Subsets

Every element in a set A is also an element of a set B, then A is called a subset of B. We also say that B contains A. This relationship is written:

$\mathbf{A} \subset \mathbf{B}$ or $\mathbf{B} \supset \mathbf{A}$

If A is not a subset of B, i.e. if at least one element of A dose not belong to B , we write $\mathbf{A} \not \subset \mathbf{B}$.

Example (4):

Consider the sets.

$$
A=\{1,3,4,5,8,9\} B=\{1,2,3,5,7\} \text { and } C=\{1,5\}
$$

Then $\mathrm{C} \subset \mathrm{A}$ and $\mathrm{C} \subset \mathrm{B}$ since 1 and 5 , the element of C , are also members of A and B.

But $\mathrm{B} \not \subset \mathrm{A}$ since some of its elements, e.g. 2 and 7, do not belong to A. Furthermore, since the elements of A,B and C must also belong to the universal set U, we have that U must at least the set $\{1,2,3,4,5,7,8,9\}$.
$A \subset B:\{\forall x \in A \Rightarrow x \in B$
$\mathrm{A} \not \subset \mathrm{B}:\{\exists \mathrm{x} \in \mathrm{A}$ but $\mathrm{x} \notin \mathrm{B}$
\forall : For all $\quad \exists$: There exists
The notion of subsets is graphically illustrated below:

A and B are disjoint or $(\mathrm{A} \cap \mathrm{B}=\varnothing)$ so we could write $\mathrm{A} \not \subset \mathrm{B}$ and $\mathrm{B} \not \subset \mathrm{A}$.

A is entirely within B so $A \subset B$.

