




 Virtual memory is a technique that allows the execution of processes that

may not be completely in memory. One major advantage of this scheme is

that programs can be larger than physical memory.

 There are two types of addresses in virtual memory systems:

1. virtual addresses: those referenced by processes.

2. physical or real addresses: those available in main memory.





 A key to implementing virtual memory systems is how to map virtual addresses

to physical addresses.

 Virtual memory systems contain special-purpose hardware called the memory

management unit (MMU) that quickly maps virtual addresses to real addresses.

 Dynamic address translation (DAT) mechanisms convert virtual addresses to

physical addresses during execution.







 Paging is a memory management scheme that eliminates the need for contiguous

allocation of physical memory.

 The physical memory is broken into fixed-sized blocks called frames.

 Logical memory is also broken into blocks of the same size called pages.

 Every address generated by the CPU is divided into two parts:

 Page number (p): Number of bits required to represent the pages in Logical

Address Space.

 Page offset (d): Number of bits required to represent particular word in a page or

page size of Logical Address Space.





 The page number is used as an index into a page table.

 The page table contains the base address of each page in physical memory.

 This base address is combined with the page offset to define the physical

memory address that is sent to the memory unit.

 When we use a paging scheme, we have no external fragmentation: Any free

frame can be allocated to a process that needs it. However, we may have some

internal fragmentation.







 The hardware implementation of page table can be done by using dedicated

registers.

 the usage of register for the page table is suitable only if page table is small. If

page table contain large number of entries then we can use TLB (translation

Look-aside buffer).

 TLB is a special, small, fast look up hardware cache.







 Memory protection in a paged environment is accomplished by protection bits

that are associated with each frame.

 One bit is generally attached to each entry in the page table: a valid-invalid bit.

 When this bit is set to "valid," this value indicates that the associated page is in

the process' logical-address space, and is thus a legal (or valid) page.

 If the bit is set to "invalid", this value indicates that the page is not in the process'

logical-address space.







 A Memory Management technique in which memory is divided into variable

sized chunks which can be allocated to processes. Each chunk is called

a Segment

 Each segment consists of contiguous locations.

 The segments need not be the same size nor must be placed adjacent to one

another in main memory.

 A table stores the information about all such segments and is called segment

table.

 It maps two dimensional Logical address into one dimensional Physical address.

Each entry of the segment table has a segment base and a segment limit.





 The segment base contains the starting physical address where the segment

resides in memory, whereas the segment limit specifies the length of the

segment.

 Every address generated by the CPU is divided into two parts:

 Segment number (s): Number of bits required to represent the segment.

 Segment offset (d): Number of bits required to represent the size of the segment.







 Example:

We have five segments numbered from 0 through 4. The segments are stored in

physical memory as shown. The segment table has a separate entry for each

segment, giving the beginning address of the segment in physical memory (or

base) and the length of that segment (or limit). For example, segment 2 is 400

bytes long and begins at location 4300.







 Example:

We have five segments numbered from 0 through 4. The segments are stored in

physical memory as shown. The segment table has a separate entry for each

segment, giving the beginning address of the segment in physical memory (or

base) and the length of that segment (or limit). For example, segment 2 is 400

bytes long and begins at location 4300.





 A demand-paging system is similar to a paging system with swapping.

 Processes reside on secondary memory (which is usually a disk). When we want

to execute a process, we swap it into memory.

 When this bit is set to "valid," this value indicates that the associated page is both

legal and in memory.

 If the bit is set to "invalid," this value indicates that the page either is not valid

(that is, not in the logical address space of the process), or is valid but is

currently on the disk.







 When the process tries to access a page that was not brought into memory 

(access to a page marked invalid) causes a page-fault trap.

 invalid bit causing a trap to the operating system.







 If no frame is free, we find one that is not currently being used and free it.

 We can free a frame by writing its contents to swap space, and changing the page

table to indicate that the page is no longer in memory.







 page replacement algorithm are needed to decide which page needed to be 

replaced when new page comes in.

 Whenever a new page is referred and not present in memory, page fault occurs 

and Operating System replaces one of the existing pages with newly needed 

page. 

 Different page replacement algorithms suggest different ways to decide which 

page to replace. 

The target for all algorithms is to reduce number of page faults.





Example: Suppose three pages can be in memory at a time per process. Process 

references pages: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1, what is the 

number of page fault?

The number of page fault = 15





 Example: Suppose we have the following process references pages:

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

What is the number of page fault if we use three page frames?

The number of page fault = 9





Example: Suppose three pages can be in memory at a time per process. Process 

references pages: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1, what is the 

number of page fault?

The number of page fault = 12


