Relations

Discrete Structure

Relations

Relation:

We define a relation simply in terms of ordered pairs of objects.

Product sets:

Consider two arbitrary sets A and B. The set of all ordered pairs (a,b) w here $a \in A$ and $b \in B$ is called the product, or cartesian product, of A and B.

 $A \times B = \{(a,b) : a \in A \text{ and } b \in B\}$

Example: Let $A = \{1,2\}$ and $B = \{a, b, c\}$ then

$$A \times B = \{1, a\}, (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

$$\not F$$
Also, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

- The order in which the sets are considered is important, so $A \times B \neq B \times A$.

Let A and B be sets. A binary relation, R, from A to B is as ubset of $A \times B \cdot I$ f $(x,y) \in R$,

we say that x is R-related to y and denote this by xRy

if $(x, y) \notin R$, we write $x_{p \notin y}$ and say that x is not R-related to $y \cdot$ if R is a relation from A to A, i.e. R is a subset of A x A, then we s ay that R is arelation on A.

The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and the range of R is the set of second elements.