Decrypting DES

- same function to encrypt or decrypt a block. •
- The only difference is that the keys must be used in the reverse order. That is, if the encryption keys for each round are K1, K2, K3, . . . , K16, then the decryption keys are K16, K15, K14, . . . , K1,.
- The algorithm that generates the key used for each round is circular as well.

Block vs. Stream Ciphers

Block cipher	Stream cipher
process messages in into blocks, each of which is then en/decrypted	process messages a bit or byte at a time when en/decrypting
Error propagation	Low error propagation
Slowness	Speed of transformation
High Diffusion	Low diffusion
Immunity to insertions	Susceptibility to attacks on integrity

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
- a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
 - is asymmetric because those who encrypt messages or verify signatures
 cannot decrypt messages or create signatures

(a) Encryption

Public-Key Characteristics: -

- it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
- either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)

Public-Key Applications: -

- can classify uses into 3 categories: •
- encryption/decryption (provide secrecy) -
- digital signatures (provide authentication)
 - key exchange (of session keys) -
- some algorithms are suitable for all uses, others are specific to
 one

Security of Public Key Schemes: -

- like private key schemes brute force exhaustive search attack is always theoretically possible
 - but keys used are too large (>512bits)

Diffie-Hellman

- first public-key type scheme proposed by Diffie & Hellman in 1976 along with the exposition of public key concepts.
 - Based on the difficulty of computing discrete logarithms of large numbers. •

