

Chapter three * Mathematics

Modular Arithmetic *

- several important cryptosystems make use of modular arithmetic. This is * when the answer to a calculation is always in the range 0 m where m is the modulus.
 - (a mod n) means the remainder when a is divided by n. *
 - a mod n = r^*

a div n=q* a = qn + r* r = a - q * n*

- Example :- if a=13 and n=5, find q and r.
- q=13 div 5=2 and r=13-2 *5=3 which is equivalent to (13 mod 5)
 - Example :- find (-13 mod 5).
- This can be found by find the number (b) where 5*b >13 then let b=3 and 5*3=15 which is less than 13 so
 - -13 mod 5=5*3-13=**2**

Properties of Congruences.*

Two numbers **a** and **b** are said to be "congruent modulo **n**" if *

$(a \mod n) = (b \mod n) \rightarrow a \equiv b \pmod{n}$

The difference between *a* and *b* will be a multiple of *n* So $a-b^*$ = *kn* for some value of *k*

Examples
$$4 = 9 = 14 = 19 = -1 = -6 \mod 5^*$$

 $73 \equiv 4 \pmod{23}$

Properties of Modular Arithmetic.*

 $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n.$

 $[(a \mod n) - (b \mod n)] \mod n = (a - b) \mod n.$

 $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n.$

- 11 mod 8 = 3; 15 mod 8 = 7
- $[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2$
 - $(11 + 15) \mod 8 = 26 \mod 8 = 2$
- $[(11 \mod 8) (15 \mod 8)] \mod 8 = -4 \mod 8 = 4$
 - $(11 15) \mod 8 = -4 \mod 8 = 4$
- [(11 mod 8) x (15 mod 8)] mod 8= 21 mod 8 = 5
 - (11 x 15) mod 8 = 165 mod 8 = 5

Exponentiation is done by repeated multiplication, as in ordinary * arithmetic.

Example *

To find $(11^7 \mod 13)$ do the followings $11^2 = 121 \equiv 4 \pmod{13}$ $11^4 (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}$ $11^7 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}$

Greatest Common Divisor(GCD).*

Let a and b be two non-zero integers. The greatest common divisor of a * and b, denoted gcd(a,b) is the largest of all common divisors of a and b.

When gcd(a,b) = 1, we say that a and b are relatively prime.* It can be calculated using the following equation: -* $GCD(a,b) = GCD(b,a \mod b)$ Example :- find the GCD(72,48).* $GCD(89,25)=GCD(25, 89 \mod 25)=GCD(25, 14)$ $GCD(25, 14)=GCD(14, 25 \mod 14)=GCD(14, 11)$ $GCD(14,11)=GCD(11, 14 \mod 11)=GCD(11,3)$ $GCD(11,3)=GCD(3, 11 \mod 3)=GCD(3, 2)$ $GCD(3,2)=GCD(2, 3 \mod 2)=GCD(2,1)$

GCD(2,1)=GCD(1, 2 mod 1)=GCD(1,0) so the GCD(89,25)=1

Least Common Multiple (LCM).*The least common multiple of the positive integers a and b is the *
smallest positive integer that is divisible by both a and b.The least common multiple of a and b is denoted by LCM(a, b).*
It can be calculated using the following equation: -•
LCM(a, b)=|a * b| / GCD(a, b)

Example :- find the LCM(354,144).*

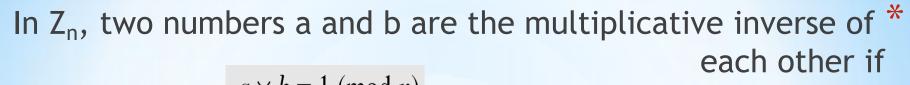
GCD(354,144)=GCD(144,354 mod 144)=GCD(144,66)

GCD(144,66)=GCD(66, 144 mod 66)= GCD(66,12)

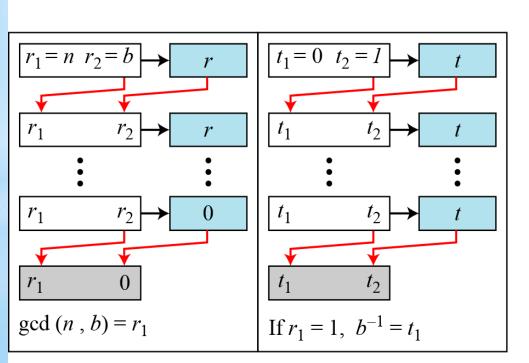
GCD(66,12) =GCD(12, 66 mod 12)=GCD(12,6)

GCD(12,6)=GCD(6, 127 mod 6)=GCD(6,0)=6

LCM(354,143)=(354*144)/6=8496



The extended $a \times b \equiv 1 \pmod{n}$ inverses of b in Zn when n and b are given and gcd (n, b) = 1 as



a. Process

*

b. Algorithm

Example: - Find the multiplicative inverse of 11 in Z_{26} .*

The GCD(26,11)must be 1 in order to find the inverse. Bu using * the extended Euclidean algorithm, we can use this table

q	r ₁	<i>r</i> ₂	r	$t_1 t_2$	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	-7
3	3	1	0	5 -7	26
	1	0		-7 26	

-7 mod 26=19.* the equation n = qn + r Example: - Find the multiplicative inverse of 11 in Z_{26} .*

- 26=11*2+4
- ✓ <u>11=4*2+3</u>
- 4=3*1+1 3=3*1+0
- We are now in reverse compensation starting from one as shown

$$1=4-11+4*2$$

1=3*26-6*11-11= 3*26-7*11 so the multiplicative inverse of 11 is -7

- Example :- Find the multiplicative inverse of 23 in Z_{100} . 100=23*4+8* 23=8*2+7* 8=7*1+1* 7=1*7+0* Now in revers way* $1=8-(7*1)^{*}$ 1=8-(23-8*2)* 1=8-23+8*2* 1=3*8-23* 1=3*(100-23*4)-23=3*100-12*23-23=3*100-13*23 So the multiplicative *
 - inverse of 23 in Z_{100} is -23 or 87(-23 mod 100).