Discrete Structure

Relations

2) The second way by matrix:

1

		a	D	С	a			x			
MR =	1	1	0	0	0		a	0	0	0]
	2	0	0	0	1	MS =	ь	1	0	1	
	3	1	·1	0	1	1415 -	c	0	1	0	
	4	0	0	0	0		d	0	0	1	
					-		L	-			1

 $R \circ S = MR \cdot MS =$

	X	У	Z
1	Го	0	0
2	0	0	1
3	1	0	2
4	0	0	0
	_		_

 $R \ oS = \{(2,z), (3,x), (3,z)\}$

Theorem : Let A, B, C and D be sets Suppose R is a relation f rom A to B, S is a relation from B to C, and T is a relation from C to D. Then

 $(R \circ 5) \circ T = R \circ (5 \circ T)$