Chapter three * Mathematics

Modular Arithmetic

several important cryptosystems make use of modular arithmetic. This is when the answer to a calculation is always in the range $0-m$ where m is the modulus.
$(a \bmod n)$ means the remainder when a is divided by n.

$$
\begin{array}{r}
a \bmod n=r^{*} \\
a \operatorname{div} n=q^{*} \\
a=q n+r^{*} \\
r=a-q^{*} n^{*}
\end{array}
$$

Example :- if $a=13$ and $n=5$, find q and r. $\mathrm{q}=13 \operatorname{div} 5=2$ and $\mathrm{r}=13-2 * 5=3$ which is equivalent to $(13 \bmod 5)$

Example :- find (-13 mod 5).
This can be found by find the number (b) where $5^{*} b>13$ then let $b=3$ and $5 * 3=15$ which is less than 13 so
$-13 \bmod 5=5 * 3-13=2$

Properties of Congruences.

Two numbers a and b are said to be "congruent modulo n " if*

$$
(a \bmod n)=(b \bmod n) \rightarrow a \equiv b(\bmod n)
$$

The difference between a and b will be a multiple of n So $a-b^{*}$
$=k n$ for some value of k
Examples $4 \equiv 9 \equiv 14 \equiv 19 \equiv-1 \equiv-6 \bmod 5^{*}$

$$
73 \equiv 4(\bmod 23
$$

Properties of Modular Arithmetic.*
$[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n .!$
$[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n \cdot r$
$[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n .^{r}$
$[(11 \bmod 8)+(15 \bmod 8)] \bmod 8=10 \bmod 8=2$
$(11+15) \bmod 8=26 \bmod 8=2$
$[(11 \bmod 8)-(15 \bmod 8)] \bmod 8=-4 \bmod 8=4$
$(11-15) \bmod 8=-4 \bmod 8=4$
$[(11 \bmod 8) \times(15 \bmod 8)] \bmod 8=21 \bmod 8=5$
$(11 \times 15) \bmod 8=165 \bmod 8=5$

Exponentiation is done by repeated multiplication, as in ordinary arithmetic.
 Example *

> To find $\left(11^{7} \bmod 13\right)$ dothe followings
> $11^{2}=121 \equiv 4(\bmod 13)$
> $11^{4}\left(11^{2}\right)^{2} \equiv 4^{2} \equiv 3(\bmod 13)$
> $11^{7} \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2(\bmod 13)$

Greatest Common Divisor(GCD).

Let a and b be two non-zero integers. The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$ is the largest of all common divisors of a and b.

When $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime. * It can be calculated using the following equation: - * $G \mathrm{CD}(\mathrm{a}, \mathrm{b})=G \mathrm{CD}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$

Example :- find the $\operatorname{GCD}(72,48)$.
$\operatorname{GCD}(89,25)=\operatorname{GCD}(25,89 \bmod 25)=\operatorname{GCD}(25,14)$ $\operatorname{GCD}(25,14)=\operatorname{GCD}(14,25 \bmod 14)=\operatorname{GCD}(14,11)$ $\operatorname{GCD}(14,11)=\operatorname{GCD}(11,14 \bmod 11)=\operatorname{GCD}(11,3)$
$\operatorname{GCD}(11,3)=\operatorname{GCD}(3,11 \bmod 3)=\operatorname{GCD}(3,2)$
$\operatorname{GCD}(3,2)=G C D(2,3 \bmod 2)=G C D(2,1)$
$\operatorname{GCD}(2,1)=\operatorname{GCD}(1,2 \bmod 1)=\operatorname{GCD}(1,0)$ so the $\operatorname{GCD}(89,25)=1$

Least Common Multiple (LCM).

The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by $\operatorname{LCM}(a, b)$.

It can be calculated using the following equation: $\operatorname{LCM}(\mathrm{a}, \mathrm{b})=|\boldsymbol{a} * \boldsymbol{b}| / \operatorname{GCD}(\mathrm{a}, \mathrm{b})$

Example :- find the $\operatorname{LCM}(354,144)$.
$\operatorname{GCD}(354,144)=G C D(144,354 \bmod 144)=G C D(144,66)$ $\operatorname{GCD}(144,66)=G C D(66,144 \bmod 66)=\operatorname{GCD}(66,12)$ $\operatorname{GCD}(66,12)=\operatorname{GCD}(12,66 \bmod 12)=\operatorname{GCD}(12,6)$ $\operatorname{GCD}(12,6)=\operatorname{GCD}(6,127 \bmod 6)=G C D(6,0)=6$
$\operatorname{LCM}(354,143)=\left(354^{*} 144\right) / 6=8496$

In Z_{n}, two numbers a and b are the multiplicative inverse of * each other if
The extended $a \times b \equiv 1(\bmod n)$ sorithm finds the multiplicative inverses of b in Zn when n and b are given and $\mathrm{gcd}(\mathrm{n}, \mathrm{b})=1$ as

$$
\begin{array}{ll}
r_{1} \leftarrow \mathrm{n} ; & r_{2} \leftarrow b \\
t_{1} \leftarrow 0 ; & \mathrm{t}_{2} \leftarrow 1
\end{array}
$$

$\operatorname{gcd}(n, b)=r_{1}$

a. Process
while $\left(r_{2}>0\right)$
\{

$$
q \leftarrow r_{1} / r_{2}
$$

$$
r \leftarrow r_{1}-q \times r_{2}
$$

$$
r_{1} \leftarrow r_{2} ; \quad r_{2} \leftarrow r
$$

$$
t \leftarrow t_{1}-q \times t_{2}
$$

$$
t_{1} \leftarrow t_{2} ; \quad t_{2} \leftarrow t
$$

$$
\}
$$

$$
\text { if }\left(r_{1}=1\right) \text { then } b^{-1} \leftarrow t_{1}
$$

b. Algorithm

Example: - Find the multiplicative inverse of 11 in $\mathrm{Z}_{26} .{ }^{*}$ The $\operatorname{GCD}(26,11)$ must be 1 in order to find the inverse. Bu using * the extended Euclidean algorithm, we can use this table

q	r_{1}	r_{2}	r	t_{1}	t_{2}	t
2	26	11	4	0	1	-2
2	11	4	3	1	-2	5
1	4	3	1	-2	5	-7
3	3	1	0	5	-7	26
	1	0		-7	26	

$-7 \bmod 26=19$.* the equation

$$
n=q n+r
$$

$26=11 * 2+4$
$\downarrow 11=4^{*} 2+3$
$\downarrow \frac{4=3 * 1+1}{3=3 * 1+0}$
We are now in reverse compensation starting from one as shown

$$
1=4-\left(3^{*} 1\right)
$$

$$
1=4-\left(11-\left(4^{*} 2\right)\right)
$$

$$
1=\underline{4}-11+4^{*} 2
$$

$$
1=\overline{3} * 4-1 \overline{1}
$$

$$
1=3^{*}\left(26-11^{*} 2\right)-11
$$

$$
1=3^{*} 26-6^{*} 11-11=3^{*} 26-7^{*} 11 \text { so the mutpipiative ivesese of } 11 \text { is.7 }
$$

Example :- Find the multiplicative inverse of 23 in $Z_{100}{ }^{*}$ $100=23^{*} 4+8^{*}$

$$
\begin{aligned}
& 23=8^{*} 2+7^{*} \\
& 8=7^{*} 1+1^{*} \\
& 7=1^{*} 7+0^{*}
\end{aligned}
$$

Now in revers way*

$$
\begin{array}{r}
1=8-\left(7^{*} 1\right)^{*} \\
1=8-\left(23-8^{*} 2\right)^{*} \\
1=8-23+8^{*} 2^{*} \\
1=3^{*} 8-23^{*}
\end{array}
$$

$1=3^{*}\left(100-23^{*} 4\right)-23=3^{*} 100-12 * 23-23=3^{*} 100-13^{*} 23$ So the multiplicative inverse of 23 in Z_{100} is -23 or $87(-23 \bmod 100)$.

