Examples of Lecture 4 Computer Technology

First Grade

2018-2019

Assistant Prof. Dr. Emad I Abdul Kareem
College of Education
Computer Science Department
Mustansiriyah University

Lecture 4 Memory Examples

Example 1: A certain memory chip is specified as $\mathbf{2 K} \times 8$.

1. How many words can be stored on this chip?
2. What is the words size?
3. How many total bits can this chip store?

SOLUTION:

1. $2 \mathrm{~K}=2 \times 1024=2048$ words
2. The word size is 8 -bits (1 byte).
3. Capacity $=2048 \times 8=16$ KB. Memory chip

Example 2: A certain memory chip is specified as $2 \mathrm{~K} \times 16$

1. How many words can be stored on this chip?
2. What is the words size?
3. How many total bits can this chip store?

SOLUTION:

1. $2 \mathrm{~K}=2 \times 1024=2048$ words
2. The word size is $16-$ bits (2 byte).
3. Capacity $=2048 * 16=32 \mathrm{~KB}$.

Example 3: Which memory stores the most number of bits $2 \mathrm{MG} \times 8$ memory or $2 \mathrm{MG} \times \mathbf{1 6}$ memory?

SOLUTION:

$2 \mathrm{MG}=2 \times 1024 \times 1024=2 \times(1048576)=2097152$ words
Capacity 2 MG $\times \mathbf{8}=(2 \times 1024 \times 1024) \times 8=16,777,216$ bits.
Capacity 2MG $\times 16=(2 \times 1024 \times 1024) \times 16=33,554,432$ bits.
So $2 \mathrm{MG} \times 16$ memory is bigger than $2 \mathrm{MG} \times 8$

Example 4: Which memory stores the most number of bits $4 \mathrm{MG} \times \mathbf{8}$ memory or $\mathbf{2 M G} \times 16$?

SOLUTION:

$4 \mathrm{MG}=4 \times 1024 \times 1024=4 \times(1048576)=4194304$ words
Capacity $=(4 \times 1024 \times 1024) \times 8=33,554,432$ bits.
Capacity $=(2 \times 1024 \times 1024) \times 16=33,554,432$ bits.
So $4 \mathrm{MG} \times 8$ and $2 \mathrm{MG} \times 16$ memory are equal.

Example 5: A certain memory has a capacity of $4 \mathrm{~K} \times 8$

1. How many data I/P \& data O/P lines?
2. How many word address line?
3. What is its capacity in byte?

SOLUTION:

1. 8 each line

So data I / P lines $=$ data O / P lines $=8$
2. $4 \times 1024=4096$ words

Thus, there are 4096 memory address
$2^{x=} 2^{12}=4096$
So $\mathrm{X}=12$ it required a 12 bit address line
3. The capacity $=(4 \times 1024) \times 8=32,768$ bit $=32,769 / 8=4096$ byte
(Since 1byte $=8$ bit) .

Example: the a certain memory has a capacity of $4 \mathrm{~K} \times 16$
 1. How many data I/P \& data O/P lines?
 2. How many word address lines?
 3. What is its capacity in byte?

SOLUTION:

1. 16 each one.

Data I/P lines $=$ data O / P lines $=16$
$2.4 \times 1024=20496$ words
Thus, there are 4096 memory addresses.
$4096=2^{12}$
It is require a 12-bit address line.
3. Capacity $=(4 \times 1024) \times 16=65,536$ bit

$$
=65,536 / 8=8.192 \text { byte }
$$

