So we will replace each character with the corresponding high frequency in plaintext as shown:

Plaintext = ENCRYPTION IS A MEANS OF ATTAINING SECURE COMMUNICATION

Which means that the key is $=3$? How? Multiplicative Ciphers: - In a multiplicative cipher, the plaintext and ciphertext are integers in Z_{26}; the

The key domain for any multiplicative cipher which must be in Z26*, is the set that has only 12 members: $1,3,5,7,9,11,15$, $17,19,21,23,25$.(why)
Example: - We use a multiplicative cipher to encrypt the message "hello" with a key of 7 . The ciphertext is "XCZZU".

Plaintext: $\mathrm{h} \rightarrow 07$	Encryption: $(07 \times 07) \bmod 26$	ciphertext: $23 \rightarrow \mathrm{X}$
Plaintext: $\mathrm{e} \rightarrow 04$	Encryption: $(04 \times 07) \bmod 26$	ciphertext: $02 \rightarrow \mathrm{C}$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \bmod 26$	ciphertext: $25 \rightarrow \mathrm{Z}$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \bmod 26$	ciphertext: $25 \rightarrow \mathrm{Z}$
Plaintext: $0 \rightarrow 14$	Encryption: $(14 \times 07) \bmod 26$	ciphertext: $20 \rightarrow \mathrm{U}$

the multiplication inverse of the key (where the multiplication inverse of $\mathbf{7}$ is $\mathbf{1 5}$) as shown

Ciphertext $X \rightarrow 23$
Ciphertext $\mathrm{C} \rightarrow 2$

Decryption: (23 * 15) mod 26
Decryption: (2*15) mod 26
plaintext= $7 \rightarrow h$
plaintext= $4 \rightarrow e$
Ciphertext $Z \rightarrow 25$
Ciphertext $Z \rightarrow 25$
Decryption: $\left(25{ }^{*} 15\right) \bmod 26$ plaintext=11 \rightarrow I
Decryption: $(25 * 15) \bmod 26$

$$
\mathrm{C}=\left(\mathrm{P} \times k_{1}+k_{2}\right) \bmod 26 \quad \mathrm{P}=\left(\left(\mathrm{C}-k_{2}\right) \times k_{1}^{-1}\right) \bmod 26
$$

where k_{1}^{-1} is the multiplicative inverse of k_{1} and $-k_{2}$ is the additive inverse of k_{2}

 the key domain is $26 \times 12=312$.
The additive cipher is a special case of an affine cipher in which $\mathrm{k}_{1}=1$. The multiplicative cipher is a special case of affine cipher in which $\mathrm{k}_{2}=0$.

Example: - Use an affine cipher to encrypt the message "hello" with the key pair (7,2).

P: $\mathrm{h} \rightarrow 07$	Encryption: $(07 \times 7+2) \bmod 26$	C: $25 \rightarrow$ Z
P: $\mathrm{e} \rightarrow 04$	Encryption: $(04 \times 7+2) \bmod 26$	C: $04 \rightarrow$ E
P: $1 \rightarrow 11$	Encryption: $(11 \times 7+2) \bmod 26$	$\mathrm{C}: 01 \rightarrow \mathrm{~B}$
P: $1 \rightarrow 11$	Encryption: $(11 \times 7+2) \bmod 26$	$\mathrm{C}: 01 \rightarrow \mathrm{~B}$
P: $0 \rightarrow 14$	Encryption: $(14 \times 7+2) \bmod 26$	C: $22 \rightarrow$ W

$(7,2)$ in modulus 26 . where where the multiplication inverse of $\mathbf{7}$ is $\mathbf{1 5}$
$\mathrm{C}: \mathrm{Z} \rightarrow 25$
C: $\mathrm{E} \rightarrow 04$
C: B $\rightarrow 01$
C: B $\rightarrow 01$
$\mathrm{C}: \mathrm{W} \rightarrow 22$

Decryption: $\left((25-2) \times 7^{-1}\right) \bmod 26$
Decryption: $\left((04-2) \times 7^{-1}\right) \bmod 26$
Decryption: $\left((01-2) \times 7^{-1}\right) \bmod 26$
Decryption: $\left((01-2) \times 7^{-1}\right) \bmod 26$
Decryption: $\left((22-2) \times 7^{-1}\right) \bmod 26$
P: $14 \rightarrow 0$

2. Polyalphabetic Ciphers

In polyalphabetic substitution, each occurrence of a character may have a different substitute.
The relationship between a character in the plaintext to a character in the ciphertext is one-tomany. Autokey Cipher:-

$$
\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \quad \mathrm{C}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \ldots \quad k=\left(k_{1}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)
$$

Encryption: $\mathrm{C}_{\mathrm{i}}=\left(\mathrm{P}_{\mathrm{i}}+k_{\mathrm{i}}\right) \bmod 26 \quad$ Decryption: $\mathrm{P}_{\mathrm{i}}=\left(\mathrm{C}_{\mathrm{i}}-k_{\mathrm{i}}\right) \bmod 26$
Assume that Alice and Bob agreed to use an autokey cipher with initial key value $\mathrm{k} 1=12$. Now Alice wants to send Bob the message "Attack is today". Enciphering is done character by character

Plaintext:	a	t	t	a	c	k	i	s	t	o	d	a	y
P's Values:	00	19	19	00	02	10	08	18	19	14	03	00	24
Key stream:	12	00	19	19	00	02	10	08	18	19	14	03	00
C's Values:	12	19	12	19	02	12	18	00	11	7	17	03	24
Ciphertext:	\mathbf{M}	\mathbf{T}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{M}	\mathbf{S}	\mathbf{A}	\mathbf{L}	\mathbf{H}	\mathbf{R}	\mathbf{D}	\mathbf{Y}

$$
\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \quad \mathrm{C}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \ldots \quad \mathrm{~K}=\left[\left(k_{1}, k_{2}, \ldots, k_{m}\right),\left(k_{1}, k_{2}, \ldots, k_{m}\right), \ldots\right]
$$

Encryption: $\mathrm{C}_{i}=\mathrm{P}_{i}+k_{i}$

Plaintext:
P's values:
Key stream:
C's values:
Ciphertext:

s	h	e	i	s	l	i	s	t	e	n	i	n	g
$\mathbf{1 8}$	07	04	08	18	11	08	18	$\mathbf{1 9}$	04	$\mathbf{1 3}$	08	13	06
$\mathbf{1 5}$	$\mathbf{0 0}$	$\mathbf{1 8}$	$\mathbf{0 2}$	$\mathbf{0 0}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{0 0}$	$\mathbf{1 8}$	$\mathbf{0 2}$	$\mathbf{0 0}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{0 0}$
$\mathbf{0 7}$	$\mathbf{0 7}$	$\mathbf{2 2}$	$\mathbf{1 0}$	$\mathbf{1 8}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{1 8}$	$\mathbf{1 1}$	$\mathbf{6}$	$\mathbf{1 3}$	$\mathbf{1 9}$	$\mathbf{0 2}$	$\mathbf{0 6}$
\mathbf{H}	\mathbf{H}	\mathbf{W}	\mathbf{K}	\mathbf{S}	\mathbf{W}	\mathbf{X}	\mathbf{S}	\mathbf{L}	\mathbf{G}	\mathbf{N}	\mathbf{T}	\mathbf{C}	\mathbf{G}

Vigenere cipher can be seen as combinations of m additive ciphers. As shown in a Vigenere Tableau which can be used to find ciphertext which the intorcortinn of a rnus and column.

	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	s	t	v	v	w	x	y	z
A	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
B	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w		Y	Z	A
C	C		E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B
D	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C
E	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D
F	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
\boldsymbol{G}	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F
H	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G
I	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G	H
J	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
\boldsymbol{K}	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
L	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
\boldsymbol{M}	M	N	O	P	Q	R	S	T	U	v	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
N	N	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
o	O	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
Q	Q	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
R	R	S	T	U	V	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
S	S	T	U	v	w	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
T	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
\boldsymbol{U}	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
V	v		X X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U
W	w	x	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	v
\boldsymbol{X}	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
\boldsymbol{Y}	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	w	X
Z	Z	A	B	C	D	E	F	G	H	1	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

Running Key: -Exactly Vigenère Cipher but the key length is exactly same length of the plaintext, usually keys are determined from books known from

