called integral form of Ampere’s law which may derive as follows;
thie\integrationeféquation-('7-338) over the-total surface-botinded-by the

circuit leads to;
J; curl B-da =p, [, J-Aida ... (7—34)
Using the Stokes' theorem | curl B - fida = $. B-d? for the right

hand side of the last equation we get:

N

jg E-d?z,uof J -fda
c

S

f B-d¢=yu,0 ...(7-36)
C

The integral form for Ampere’s law

which state that {the line integral of B around a closed path is equal to .
times the total current through the closed path).
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It is clear that Ampere’s circuital law, as equation (7-36) is called,
is parallel to Gauss's law in electrostatics. By this is meant that it can be
used to obtain the magnetic field due to a certain current distribution of
high symmetry without having to evaluate the complicated integrals

that appear in the Biot-Savart law.

H.W: Starting from the integral form of Ampere’s law deduce the

corresponding differential form.

Example (1):

Using Ampere’s law, deduce the magnetic induction at a distance r =
a from a long straight wire.
Solution: We have proved using Biot-Savart law the magnetic flux
density is given as shown by equation (7-30). Here also we can prove
that'a similar“restlt' can’ be 'obtained- bymeans of/Ampere’s law.''Se,

Ampere’s law is given as;

§. B-de=p,d . . . (1)
Using the cylindrical coordinate, for the dot product in the left hand

side;
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B-d¢= |§||d?|cosx
= |§|rdgogﬁ
Where y = 0,- cosy = 1

~ eq(1)becomes;

Another procedure:

§. BP - (dr +rded + dzk) = p,!
f{; Brdo = pu,l
C

2n
f Brde = u,l
0

Br2m = u,l
Kol
B =
2nr
= Mol
B =
2ma

Example (2):

Consider a coaxial cable consisting of a small center conductor of

radius r; and a coaxial cylindrical outer cable conductor of radius r,, as

shown in figure 7-5. Assume that the two conductors carry equal total

currents of magnitude I in opposite directions, Using Ampere’s law,

deduce the magnetic induction at a distance r from the center.
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Solution:

Figure 7-5: Cross section through a coaxial cable.

jé E-d?zuol
c

Bf df = u,l
c

B2nr = u,l

Kol
B = <r<
Y- {n <r<n}

7-6 The magnetic vector potential

The calculation of electric fields was much simplified by the
introduction of the electrostatic potential. The possibility of making this
simplification resulted from the vanishing of the curl of the electric field
(V XE = 0) in chapter 2.

The curl of the magnetic induction does not vanish; however, its
divergence does (eq. (7 — *)). Since the divergence of any curl is zero, it

is reasonable to assume that the magnetic induction may be written;

B=Vx A4 ...(7-37)

Where A is called magnetic vector potential which given by the following

expression;
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n _ Mo J(ry)
A(ry) = yrel IS —F1|dV1 ... (7-38)
14

Magnetic vector potential

The only other requirement placed on A is that, see equation (7-33);

VX B=VXxVx A=p,] ... (7—39)
Using the identity;
curl curl A = grad divA — V24 . . . (7 —40)
Specifying that: div A = 0, yields

VZA=—p,] ... (7—41)

Equation (6-41) called Vector Poisson’s Equation in magnetostatic.
Actually there are many way by means equation (6-38) could be
derived, one of them are shown in the example below.

The Proof:

Derive the form of the magnetic vector potential - eq.(7-38).

Solution:

The integral form of Biot-Savart law (current density form) is;

E(rﬂzi—%k T(rl)x%dvl ... (7=25)
we have
T, — Ty = 1
R IR Y

N W R - 1
B(ry) =7—] J(r) x =V, md%
|74 2 1

Where V, means that the differentiation is with respect to r,, while T(rl)

is with respecttory ;
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. r
_ﬁ v, x ](1)

dv,
41 174 |T’2 - T'1|

Application of the identity;

- - —_

VX pA=@Vx A—A x Vg

where ¢ = e

yields;
](r1)
7, =7l | — 7

Since /(1) does not depend on 7, the first term will vanishes and so we

o [ J(r)
B(ry) =V, X {477] = dv1}

Compare with equation (E =V X A) yield;

v,

— - - — 1
— X —_
Vo J(r) —J(r1) XV, = _ 7

[PRlEY

have;

_ (r1)
A( r2) = 47T./ |T2—T1|

Which is exactly the equation (7-38).
(7-7) Magnetic scalar potential:

Using Ampere’s law (curl B = ,uJ) divB = uof, prove that the magnetic

scalar potential U* satisfies the Laplace’s equation

Differential form of Amp. law V x B(r,) = u,J(r,) indicates that the curl
of the magnetic induction is zero wherever the current density is zero. Thus
the magnetic induction in such regions can be written as the gradient of

scalar potential:

B = —,u(ﬁU*

However, the divergence of B is also zero, which means that;
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V-B =—u,V2U* =0

U™ is called magnetic scalar potential, which is satisfies Laplace equation.
H.W

Compare between electrostatic and magnetostatic from point of view of the
following laws:

Force, field (curl and divergence), potential (scalar and vector), Poisson and

Laplace equations.
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Prof,

240 CHAPTER 5. MAGNETOSTATICS

Problem 5.29 Use the results of Ex. 511 to find the field insdde o uniformly charged sphere.
of total charge @ and radius R, which is rotating at a constant angular velocity a,

Problem 5.4

(a) Complete the proof of Theorem 2, Sect. 16.2. That s, show that any divergenceless vectoe
ficld F can be written as the curl of a vector powential A, What you have to dois find A, A,.
and A, such that (1) dA; /0y — dA,/8: = F,o () 84, Jiz — 0A./8x = Fg. and (li)
AA fdx ~ DA, fily = F;. Here's one way to do itz Pick Ay = 0, and solve (ii) and (1i1) for
Ay and A;. Note that the “eonstants of int¢gration” here are themselves functions of y and
z—they're constant only with respect 10 x. Now plag these expressions into (1), and use the
fact that V - F = 0 w obtain

' ¥ 1
A, =[ Faax' oy, 2y dn; A:=j l‘,((l.y'.:)d,v'-[ Fytd', vy, 2) dx!
o 0 4

(b) By direct differentiation, check that the A you obtained in pant (1) satisfies V x A = F, Iy
A divergenceless? [This was & very asymmetnical construction, and it would be surpnising of
it were—although we know that there exists a vector whose curl 1s F and whose divergence is
20,

(¢c) As an cxample, let F <« yX + zy + x & Calcolate A, and confirm that V « A < F. (For
turther discussion see Prob. 5,51.)

5.4.2 Summary; Magnetostatic Boundary Conditions

In Chapter 2, | drew a tnangular diagram to summanze the relations among the three
fundamental quantities of electrostatics: the charge density p, the electric field E, and the e m ed
potestial V. A simalar diagram can be constructed for magnetostatics (Fig. 5.48), relating

Figure 5.4%
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